Properties

Label 1156.2.e.f.829.1
Level $1156$
Weight $2$
Character 1156.829
Analytic conductor $9.231$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,2,Mod(829,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 1156.829
Dual form 1156.2.e.f.905.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30656 - 1.30656i) q^{3} +(-1.30656 - 1.30656i) q^{5} +(0.541196 - 0.541196i) q^{7} +0.414214i q^{9} +(2.38896 - 2.38896i) q^{11} +6.82843 q^{13} +3.41421i q^{15} +2.58579i q^{19} -1.41421 q^{21} +(5.00208 - 5.00208i) q^{23} -1.58579i q^{25} +(-3.37849 + 3.37849i) q^{27} +(2.83730 + 2.83730i) q^{29} +(-4.55374 - 4.55374i) q^{31} -6.24264 q^{33} -1.41421 q^{35} +(-4.68506 - 4.68506i) q^{37} +(-8.92177 - 8.92177i) q^{39} +(0.858221 - 0.858221i) q^{41} +4.24264i q^{43} +(0.541196 - 0.541196i) q^{45} -3.65685 q^{47} +6.41421i q^{49} -5.89949i q^{53} -6.24264 q^{55} +(3.37849 - 3.37849i) q^{57} -13.8995i q^{59} +(1.30656 - 1.30656i) q^{61} +(0.224171 + 0.224171i) q^{63} +(-8.92177 - 8.92177i) q^{65} -11.3137 q^{67} -13.0711 q^{69} +(0.858221 + 0.858221i) q^{71} +(6.08447 + 6.08447i) q^{73} +(-2.07193 + 2.07193i) q^{75} -2.58579i q^{77} +(-8.06355 + 8.06355i) q^{79} +10.0711 q^{81} -0.242641i q^{83} -7.41421i q^{87} +10.8284 q^{89} +(3.69552 - 3.69552i) q^{91} +11.8995i q^{93} +(3.37849 - 3.37849i) q^{95} +(0.672512 + 0.672512i) q^{97} +(0.989538 + 0.989538i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 32 q^{13} - 16 q^{33} + 16 q^{47} - 16 q^{55} - 48 q^{69} + 24 q^{81} + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.30656 1.30656i −0.754344 0.754344i 0.220942 0.975287i \(-0.429087\pi\)
−0.975287 + 0.220942i \(0.929087\pi\)
\(4\) 0 0
\(5\) −1.30656 1.30656i −0.584313 0.584313i 0.351773 0.936085i \(-0.385579\pi\)
−0.936085 + 0.351773i \(0.885579\pi\)
\(6\) 0 0
\(7\) 0.541196 0.541196i 0.204553 0.204553i −0.597395 0.801947i \(-0.703797\pi\)
0.801947 + 0.597395i \(0.203797\pi\)
\(8\) 0 0
\(9\) 0.414214i 0.138071i
\(10\) 0 0
\(11\) 2.38896 2.38896i 0.720297 0.720297i −0.248369 0.968666i \(-0.579894\pi\)
0.968666 + 0.248369i \(0.0798944\pi\)
\(12\) 0 0
\(13\) 6.82843 1.89386 0.946932 0.321433i \(-0.104164\pi\)
0.946932 + 0.321433i \(0.104164\pi\)
\(14\) 0 0
\(15\) 3.41421i 0.881546i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 2.58579i 0.593220i 0.954999 + 0.296610i \(0.0958562\pi\)
−0.954999 + 0.296610i \(0.904144\pi\)
\(20\) 0 0
\(21\) −1.41421 −0.308607
\(22\) 0 0
\(23\) 5.00208 5.00208i 1.04301 1.04301i 0.0439733 0.999033i \(-0.485998\pi\)
0.999033 0.0439733i \(-0.0140017\pi\)
\(24\) 0 0
\(25\) 1.58579i 0.317157i
\(26\) 0 0
\(27\) −3.37849 + 3.37849i −0.650191 + 0.650191i
\(28\) 0 0
\(29\) 2.83730 + 2.83730i 0.526873 + 0.526873i 0.919639 0.392766i \(-0.128482\pi\)
−0.392766 + 0.919639i \(0.628482\pi\)
