Properties

Label 1156.2.a.g.1.4
Level $1156$
Weight $2$
Character 1156.1
Self dual yes
Analytic conductor $9.231$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,2,Mod(1,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.23070647366\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.84776\) of defining polynomial
Character \(\chi\) \(=\) 1156.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84776 q^{3} -1.84776 q^{5} +0.765367 q^{7} +0.414214 q^{9} -3.37849 q^{11} -6.82843 q^{13} -3.41421 q^{15} -2.58579 q^{19} +1.41421 q^{21} -7.07401 q^{23} -1.58579 q^{25} -4.77791 q^{27} +4.01254 q^{29} +6.43996 q^{31} -6.24264 q^{33} -1.41421 q^{35} +6.62567 q^{37} -12.6173 q^{39} +1.21371 q^{41} +4.24264 q^{43} -0.765367 q^{45} +3.65685 q^{47} -6.41421 q^{49} +5.89949 q^{53} +6.24264 q^{55} -4.77791 q^{57} -13.8995 q^{59} +1.84776 q^{61} +0.317025 q^{63} +12.6173 q^{65} -11.3137 q^{67} -13.0711 q^{69} -1.21371 q^{71} +8.60474 q^{73} -2.93015 q^{75} -2.58579 q^{77} +11.4036 q^{79} -10.0711 q^{81} +0.242641 q^{83} +7.41421 q^{87} -10.8284 q^{89} -5.22625 q^{91} +11.8995 q^{93} +4.77791 q^{95} +0.951076 q^{97} -1.39942 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 16 q^{13} - 8 q^{15} - 16 q^{19} - 12 q^{25} - 8 q^{33} - 8 q^{47} - 20 q^{49} - 16 q^{53} + 8 q^{55} - 16 q^{59} - 24 q^{69} - 16 q^{77} - 12 q^{81} - 16 q^{83} + 24 q^{87} - 32 q^{89}+ \cdots + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.84776 1.06680 0.533402 0.845862i \(-0.320913\pi\)
0.533402 + 0.845862i \(0.320913\pi\)
\(4\) 0 0
\(5\) −1.84776 −0.826343 −0.413171 0.910653i \(-0.635579\pi\)
−0.413171 + 0.910653i \(0.635579\pi\)
\(6\) 0 0
\(7\) 0.765367 0.289281 0.144641 0.989484i \(-0.453797\pi\)
0.144641 + 0.989484i \(0.453797\pi\)
\(8\) 0 0
\(9\) 0.414214 0.138071
\(10\) 0 0
\(11\) −3.37849 −1.01865 −0.509327 0.860573i \(-0.670106\pi\)
−0.509327 + 0.860573i \(0.670106\pi\)
\(12\) 0 0
\(13\) −6.82843 −1.89386 −0.946932 0.321433i \(-0.895836\pi\)
−0.946932 + 0.321433i \(0.895836\pi\)
\(14\) 0 0
\(15\) −3.41421 −0.881546
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −2.58579 −0.593220 −0.296610 0.954999i \(-0.595856\pi\)
−0.296610 + 0.954999i \(0.595856\pi\)
\(20\) 0 0
\(21\) 1.41421 0.308607
\(22\) 0 0
\(23\) −7.07401 −1.47503 −0.737517 0.675329i \(-0.764002\pi\)
−0.737517 + 0.675329i \(0.764002\pi\)
\(24\) 0 0
\(25\) −1.58579 −0.317157
\(26\) 0 0
\(27\) −4.77791 −0.919509
\(28\) 0 0
\(29\) 4.01254 0.745111 0.372555 0.928010i \(-0.378482\pi\)
0.372555 + 0.928010i \(0.378482\pi\)
\(30\) 0 0
\(31\) 6.43996 1.15665 0.578326 0.815806i \(-0.303706\pi\)
0.578326 + 0.815806i \(0.303706\pi\)
\(32\) 0 0
\(33\) −6.24264 −1.08670
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) 6.62567 1.08925 0.544627 0.838679i \(-0.316671\pi\)
0.544627 + 0.838679i \(0.316671\pi\)
\(38\) 0 0
\(39\) −12.6173 −2.02038
\(40\) 0 0
\(41\) 1.21371 0.189549 0.0947747 0.995499i \(-0.469787\pi\)
0.0947747 + 0.995499i \(0.469787\pi\)
\(42\) 0 0
\(43\) 4.24264 0.646997 0.323498 0.946229i \(-0.395141\pi\)
0.323498 + 0.946229i \(0.395141\pi\)
\(44\) 0 0
\(45\) −0.765367 −0.114094
\(46\) 0 0
\(47\) 3.65685 0.533407 0.266704 0.963779i \(-0.414066\pi\)
0.266704 + 0.963779i \(0.414066\pi\)
\(48\) 0 0
\(49\) −6.41421 −0.916316
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.89949 0.810358 0.405179 0.914237i \(-0.367209\pi\)
0.405179 + 0.914237i \(0.367209\pi\)
\(54\) 0 0
\(55\) 6.24264 0.841757
\(56\) 0 0
\(57\) −4.77791 −0.632850
\(58\) 0 0
\(59\) −13.8995 −1.80956 −0.904780 0.425879i \(-0.859965\pi\)
−0.904780 + 0.425879i \(0.859965\pi\)
\(60\) 0 0
\(61\) 1.84776 0.236581 0.118291 0.992979i \(-0.462259\pi\)
0.118291 + 0.992979i \(0.462259\pi\)
\(62\) 0 0
\(63\) 0.317025 0.0399414
\(64\) 0 0
\(65\) 12.6173 1.56498
\(66\) 0 0
\(67\) −11.3137 −1.38219 −0.691095 0.722764i \(-0.742871\pi\)
−0.691095 + 0.722764i \(0.742871\pi\)
\(68\) 0 0
\(69\) −13.0711 −1.57357
\(70\) 0 0
\(71\) −1.21371 −0.144041 −0.0720203 0.997403i \(-0.522945\pi\)
−0.0720203 + 0.997403i \(0.522945\pi\)
\(72\) 0 0
\(73\) 8.60474 1.00711 0.503555 0.863963i \(-0.332025\pi\)
0.503555 + 0.863963i \(0.332025\pi\)
\(74\) 0 0
\(75\) −2.93015 −0.338345
\(76\) 0 0
\(77\) −2.58579 −0.294678
\(78\) 0 0
\(79\) 11.4036 1.28300 0.641501 0.767122i \(-0.278312\pi\)
0.641501 + 0.767122i \(0.278312\pi\)
\(80\) 0 0
\(81\) −10.0711 −1.11901
\(82\) 0 0
\(83\) 0.242641 0.0266333 0.0133166 0.999911i \(-0.495761\pi\)
0.0133166 + 0.999911i \(0.495761\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.41421 0.794887
\(88\) 0 0
\(89\) −10.8284 −1.14781 −0.573905 0.818922i \(-0.694572\pi\)
−0.573905 + 0.818922i \(0.694572\pi\)
\(90\) 0 0
\(91\) −5.22625 −0.547860
\(92\) 0 0
\(93\) 11.8995 1.23392
\(94\) 0 0
\(95\) 4.77791 0.490203
\(96\) 0 0
\(97\) 0.951076 0.0965671 0.0482836 0.998834i \(-0.484625\pi\)
0.0482836 + 0.998834i \(0.484625\pi\)
\(98\) 0 0
\(99\) −1.39942 −0.140647
\(100\) 0 0
\(101\) −12.8284 −1.27648 −0.638238 0.769839i \(-0.720336\pi\)
−0.638238 + 0.769839i \(0.720336\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) −2.61313 −0.255015
\(106\) 0 0
\(107\) −3.82683 −0.369954 −0.184977 0.982743i \(-0.559221\pi\)
−0.184977 + 0.982743i \(0.559221\pi\)
\(108\) 0 0
\(109\) −4.90923 −0.470219 −0.235109 0.971969i \(-0.575545\pi\)
−0.235109 + 0.971969i \(0.575545\pi\)
\(110\) 0 0
\(111\) 12.2426 1.16202
\(112\) 0 0
\(113\) −1.39942 −0.131646 −0.0658231 0.997831i \(-0.520967\pi\)
−0.0658231 + 0.997831i \(0.520967\pi\)
\(114\) 0 0
\(115\) 13.0711 1.21888
\(116\) 0 0
\(117\) −2.82843 −0.261488
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.414214 0.0376558
\(122\) 0 0
\(123\) 2.24264 0.202212
\(124\) 0 0
\(125\) 12.1689 1.08842
\(126\) 0 0
\(127\) −0.242641 −0.0215309 −0.0107654 0.999942i \(-0.503427\pi\)
−0.0107654 + 0.999942i \(0.503427\pi\)
\(128\) 0 0
\(129\) 7.83938 0.690219
\(130\) 0 0
\(131\) −10.9552 −0.957164 −0.478582 0.878043i \(-0.658849\pi\)
−0.478582 + 0.878043i \(0.658849\pi\)
\(132\) 0 0
\(133\) −1.97908 −0.171608
\(134\) 0 0
\(135\) 8.82843 0.759830
\(136\) 0 0
\(137\) 12.1421 1.03737 0.518686 0.854965i \(-0.326421\pi\)
0.518686 + 0.854965i \(0.326421\pi\)
\(138\) 0 0
\(139\) 17.5265 1.48658 0.743290 0.668970i \(-0.233264\pi\)
0.743290 + 0.668970i \(0.233264\pi\)
\(140\) 0 0
\(141\) 6.75699 0.569041
\(142\) 0 0
\(143\) 23.0698 1.92919
\(144\) 0 0
\(145\) −7.41421 −0.615717
\(146\) 0 0
\(147\) −11.8519 −0.977530
\(148\) 0 0
\(149\) −9.65685 −0.791120 −0.395560 0.918440i \(-0.629450\pi\)
−0.395560 + 0.918440i \(0.629450\pi\)
\(150\) 0 0
\(151\) 14.5858 1.18697 0.593487 0.804843i \(-0.297751\pi\)
0.593487 + 0.804843i \(0.297751\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −11.8995 −0.955790
\(156\) 0 0
\(157\) 2.34315 0.187003 0.0935017 0.995619i \(-0.470194\pi\)
0.0935017 + 0.995619i \(0.470194\pi\)
\(158\) 0 0
\(159\) 10.9008 0.864493
\(160\) 0 0
\(161\) −5.41421 −0.426700
\(162\) 0 0
\(163\) −7.25972 −0.568625 −0.284313 0.958732i \(-0.591765\pi\)
−0.284313 + 0.958732i \(0.591765\pi\)
\(164\) 0 0
\(165\) 11.5349 0.897990
\(166\) 0 0
\(167\) −12.3003 −0.951823 −0.475911 0.879493i \(-0.657882\pi\)
−0.475911 + 0.879493i \(0.657882\pi\)
\(168\) 0 0
\(169\) 33.6274 2.58672
\(170\) 0 0
\(171\) −1.07107 −0.0819066
\(172\) 0 0
\(173\) −25.1033 −1.90857 −0.954283 0.298905i \(-0.903379\pi\)
−0.954283 + 0.298905i \(0.903379\pi\)
\(174\) 0 0
\(175\) −1.21371 −0.0917477
\(176\) 0 0
\(177\) −25.6829 −1.93045
\(178\) 0 0
\(179\) −18.3848 −1.37414 −0.687071 0.726590i \(-0.741104\pi\)
−0.687071 + 0.726590i \(0.741104\pi\)
\(180\) 0 0
\(181\) 3.82683 0.284446 0.142223 0.989835i \(-0.454575\pi\)
0.142223 + 0.989835i \(0.454575\pi\)
\(182\) 0 0
\(183\) 3.41421 0.252386
\(184\) 0 0
\(185\) −12.2426 −0.900097
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.65685 −0.265997
\(190\) 0 0
\(191\) 0.343146 0.0248292 0.0124146 0.999923i \(-0.496048\pi\)
0.0124146 + 0.999923i \(0.496048\pi\)
\(192\) 0 0
\(193\) −15.5474 −1.11913 −0.559565 0.828787i \(-0.689032\pi\)
−0.559565 + 0.828787i \(0.689032\pi\)
\(194\) 0 0
\(195\) 23.3137 1.66953
\(196\) 0 0
\(197\) −12.5629 −0.895069 −0.447535 0.894267i \(-0.647698\pi\)
−0.447535 + 0.894267i \(0.647698\pi\)
\(198\) 0 0
\(199\) 1.66205 0.117820 0.0589098 0.998263i \(-0.481238\pi\)
0.0589098 + 0.998263i \(0.481238\pi\)
\(200\) 0 0
\(201\) −20.9050 −1.47453
\(202\) 0 0
\(203\) 3.07107 0.215547
\(204\) 0 0
\(205\) −2.24264 −0.156633
\(206\) 0 0
\(207\) −2.93015 −0.203660