\(30\) 0 0
\(31\) −4.55374 4.55374i −0.817876 0.817876i 0.167924 0.985800i \(-0.446294\pi\)
−0.985800 + 0.167924i \(0.946294\pi\)
\(32\) 0 0
\(33\) −6.24264 −1.08670
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) −4.68506 4.68506i −0.770218 0.770218i 0.207926 0.978145i \(-0.433329\pi\)
−0.978145 + 0.207926i \(0.933329\pi\)
\(38\) 0 0
\(39\) −8.92177 8.92177i −1.42863 1.42863i
\(40\) 0 0
\(41\) 0.858221 0.858221i 0.134032 0.134032i −0.636908 0.770940i \(-0.719787\pi\)
0.770940 + 0.636908i \(0.219787\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.646997i 0.946229 + 0.323498i \(0.104859\pi\)
−0.946229 + 0.323498i \(0.895141\pi\)
\(44\) 0 0
\(45\) 0.541196 0.541196i 0.0806768 0.0806768i
\(46\) 0 0
\(47\) −3.65685 −0.533407 −0.266704 0.963779i \(-0.585934\pi\)
−0.266704 + 0.963779i \(0.585934\pi\)
\(48\) 0 0
\(49\) 6.41421i 0.916316i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.89949i 0.810358i −0.914237 0.405179i \(-0.867209\pi\)
0.914237 0.405179i \(-0.132791\pi\)
\(54\) 0 0
\(55\) −6.24264 −0.841757
\(56\) 0 0
\(57\) 3.37849 3.37849i 0.447492 0.447492i
\(58\) 0 0
\(59\) 13.8995i 1.80956i −0.425879 0.904780i \(-0.640035\pi\)
0.425879 0.904780i \(-0.359965\pi\)
\(60\) 0 0
\(61\) 1.30656 1.30656i 0.167288 0.167288i −0.618498 0.785786i \(-0.712259\pi\)
0.785786 + 0.618498i \(0.212259\pi\)
\(62\) 0 0
\(63\) 0.224171 + 0.224171i 0.0282429 + 0.0282429i
\(64\) 0 0
\(65\) −8.92177 8.92177i −1.10661 1.10661i
\(66\) 0 0
\(67\) −11.3137 −1.38219 −0.691095 0.722764i \(-0.742871\pi\)
−0.691095 + 0.722764i \(0.742871\pi\)
\(68\) 0 0
\(69\) −13.0711 −1.57357
\(70\) 0 0
\(71\) 0.858221 + 0.858221i 0.101852 + 0.101852i 0.756197 0.654344i \(-0.227055\pi\)
−0.654344 + 0.756197i \(0.727055\pi\)
\(72\) 0 0
\(73\) 6.08447 + 6.08447i 0.712134 + 0.712134i 0.966981 0.254848i \(-0.0820253\pi\)
−0.254848 + 0.966981i \(0.582025\pi\)
\(74\) 0 0
\(75\) −2.07193 + 2.07193i −0.239246 + 0.239246i
\(76\) 0 0
\(77\) 2.58579i 0.294678i
\(78\) 0 0
\(79\) −8.06355 + 8.06355i −0.907220 + 0.907220i −0.996047 0.0888270i \(-0.971688\pi\)
0.0888270 + 0.996047i \(0.471688\pi\)
\(80\) 0 0
\(81\) 10.0711 1.11901
\(82\) 0 0
\(83\) 0.242641i 0.0266333i −0.999911 0.0133166i \(-0.995761\pi\)
0.999911 0.0133166i \(-0.00423894\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.41421i 0.794887i
\(88\) 0 0
\(89\) 10.8284 1.14781 0.573905 0.818922i \(-0.305428\pi\)
0.573905 + 0.818922i \(0.305428\pi\)
\(90\) 0 0
\(91\) 3.69552 3.69552i 0.387396 0.387396i
\(92\) 0 0
\(93\) 11.8995i 1.23392i
\(94\) 0 0
\(95\) 3.37849 3.37849i 0.346626 0.346626i
\(96\) 0 0
\(97\) 0.672512 + 0.672512i 0.0682833 + 0.0682833i 0.740424 0.672140i \(-0.234625\pi\)
−0.672140 + 0.740424i \(0.734625\pi\)
\(98\) 0 0
\(99\) 0.989538 + 0.989538i 0.0994523 + 0.0994523i
\(100\) 0 0