\(208\) 0 0
\(209\) 8.73606 0.604286
\(210\) 0 0
\(211\) 2.03347 0.139990 0.0699949 0.997547i \(-0.477702\pi\)
0.0699949 + 0.997547i \(0.477702\pi\)
\(212\) 0 0
\(213\) −2.24264 −0.153663
\(214\) 0 0
\(215\) −7.83938 −0.534641
\(216\) 0 0
\(217\) 4.92893 0.334598
\(218\) 0 0
\(219\) 15.8995 1.07439
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −17.2132 −1.15268 −0.576341 0.817210i \(-0.695520\pi\)
−0.576341 + 0.817210i \(0.695520\pi\)
\(224\) 0 0
\(225\) −0.656854 −0.0437903
\(226\) 0 0
\(227\) 19.4287 1.28953 0.644763 0.764383i \(-0.276956\pi\)
0.644763 + 0.764383i \(0.276956\pi\)
\(228\) 0 0
\(229\) −3.75736 −0.248293 −0.124147 0.992264i \(-0.539619\pi\)
−0.124147 + 0.992264i \(0.539619\pi\)
\(230\) 0 0
\(231\) −4.77791 −0.314363
\(232\) 0 0
\(233\) −8.97616 −0.588048 −0.294024 0.955798i \(-0.594995\pi\)
−0.294024 + 0.955798i \(0.594995\pi\)
\(234\) 0 0
\(235\) −6.75699 −0.440777
\(236\) 0 0
\(237\) 21.0711 1.36871
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) −19.8770 −1.28039 −0.640195 0.768212i \(-0.721147\pi\)
−0.640195 + 0.768212i \(0.721147\pi\)
\(242\) 0 0
\(243\) −4.27518 −0.274253
\(244\) 0 0
\(245\) 11.8519 0.757191
\(246\) 0 0
\(247\) 17.6569 1.12348
\(248\) 0 0
\(249\) 0.448342 0.0284125
\(250\) 0 0
\(251\) 22.9706 1.44989 0.724945 0.688807i \(-0.241865\pi\)
0.724945 + 0.688807i \(0.241865\pi\)
\(252\) 0 0
\(253\) 23.8995 1.50255
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.75736 0.234378 0.117189 0.993110i \(-0.462612\pi\)
0.117189 + 0.993110i \(0.462612\pi\)
\(258\) 0 0
\(259\) 5.07107 0.315101
\(260\) 0 0
\(261\) 1.66205 0.102878
\(262\) 0 0
\(263\) −13.2132 −0.814761 −0.407381 0.913259i \(-0.633558\pi\)
−0.407381 + 0.913259i \(0.633558\pi\)
\(264\) 0 0
\(265\) −10.9008 −0.669634
\(266\) 0 0
\(267\) −20.0083 −1.22449
\(268\) 0 0
\(269\) −8.41904 −0.513318 −0.256659 0.966502i \(-0.582622\pi\)
−0.256659 + 0.966502i \(0.582622\pi\)
\(270\) 0 0
\(271\) 11.3137 0.687259 0.343629 0.939105i \(-0.388344\pi\)
0.343629 + 0.939105i \(0.388344\pi\)
\(272\) 0 0
\(273\) −9.65685 −0.584459
\(274\) 0 0
\(275\) 5.35757 0.323074
\(276\) 0 0
\(277\) 15.0991 0.907217 0.453608 0.891201i \(-0.350136\pi\)
0.453608 + 0.891201i \(0.350136\pi\)
\(278\) 0 0
\(279\) 2.66752 0.159700
\(280\) 0 0
\(281\) −15.0711 −0.899065 −0.449532 0.893264i \(-0.648409\pi\)
−0.449532 + 0.893264i \(0.648409\pi\)
\(282\) 0 0
\(283\) 7.07401 0.420506 0.210253 0.977647i \(-0.432571\pi\)
0.210253 + 0.977647i \(0.432571\pi\)
\(284\) 0 0
\(285\) 8.82843 0.522951
\(286\) 0 0
\(287\) 0.928932 0.0548331
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 1.75736 0.103018
\(292\) 0 0
\(293\) −8.00000 −0.467365 −0.233682 0.972313i \(-0.575078\pi\)
−0.233682 + 0.972313i \(0.575078\pi\)
\(294\) 0 0
\(295\) 25.6829 1.49532
\(296\) 0 0
\(297\) 16.1421 0.936662
\(298\) 0 0
\(299\) 48.3044 2.79351
\(300\) 0 0
\(301\) 3.24718 0.187164
\(302\) 0 0
\(303\) −23.7038 −1.36175
\(304\) 0 0
\(305\) −3.41421 −0.195497
\(306\) 0 0
\(307\) 6.34315 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(308\) 0 0
\(309\) 7.39104 0.420461
\(310\) 0 0
\(311\) 12.7486 0.722907 0.361454 0.932390i \(-0.382281\pi\)
0.361454 + 0.932390i \(0.382281\pi\)
\(312\) 0 0
\(313\) −22.7528 −1.28606 −0.643031 0.765840i \(-0.722323\pi\)
−0.643031 + 0.765840i \(0.722323\pi\)
\(314\) 0 0
\(315\) −0.585786 −0.0330053
\(316\) 0 0
\(317\) 0.393949 0.0221264 0.0110632 0.999939i \(-0.496478\pi\)
0.0110632 + 0.999939i \(0.496478\pi\)
\(318\) 0 0
\(319\) −13.5563 −0.759010
\(320\) 0 0
\(321\) −7.07107 −0.394669
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 10.8284 0.600653
\(326\) 0 0
\(327\) −9.07107 −0.501631
\(328\) 0 0
\(329\) 2.79884 0.154305
\(330\) 0 0
\(331\) 28.7279 1.57903 0.789515 0.613732i \(-0.210332\pi\)
0.789515 + 0.613732i \(0.210332\pi\)
\(332\) 0 0
\(333\) 2.74444 0.150395
\(334\) 0 0
\(335\) 20.9050 1.14216
\(336\) 0 0
\(337\) 25.9999 1.41631 0.708154 0.706058i \(-0.249528\pi\)
0.708154 + 0.706058i \(0.249528\pi\)
\(338\) 0 0
\(339\) −2.58579 −0.140441
\(340\) 0 0
\(341\) −21.7574 −1.17823
\(342\) 0 0
\(343\) −10.2668 −0.554355
\(344\) 0 0
\(345\) 24.1522 1.30031
\(346\) 0 0
\(347\) 7.78498 0.417920 0.208960 0.977924i \(-0.432992\pi\)