\(101\) −12.8284 −1.27648 −0.638238 0.769839i \(-0.720336\pi\)
−0.638238 + 0.769839i \(0.720336\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.84776 + 1.84776i 0.180323 + 0.180323i
\(106\) 0 0
\(107\) −2.70598 2.70598i −0.261597 0.261597i 0.564106 0.825703i \(-0.309221\pi\)
−0.825703 + 0.564106i \(0.809221\pi\)
\(108\) 0 0
\(109\) −3.47135 + 3.47135i −0.332495 + 0.332495i −0.853533 0.521038i \(-0.825545\pi\)
0.521038 + 0.853533i \(0.325545\pi\)
\(110\) 0 0
\(111\) 12.2426i 1.16202i
\(112\) 0 0
\(113\) 0.989538 0.989538i 0.0930879 0.0930879i −0.659029 0.752117i \(-0.729033\pi\)
0.752117 + 0.659029i \(0.229033\pi\)
\(114\) 0 0
\(115\) −13.0711 −1.21888
\(116\) 0 0
\(117\) 2.82843i 0.261488i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.414214i 0.0376558i
\(122\) 0 0
\(123\) −2.24264 −0.202212
\(124\) 0 0
\(125\) −8.60474 + 8.60474i −0.769632 + 0.769632i
\(126\) 0 0
\(127\) 0.242641i 0.0215309i −0.999942 0.0107654i \(-0.996573\pi\)
0.999942 0.0107654i \(-0.00342681\pi\)
\(128\) 0 0
\(129\) 5.54328 5.54328i 0.488058 0.488058i
\(130\) 0 0
\(131\) −7.74652 7.74652i −0.676817 0.676817i 0.282462 0.959279i \(-0.408849\pi\)
−0.959279 + 0.282462i \(0.908849\pi\)
\(132\) 0 0
\(133\) 1.39942 + 1.39942i 0.121345 + 0.121345i
\(134\) 0 0
\(135\) 8.82843 0.759830
\(136\) 0 0
\(137\) 12.1421 1.03737 0.518686 0.854965i \(-0.326421\pi\)
0.518686 + 0.854965i \(0.326421\pi\)
\(138\) 0 0
\(139\) −12.3931 12.3931i −1.05117 1.05117i −0.998618 0.0525523i \(-0.983264\pi\)
−0.0525523 0.998618i \(-0.516736\pi\)
\(140\) 0 0
\(141\) 4.77791 + 4.77791i 0.402373 + 0.402373i
\(142\) 0 0
\(143\) 16.3128 16.3128i 1.36415 1.36415i
\(144\) 0 0
\(145\) 7.41421i 0.615717i
\(146\) 0 0
\(147\) 8.38057 8.38057i 0.691218 0.691218i
\(148\) 0 0
\(149\) 9.65685 0.791120 0.395560 0.918440i \(-0.370550\pi\)
0.395560 + 0.918440i \(0.370550\pi\)
\(150\) 0 0
\(151\) 14.5858i 1.18697i −0.804843 0.593487i \(-0.797751\pi\)
0.804843 0.593487i \(-0.202249\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.8995i 0.955790i
\(156\) 0 0
\(157\) −2.34315 −0.187003 −0.0935017 0.995619i \(-0.529806\pi\)
−0.0935017 + 0.995619i \(0.529806\pi\)
\(158\) 0 0
\(159\) −7.70806 + 7.70806i −0.611289 + 0.611289i
\(160\) 0 0
\(161\) 5.41421i 0.426700i
\(162\) 0 0
\(163\) −5.13340 + 5.13340i −0.402079 + 0.402079i −0.878965 0.476886i \(-0.841765\pi\)
0.476886 + 0.878965i \(0.341765\pi\)
\(164\) 0 0
\(165\) 8.15640 + 8.15640i 0.634975 + 0.634975i
\(166\) 0 0
\(167\) 8.69760 + 8.69760i 0.673040 + 0.673040i 0.958416 0.285375i \(-0.0921183\pi\)
−0.285375 + 0.958416i \(0.592118\pi\)
\(168\) 0 0
\(169\) 33.6274 2.58672
\(170\) 0 0
\(171\) −1.07107 −0.0819066
\(172\) 0 0
\(173\) 17.7507 + 17.7507i 1.34956 + 1.34956i 0.886138 + 0.463422i \(0.153379\pi\)
0.463422 + 0.886138i \(0.346621\pi\)