0.208960 + 0.977924i \(0.432992\pi\)
\(348\) 0 0
\(349\) −28.0416 −1.50103 −0.750517 0.660851i \(-0.770195\pi\)
−0.750517 + 0.660851i \(0.770195\pi\)
\(350\) 0 0
\(351\) 32.6256 1.74143
\(352\) 0 0
\(353\) 15.3137 0.815066 0.407533 0.913190i \(-0.366389\pi\)
0.407533 + 0.913190i \(0.366389\pi\)
\(354\) 0 0
\(355\) 2.24264 0.119027
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.3848 1.60365 0.801824 0.597561i \(-0.203863\pi\)
0.801824 + 0.597561i \(0.203863\pi\)
\(360\) 0 0
\(361\) −12.3137 −0.648090
\(362\) 0 0
\(363\) 0.765367 0.0401713
\(364\) 0 0
\(365\) −15.8995 −0.832218
\(366\) 0 0
\(367\) −3.82683 −0.199759 −0.0998796 0.995000i \(-0.531846\pi\)
−0.0998796 + 0.995000i \(0.531846\pi\)
\(368\) 0 0
\(369\) 0.502734 0.0261713
\(370\) 0 0
\(371\) 4.51528 0.234422
\(372\) 0 0
\(373\) −18.4853 −0.957132 −0.478566 0.878052i \(-0.658843\pi\)
−0.478566 + 0.878052i \(0.658843\pi\)
\(374\) 0 0
\(375\) 22.4853 1.16113
\(376\) 0 0
\(377\) −27.3994 −1.41114
\(378\) 0 0
\(379\) 10.9552 0.562733 0.281366 0.959600i \(-0.409212\pi\)
0.281366 + 0.959600i \(0.409212\pi\)
\(380\) 0 0
\(381\) −0.448342 −0.0229692
\(382\) 0 0
\(383\) 25.8995 1.32340 0.661701 0.749768i \(-0.269835\pi\)
0.661701 + 0.749768i \(0.269835\pi\)
\(384\) 0 0
\(385\) 4.77791 0.243505
\(386\) 0 0
\(387\) 1.75736 0.0893316
\(388\) 0 0
\(389\) −2.10051 −0.106500 −0.0532499 0.998581i \(-0.516958\pi\)
−0.0532499 + 0.998581i \(0.516958\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −20.2426 −1.02111
\(394\) 0 0
\(395\) −21.0711 −1.06020
\(396\) 0 0
\(397\) 18.8715 0.947135 0.473568 0.880757i \(-0.342966\pi\)
0.473568 + 0.880757i \(0.342966\pi\)
\(398\) 0 0
\(399\) −3.65685 −0.183072
\(400\) 0 0
\(401\) 9.23880 0.461363 0.230682 0.973029i \(-0.425904\pi\)
0.230682 + 0.973029i \(0.425904\pi\)
\(402\) 0 0
\(403\) −43.9748 −2.19054
\(404\) 0 0
\(405\) 18.6089 0.924684
\(406\) 0 0
\(407\) −22.3848 −1.10957
\(408\) 0 0
\(409\) −11.6569 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(410\) 0 0
\(411\) 22.4357 1.10667
\(412\) 0 0
\(413\) −10.6382 −0.523472
\(414\) 0 0
\(415\) −0.448342 −0.0220082
\(416\) 0 0
\(417\) 32.3848 1.58589
\(418\) 0 0
\(419\) −35.6327 −1.74077 −0.870385 0.492371i \(-0.836130\pi\)
−0.870385 + 0.492371i \(0.836130\pi\)
\(420\) 0 0
\(421\) −1.17157 −0.0570990 −0.0285495 0.999592i \(-0.509089\pi\)
−0.0285495 + 0.999592i \(0.509089\pi\)
\(422\) 0 0
\(423\) 1.51472 0.0736481
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.41421 0.0684386
\(428\) 0 0
\(429\) 42.6274 2.05807
\(430\) 0 0
\(431\) −20.5880 −0.991688 −0.495844 0.868412i \(-0.665141\pi\)
−0.495844 + 0.868412i \(0.665141\pi\)
\(432\) 0 0
\(433\) 8.24264 0.396116 0.198058 0.980190i \(-0.436537\pi\)
0.198058 + 0.980190i \(0.436537\pi\)
\(434\) 0 0
\(435\) −13.6997 −0.656849
\(436\) 0 0
\(437\) 18.2919 0.875019
\(438\) 0 0
\(439\) −14.8365 −0.708106 −0.354053 0.935225i \(-0.615197\pi\)
−0.354053 + 0.935225i \(0.615197\pi\)
\(440\) 0 0
\(441\) −2.65685 −0.126517
\(442\) 0 0
\(443\) −21.6569 −1.02895 −0.514474 0.857506i \(-0.672013\pi\)
−0.514474 + 0.857506i \(0.672013\pi\)
\(444\) 0 0
\(445\) 20.0083 0.948486
\(446\) 0 0
\(447\) −17.8435 −0.843970
\(448\) 0 0
\(449\) 21.2220 1.00153 0.500765 0.865583i \(-0.333052\pi\)
0.500765 + 0.865583i \(0.333052\pi\)
\(450\) 0 0
\(451\) −4.10051 −0.193085
\(452\) 0 0
\(453\) 26.9510 1.26627
\(454\) 0 0
\(455\) 9.65685 0.452720
\(456\) 0 0
\(457\) 4.24264 0.198462 0.0992312 0.995064i \(-0.468362\pi\)
0.0992312 + 0.995064i \(0.468362\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.75736 −0.361296 −0.180648 0.983548i \(-0.557820\pi\)
−0.180648 + 0.983548i \(0.557820\pi\)
\(462\) 0 0
\(463\) 7.65685 0.355844 0.177922 0.984045i \(-0.443062\pi\)
0.177922 + 0.984045i \(0.443062\pi\)
\(464\) 0 0
\(465\) −21.9874 −1.01964
\(466\) 0 0
\(467\) −28.2426 −1.30691 −0.653457 0.756964i \(-0.726682\pi\)
−0.653457 + 0.756964i \(0.726682\pi\)
\(468\) 0 0
\(469\) −8.65914 −0.399842
\(470\) 0 0
\(471\) 4.32957 0.199496
\(472\) 0 0
\(473\) −14.3337 −0.659066
\(474\) 0 0
\(475\) 4.10051 0.188144
\(476\) 0 0
\(477\) 2.44365 0.111887
\(478\) 0 0
\(479\) −8.23333 −0.376190 −0.188095 0.982151i \(-0.560231\pi\)
−0.188095 + 0.982151i \(0.560231\pi\)
\(480\) 0 0
\(481\) −45.2429 −2.06290
\(482\) 0 0
\(483\) −10.0042 −0.455205
\(484\) 0 0
\(485\) −1.75736 −0.0797976
\(486\) 0 0
\(487\) 3.64113 0.164995 0.0824976 0.996591i \(-0.473710\pi\)
0.0824976 + 0.996591i \(0.473710\pi\)
\(488\) 0 0
\(489\) −13.4142 −0.606612
\(490\) 0 0
\(491\) −23.7574 −1.07215 −0.536077 0.844169i \(-0.680094\pi\)
−0.536077 + 0.844169i \(0.680094\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.58579 0.116222
\(496\) 0 0
\(497\) −0.928932 −0.0416683
\(498\) 0 0
\(499\) −37.5348 −1.68029 −0.840145 0.542362i \(-0.817530\pi\)
−0.840145 + 0.542362i \(0.817530\pi\)
\(500\) 0 0
\(501\) −22.7279 −1.01541
\(502\) 0 0
\(503\) 7.89377 0.351966 0.175983 0.984393i \(-0.443690\pi\)
0.175983 + 0.984393i \(0.443690\pi\)
\(504\) 0 0
\(505\) 23.7038 1.05481
\(506\) 0 0
\(507\) 62.1354 2.75953
\(508\) 0 0
\(509\) −6.68629 −0.296365 −0.148182 0.988960i \(-0.547342\pi\)
−0.148182 + 0.988960i \(0.547342\pi\)
\(510\) 0 0
\(511\) 6.58579 0.291338
\(512\) 0 0
\(513\) 12.3547 0.545471
\(514\) 0 0
\(515\) −7.39104 −0.325688
\(516\) 0 0
\(517\) −12.3547 −0.543357
\(518\) 0 0
\(519\) −46.3848 −2.03607
\(520\) 0 0
\(521\) −27.5307 −1.20614 −0.603070 0.797688i \(-0.706056\pi\)
−0.603070 + 0.797688i \(0.706056\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) −2.24264 −0.0978769
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 27.0416 1.17572
\(530\) 0 0
\(531\) −5.75736 −0.249848
\(532\) 0 0
\(533\) −8.28772 −0.358981
\(534\) 0 0
\(535\) 7.07107 0.305709
\(536\) 0 0
\(537\) −33.9706 −1.46594
\(538\) 0 0
\(539\) 21.6704 0.933409
\(540\) 0 0
\(541\) −7.89377 −0.339380 −0.169690 0.985498i \(-0.554277\pi\)
−0.169690 + 0.985498i \(0.554277\pi\)
\(542\) 0 0
\(543\) 7.07107 0.303449
\(544\) 0 0
\(545\) 9.07107 0.388562
\(546\) 0 0
\(547\) 24.5461 1.04952 0.524758 0.851251i \(-0.324156\pi\)
0.524758 + 0.851251i \(0.324156\pi\)
\(548\) 0 0
\(549\) 0.765367 0.0326651
\(550\) 0 0
\(551\) −10.3756 −0.442015
\(552\) 0 0
\(553\) 8.72792 0.371149
\(554\) 0 0
\(555\) −22.6215 −0.960227
\(556\) 0 0
\(557\) −22.8284 −0.967272 −0.483636 0.875269i \(-0.660684\pi\)
−0.483636 + 0.875269i \(0.660684\pi\)
\(558\) 0 0
\(559\) −28.9706 −1.22532
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −38.5858 −1.62620 −0.813099 0.582126i \(-0.802221\pi\)
−0.813099 + 0.582126i \(0.802221\pi\)
\(564\) 0 0
\(565\) 2.58579 0.108785
\(566\) 0 0
\(567\) −7.70806 −0.323708
\(568\) 0 0
\(569\) −27.5563 −1.15522 −0.577611 0.816312i \(-0.696015\pi\)
−0.577611 + 0.816312i \(0.696015\pi\)
\(570\) 0 0
\(571\) −25.4747 −1.06608 −0.533041 0.846089i \(-0.678951\pi\)
−0.533041 + 0.846089i \(0.678951\pi\)
\(572\) 0 0
\(573\) 0.634051 0.0264878
\(574\) 0 0
\(575\) 11.2179 0.467818
\(576\) 0 0
\(577\) −1.79899 −0.0748929 −0.0374465 0.999299i \(-0.511922\pi\)
−0.0374465 + 0.999299i \(0.511922\pi\)
\(578\) 0 0
\(579\) −28.7279 −1.19389
\(580\) 0 0
\(581\) 0.185709 0.00770451
\(582\) 0 0
\(583\) −19.9314 −0.825474
\(584\) 0 0
\(585\) 5.22625 0.216079
\(586\) 0 0
\(587\) 29.2132 1.20576 0.602879 0.797833i \(-0.294020\pi\)
0.602879 + 0.797833i \(0.294020\pi\)
\(588\) 0 0
\(589\) −16.6524 −0.686149
\(590\) 0 0
\(591\) −23.2132 −0.954864
\(592\) 0 0
\(593\) −33.2132 −1.36390 −0.681951 0.731397i \(-0.738868\pi\)
−0.681951 + 0.731397i \(0.738868\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.07107 0.125690
\(598\) 0 0
\(599\) 37.3137 1.52460 0.762298 0.647226i \(-0.224071\pi\)
0.762298 + 0.647226i \(0.224071\pi\)
\(600\) 0 0
\(601\) −5.09494 −0.207827 −0.103913 0.994586i \(-0.533136\pi\)
−0.103913 + 0.994586i \(0.533136\pi\)
\(602\) 0 0
\(603\) −4.68629 −0.190841
\(604\) 0 0
\(605\) −0.765367 −0.0311166
\(606\) 0 0
\(607\) 15.9189 0.646127 0.323063 0.946377i \(-0.395287\pi\)
0.323063 + 0.946377i \(0.395287\pi\)
\(608\) 0 0
\(609\) 5.67459 0.229946
\(610\) 0 0
\(611\) −24.9706 −1.01020
\(612\) 0 0
\(613\) 0.343146 0.0138595 0.00692976 0.999976i \(-0.497794\pi\)
0.00692976 + 0.999976i \(0.497794\pi\)
\(614\) 0 0
\(615\) −4.14386 −0.167097
\(616\) 0 0
\(617\) −34.1020 −1.37289 −0.686446 0.727180i \(-0.740830\pi\)
−0.686446 + 0.727180i \(0.740830\pi\)
\(618\) 0 0
\(619\) 13.3827 0.537894 0.268947 0.963155i \(-0.413324\pi\)
0.268947 + 0.963155i \(0.413324\pi\)
\(620\) 0 0
\(621\) 33.7990 1.35631
\(622\) 0 0
\(623\) −8.28772 −0.332040
\(624\) 0 0
\(625\) −14.5563 −0.582254
\(626\) 0 0
\(627\) 16.1421 0.644655
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −14.5858 −0.580651 −0.290325 0.956928i \(-0.593764\pi\)
−0.290325 + 0.956928i \(0.593764\pi\)
\(632\) 0 0
\(633\) 3.75736 0.149342
\(634\) 0 0
\(635\) 0.448342 0.0177919
\(636\) 0 0
\(637\) 43.7990 1.73538
\(638\) 0 0
\(639\) −0.502734 −0.0198879
\(640\) 0 0
\(641\) −46.4566 −1.83493 −0.917463 0.397821i \(-0.869766\pi\)
−0.917463 + 0.397821i \(0.869766\pi\)
\(642\) 0 0
\(643\) 5.54328 0.218606 0.109303 0.994009i \(-0.465138\pi\)
0.109303 + 0.994009i \(0.465138\pi\)
\(644\) 0 0
\(645\) −14.4853 −0.570357
\(646\) 0 0
\(647\) 32.9706 1.29621 0.648103 0.761552i \(-0.275563\pi\)
0.648103 + 0.761552i \(0.275563\pi\)
\(648\) 0 0
\(649\) 46.9593 1.84332
\(650\) 0 0
\(651\) 9.10748 0.356950
\(652\) 0 0
\(653\) 45.1885 1.76836 0.884181 0.467144i \(-0.154717\pi\)
0.884181 + 0.467144i \(0.154717\pi\)
\(654\) 0 0
\(655\) 20.2426 0.790945
\(656\) 0 0
\(657\) 3.56420 0.139053
\(658\) 0 0
\(659\) −2.68629 −0.104643 −0.0523215 0.998630i \(-0.516662\pi\)
−0.0523215 + 0.998630i \(0.516662\pi\)
\(660\) 0 0
\(661\) 12.7279 0.495059 0.247529 0.968880i \(-0.420381\pi\)
0.247529 + 0.968880i \(0.420381\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.65685 0.141807
\(666\) 0 0
\(667\) −28.3848 −1.09906
\(668\) 0 0
\(669\) −31.8059 −1.22969
\(670\) 0 0
\(671\) −6.24264 −0.240994
\(672\) 0 0
\(673\) 31.0405 1.19652 0.598261 0.801301i \(-0.295858\pi\)
0.598261 + 0.801301i \(0.295858\pi\)
\(674\) 0 0
\(675\) 7.57675 0.291629
\(676\) 0 0
\(677\) 1.66205 0.0638778 0.0319389 0.999490i \(-0.489832\pi\)
0.0319389 + 0.999490i \(0.489832\pi\)
\(678\) 0 0
\(679\) 0.727922 0.0279351
\(680\) 0 0
\(681\) 35.8995 1.37567
\(682\) 0 0
\(683\) −4.27518 −0.163585 −0.0817925 0.996649i \(-0.526064\pi\)
−0.0817925 + 0.996649i \(0.526064\pi\)
\(684\) 0 0
\(685\) −22.4357 −0.857226
\(686\) 0 0
\(687\) −6.94269 −0.264880
\(688\) 0 0
\(689\) −40.2843 −1.53471
\(690\) 0 0
\(691\) 7.07401 0.269108 0.134554 0.990906i \(-0.457040\pi\)
0.134554 + 0.990906i \(0.457040\pi\)
\(692\) 0 0
\(693\) −1.07107 −0.0406865
\(694\) 0 0
\(695\) −32.3848 −1.22842
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −16.5858 −0.627332
\(700\) 0 0
\(701\) −19.5147 −0.737061 −0.368530 0.929616i \(-0.620139\pi\)
−0.368530 + 0.929616i \(0.620139\pi\)
\(702\) 0 0
\(703\) −17.1326 −0.646167
\(704\) 0 0
\(705\) −12.4853 −0.470223
\(706\) 0 0
\(707\) −9.81845 −0.369261
\(708\) 0 0
\(709\) −3.37849 −0.126882 −0.0634410 0.997986i \(-0.520207\pi\)
−0.0634410 + 0.997986i \(0.520207\pi\)
\(710\) 0 0
\(711\) 4.72352 0.177146
\(712\) 0 0
\(713\) −45.5563 −1.70610
\(714\) 0 0
\(715\) −42.6274 −1.59418
\(716\) 0 0
\(717\) 41.8100 1.56142
\(718\) 0 0
\(719\) −15.0222 −0.560233 −0.280116 0.959966i \(-0.590373\pi\)
−0.280116 + 0.959966i \(0.590373\pi\)
\(720\) 0 0
\(721\) 3.06147 0.114015
\(722\) 0 0
\(723\) −36.7279 −1.36593
\(724\) 0 0
\(725\) −6.36304 −0.236317
\(726\) 0 0
\(727\) 19.6569 0.729032 0.364516 0.931197i \(-0.381234\pi\)
0.364516 + 0.931197i \(0.381234\pi\)
\(728\) 0 0
\(729\) 22.3137 0.826434
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −4.72792 −0.174630 −0.0873149 0.996181i \(-0.527829\pi\)
−0.0873149 + 0.996181i \(0.527829\pi\)
\(734\) 0 0
\(735\) 21.8995 0.807775
\(736\) 0 0
\(737\) 38.2233 1.40797
\(738\) 0 0
\(739\) −16.9289 −0.622741 −0.311370 0.950289i \(-0.600788\pi\)
−0.311370 + 0.950289i \(0.600788\pi\)
\(740\) 0 0
\(741\) 32.6256 1.19853
\(742\) 0 0
\(743\) 28.1647 1.03326 0.516632 0.856208i \(-0.327186\pi\)
0.516632 + 0.856208i \(0.327186\pi\)
\(744\) 0 0
\(745\) 17.8435 0.653737
\(746\) 0 0
\(747\) 0.100505 0.00367729
\(748\) 0 0
\(749\) −2.92893 −0.107021
\(750\) 0 0
\(751\) −46.0852 −1.68167 −0.840836 0.541290i \(-0.817936\pi\)
−0.840836 + 0.541290i \(0.817936\pi\)
\(752\) 0 0
\(753\) 42.4441 1.54675
\(754\) 0 0
\(755\) −26.9510 −0.980848
\(756\) 0 0
\(757\) 46.6690 1.69622 0.848108 0.529824i \(-0.177742\pi\)
0.848108 + 0.529824i \(0.177742\pi\)
\(758\) 0 0
\(759\) 44.1605 1.60292
\(760\) 0 0
\(761\) −17.8579 −0.647347 −0.323674 0.946169i \(-0.604918\pi\)
−0.323674 + 0.946169i \(0.604918\pi\)
\(762\) 0 0
\(763\) −3.75736 −0.136026
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 94.9117 3.42706
\(768\) 0 0
\(769\) 3.79899 0.136995 0.0684975 0.997651i \(-0.478179\pi\)
0.0684975 + 0.997651i \(0.478179\pi\)
\(770\) 0 0
\(771\) 6.94269 0.250035
\(772\) 0 0
\(773\) 20.9289 0.752761 0.376381 0.926465i \(-0.377168\pi\)
0.376381 + 0.926465i \(0.377168\pi\)
\(774\) 0 0
\(775\) −10.2124 −0.366840
\(776\) 0 0
\(777\) 9.37011 0.336151
\(778\) 0 0
\(779\) −3.13839 −0.112445
\(780\) 0 0
\(781\) 4.10051 0.146728
\(782\) 0 0
\(783\) −19.1716 −0.685136
\(784\) 0 0
\(785\) −4.32957 −0.154529
\(786\) 0 0
\(787\) 35.2931 1.25806 0.629032 0.777379i \(-0.283451\pi\)
0.629032 + 0.777379i \(0.283451\pi\)
\(788\) 0 0
\(789\) −24.4148 −0.869190
\(790\) 0 0
\(791\) −1.07107 −0.0380828
\(792\) 0 0
\(793\) −12.6173 −0.448053
\(794\) 0 0
\(795\) −20.1421 −0.714368
\(796\) 0 0
\(797\) −48.5269 −1.71891 −0.859456 0.511210i \(-0.829197\pi\)
−0.859456 + 0.511210i \(0.829197\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −4.48528 −0.158480
\(802\) 0 0
\(803\) −29.0711 −1.02590
\(804\) 0 0
\(805\) 10.0042 0.352600
\(806\) 0 0
\(807\) −15.5563 −0.547609
\(808\) 0 0
\(809\) 29.7724 1.04674 0.523371 0.852105i \(-0.324674\pi\)
0.523371 + 0.852105i \(0.324674\pi\)
\(810\) 0 0
\(811\) 23.8352 0.836966 0.418483 0.908225i \(-0.362562\pi\)
0.418483 + 0.908225i \(0.362562\pi\)
\(812\) 0 0
\(813\) 20.9050 0.733171
\(814\) 0 0
\(815\) 13.4142 0.469879
\(816\) 0 0
\(817\) −10.9706 −0.383811
\(818\) 0 0
\(819\) −2.16478 −0.0756437
\(820\) 0 0
\(821\) 5.91470 0.206424 0.103212 0.994659i \(-0.467088\pi\)
0.103212 + 0.994659i \(0.467088\pi\)
\(822\) 0 0
\(823\) −30.2207 −1.05343 −0.526714 0.850042i \(-0.676576\pi\)
−0.526714 + 0.850042i \(0.676576\pi\)
\(824\) 0 0
\(825\) 9.89949 0.344656
\(826\) 0 0
\(827\) 3.64113 0.126614 0.0633072 0.997994i \(-0.479835\pi\)
0.0633072 + 0.997994i \(0.479835\pi\)
\(828\) 0 0
\(829\) 29.6569 1.03003 0.515013 0.857183i \(-0.327787\pi\)
0.515013 + 0.857183i \(0.327787\pi\)
\(830\) 0 0
\(831\) 27.8995 0.967823
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 22.7279 0.786532
\(836\) 0 0
\(837\) −30.7696 −1.06355
\(838\) 0 0
\(839\) 6.06854 0.209509 0.104755 0.994498i \(-0.466594\pi\)
0.104755 + 0.994498i \(0.466594\pi\)
\(840\) 0 0
\(841\) −12.8995 −0.444810
\(842\) 0 0
\(843\) −27.8477 −0.959126
\(844\) 0 0
\(845\) −62.1354 −2.13752
\(846\) 0 0
\(847\) 0.317025 0.0108931
\(848\) 0 0
\(849\) 13.0711 0.448598
\(850\) 0 0
\(851\) −46.8701 −1.60668
\(852\) 0 0
\(853\) −21.6704 −0.741979 −0.370990 0.928637i \(-0.620982\pi\)
−0.370990 + 0.928637i \(0.620982\pi\)
\(854\) 0 0
\(855\) 1.97908 0.0676829
\(856\) 0 0
\(857\) 12.9343 0.441828 0.220914 0.975293i \(-0.429096\pi\)
0.220914 + 0.975293i \(0.429096\pi\)
\(858\) 0 0
\(859\) −16.7279 −0.570749 −0.285375 0.958416i \(-0.592118\pi\)
−0.285375 + 0.958416i \(0.592118\pi\)
\(860\) 0 0
\(861\) 1.71644 0.0584962
\(862\) 0 0
\(863\) 14.0000 0.476566 0.238283 0.971196i \(-0.423415\pi\)
0.238283 + 0.971196i \(0.423415\pi\)
\(864\) 0 0
\(865\) 46.3848 1.57713
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −38.5269 −1.30694
\(870\) 0 0
\(871\) 77.2548 2.61768
\(872\) 0 0
\(873\) 0.393949 0.0133331
\(874\) 0 0
\(875\) 9.31371 0.314861
\(876\) 0 0
\(877\) −8.60474 −0.290562 −0.145281 0.989390i \(-0.546409\pi\)
−0.145281 + 0.989390i \(0.546409\pi\)
\(878\) 0 0
\(879\) −14.7821 −0.498587
\(880\) 0 0
\(881\) −9.68714 −0.326368 −0.163184 0.986596i \(-0.552176\pi\)
−0.163184 + 0.986596i \(0.552176\pi\)
\(882\) 0 0
\(883\) −14.3431 −0.482685 −0.241343 0.970440i \(-0.577588\pi\)
−0.241343 + 0.970440i \(0.577588\pi\)
\(884\) 0 0
\(885\) 47.4558 1.59521
\(886\) 0 0
\(887\) −35.4788 −1.19126 −0.595631 0.803258i \(-0.703098\pi\)
−0.595631 + 0.803258i \(0.703098\pi\)
\(888\) 0 0
\(889\) −0.185709 −0.00622848
\(890\) 0 0
\(891\) 34.0250 1.13988
\(892\) 0 0
\(893\) −9.45584 −0.316428
\(894\) 0 0
\(895\) 33.9706 1.13551
\(896\) 0 0
\(897\) 89.2548 2.98013
\(898\) 0 0
\(899\) 25.8406 0.861833
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 6.00000 0.199667
\(904\) 0 0
\(905\) −7.07107 −0.235050
\(906\) 0 0
\(907\) −7.59928 −0.252330 −0.126165 0.992009i \(-0.540267\pi\)
−0.126165 + 0.992009i \(0.540267\pi\)
\(908\) 0 0
\(909\) −5.31371 −0.176245
\(910\) 0 0
\(911\) 3.03894 0.100684 0.0503422 0.998732i \(-0.483969\pi\)
0.0503422 + 0.998732i \(0.483969\pi\)
\(912\) 0 0
\(913\) −0.819760 −0.0271301
\(914\) 0 0
\(915\) −6.30864 −0.208557
\(916\) 0 0
\(917\) −8.38478 −0.276890
\(918\) 0 0
\(919\) −14.3431 −0.473137 −0.236568 0.971615i \(-0.576023\pi\)
−0.236568 + 0.971615i \(0.576023\pi\)
\(920\) 0 0
\(921\) 11.7206 0.386207
\(922\) 0 0
\(923\) 8.28772 0.272794
\(924\) 0 0
\(925\) −10.5069 −0.345465
\(926\) 0 0
\(927\) 1.65685 0.0544182
\(928\) 0 0
\(929\) 49.4412 1.62211 0.811056 0.584969i \(-0.198893\pi\)
0.811056 + 0.584969i \(0.198893\pi\)
\(930\) 0 0
\(931\) 16.5858 0.543577
\(932\) 0 0
\(933\) 23.5563 0.771200
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −23.3553 −0.762986 −0.381493 0.924372i \(-0.624590\pi\)
−0.381493 + 0.924372i \(0.624590\pi\)
\(938\) 0 0
\(939\) −42.0416 −1.37198
\(940\) 0 0
\(941\) −1.66205 −0.0541813 −0.0270906 0.999633i \(-0.508624\pi\)
−0.0270906 + 0.999633i \(0.508624\pi\)
\(942\) 0 0
\(943\) −8.58579 −0.279592
\(944\) 0 0
\(945\) 6.75699 0.219805
\(946\) 0 0
\(947\) 9.05309 0.294186 0.147093 0.989123i \(-0.453008\pi\)
0.147093 + 0.989123i \(0.453008\pi\)
\(948\) 0 0
\(949\) −58.7569 −1.90733
\(950\) 0 0
\(951\) 0.727922 0.0236045
\(952\) 0 0
\(953\) 12.1421 0.393322 0.196661 0.980472i \(-0.436990\pi\)
0.196661 + 0.980472i \(0.436990\pi\)
\(954\) 0 0
\(955\) −0.634051 −0.0205174
\(956\) 0 0
\(957\) −25.0489 −0.809715
\(958\) 0 0
\(959\) 9.29319 0.300093
\(960\) 0 0
\(961\) 10.4731 0.337842
\(962\) 0 0
\(963\) −1.58513 −0.0510800
\(964\) 0 0
\(965\) 28.7279 0.924785
\(966\) 0 0
\(967\) −33.0122 −1.06160 −0.530800 0.847497i \(-0.678109\pi\)
−0.530800 + 0.847497i \(0.678109\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −37.2132 −1.19423 −0.597114 0.802156i \(-0.703686\pi\)
−0.597114 + 0.802156i \(0.703686\pi\)
\(972\) 0 0
\(973\) 13.4142 0.430040
\(974\) 0 0
\(975\) 20.0083 0.640779
\(976\) 0 0
\(977\) 38.3848 1.22804 0.614019 0.789291i \(-0.289552\pi\)
0.614019 + 0.789291i \(0.289552\pi\)
\(978\) 0 0
\(979\) 36.5838 1.16922
\(980\) 0 0
\(981\) −2.03347 −0.0649236
\(982\) 0 0
\(983\) −39.3282 −1.25437 −0.627187 0.778868i \(-0.715794\pi\)
−0.627187 + 0.778868i \(0.715794\pi\)
\(984\) 0 0
\(985\) 23.2132 0.739634
\(986\) 0 0
\(987\) 5.17157 0.164613
\(988\) 0 0
\(989\) −30.0125 −0.954342
\(990\) 0 0
\(991\) 45.3742 1.44136 0.720680 0.693268i \(-0.243830\pi\)
0.720680 + 0.693268i \(0.243830\pi\)
\(992\) 0 0
\(993\) 53.0823 1.68452
\(994\) 0 0
\(995\) −3.07107 −0.0973594
\(996\) 0 0
\(997\) −30.9636 −0.980626 −0.490313 0.871546i \(-0.663118\pi\)
−0.490313 + 0.871546i \(0.663118\pi\)
\(998\) 0 0
\(999\) −31.6569 −1.00158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.a.g.1.4 4
4.3 odd 2 4624.2.a.bl.1.1 4
17.2 even 8 1156.2.e.f.905.4 8
17.3 odd 16 1156.2.h.c.757.1 4
17.4 even 4 1156.2.b.d.577.1 4
17.5 odd 16 68.2.h.a.25.1 4
17.6 odd 16 1156.2.h.c.733.1 4
17.7 odd 16 68.2.h.a.49.1 yes 4
17.8 even 8 1156.2.e.f.829.1 8
17.9 even 8 1156.2.e.f.829.4 8
17.10 odd 16 1156.2.h.b.1001.1 4
17.11 odd 16 1156.2.h.a.733.1 4
17.12 odd 16 1156.2.h.b.977.1 4
17.13 even 4 1156.2.b.d.577.4 4
17.14 odd 16 1156.2.h.a.757.1 4
17.15 even 8 1156.2.e.f.905.1 8
17.16 even 2 inner 1156.2.a.g.1.1 4
51.5 even 16 612.2.w.a.433.1 4
51.41 even 16 612.2.w.a.253.1 4
68.7 even 16 272.2.v.c.49.1 4
68.39 even 16 272.2.v.c.161.1 4
68.67 odd 2 4624.2.a.bl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.h.a.25.1 4 17.5 odd 16
68.2.h.a.49.1 yes 4 17.7 odd 16
272.2.v.c.49.1 4 68.7 even 16
272.2.v.c.161.1 4 68.39 even 16
612.2.w.a.253.1 4 51.41 even 16
612.2.w.a.433.1 4 51.5 even 16
1156.2.a.g.1.1 4 17.16 even 2 inner
1156.2.a.g.1.4 4 1.1 even 1 trivial
1156.2.b.d.577.1 4 17.4 even 4
1156.2.b.d.577.4 4 17.13 even 4
1156.2.e.f.829.1 8 17.8 even 8
1156.2.e.f.829.4 8 17.9 even 8
1156.2.e.f.905.1 8 17.15 even 8
1156.2.e.f.905.4 8 17.2 even 8
1156.2.h.a.733.1 4 17.11 odd 16
1156.2.h.a.757.1 4 17.14 odd 16
1156.2.h.b.977.1 4 17.12 odd 16
1156.2.h.b.1001.1 4 17.10 odd 16
1156.2.h.c.733.1 4 17.6 odd 16
1156.2.h.c.757.1 4 17.3 odd 16
4624.2.a.bl.1.1 4 4.3 odd 2
4624.2.a.bl.1.4 4 68.67 odd 2