\(174\) 0 0
\(175\) −0.858221 0.858221i −0.0648754 0.0648754i
\(176\) 0 0
\(177\) −18.1606 + 18.1606i −1.36503 + 1.36503i
\(178\) 0 0
\(179\) 18.3848i 1.37414i −0.726590 0.687071i \(-0.758896\pi\)
0.726590 0.687071i \(-0.241104\pi\)
\(180\) 0 0
\(181\) −2.70598 + 2.70598i −0.201134 + 0.201134i −0.800486 0.599352i \(-0.795425\pi\)
0.599352 + 0.800486i \(0.295425\pi\)
\(182\) 0 0
\(183\) −3.41421 −0.252386
\(184\) 0 0
\(185\) 12.2426i 0.900097i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 3.65685i 0.265997i
\(190\) 0 0
\(191\) −0.343146 −0.0248292 −0.0124146 0.999923i \(-0.503952\pi\)
−0.0124146 + 0.999923i \(0.503952\pi\)
\(192\) 0 0
\(193\) 10.9937 10.9937i 0.791344 0.791344i −0.190369 0.981713i \(-0.560968\pi\)
0.981713 + 0.190369i \(0.0609684\pi\)
\(194\) 0 0
\(195\) 23.3137i 1.66953i
\(196\) 0 0
\(197\) −8.88331 + 8.88331i −0.632910 + 0.632910i −0.948797 0.315887i \(-0.897698\pi\)
0.315887 + 0.948797i \(0.397698\pi\)
\(198\) 0 0
\(199\) 1.17525 + 1.17525i 0.0833110 + 0.0833110i 0.747534 0.664223i \(-0.231238\pi\)
−0.664223 + 0.747534i \(0.731238\pi\)
\(200\) 0 0
\(201\) 14.7821 + 14.7821i 1.04265 + 1.04265i
\(202\) 0 0
\(203\) 3.07107 0.215547
\(204\) 0 0
\(205\) −2.24264 −0.156633
\(206\) 0 0
\(207\) 2.07193 + 2.07193i 0.144009 + 0.144009i
\(208\) 0 0
\(209\) 6.17733 + 6.17733i 0.427295 + 0.427295i
\(210\) 0 0
\(211\) 1.43788 1.43788i 0.0989877 0.0989877i −0.655879 0.754866i \(-0.727702\pi\)
0.754866 + 0.655879i \(0.227702\pi\)
\(212\) 0 0
\(213\) 2.24264i 0.153663i
\(214\) 0 0
\(215\) 5.54328 5.54328i 0.378048 0.378048i
\(216\) 0 0
\(217\) −4.92893 −0.334598
\(218\) 0 0
\(219\) 15.8995i 1.07439i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 17.2132i 1.15268i 0.817210 + 0.576341i \(0.195520\pi\)
−0.817210 + 0.576341i \(0.804480\pi\)
\(224\) 0 0
\(225\) 0.656854 0.0437903
\(226\) 0 0
\(227\) −13.7381 + 13.7381i −0.911833 + 0.911833i −0.996416 0.0845839i \(-0.973044\pi\)
0.0845839 + 0.996416i \(0.473044\pi\)
\(228\) 0 0
\(229\) 3.75736i 0.248293i −0.992264 0.124147i \(-0.960381\pi\)
0.992264 0.124147i \(-0.0396193\pi\)
\(230\) 0 0
\(231\) −3.37849 + 3.37849i −0.222289 + 0.222289i
\(232\) 0 0
\(233\) −6.34711 6.34711i −0.415813 0.415813i 0.467945 0.883758i \(-0.344995\pi\)
−0.883758 + 0.467945i \(0.844995\pi\)
\(234\) 0 0
\(235\) 4.77791 + 4.77791i 0.311677 + 0.311677i
\(236\) 0 0
\(237\) 21.0711 1.36871
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) 14.0552 + 14.0552i 0.905373 + 0.905373i 0.995894 0.0905216i \(-0.0288534\pi\)
−0.0905216 + 0.995894i \(0.528853\pi\)
\(242\) 0 0
\(243\) −3.02301 3.02301i −0.193926 0.193926i
\(244\) 0 0
\(245\) 8.38057 8.38057i 0.535415 0.535415i
\(246\) 0 0
\(247\) 17.6569i 1.12348i
\(248\) 0 0
\(249\) −0.317025 + 0.317025i −0.0200907 + 0.0200907i
\(250\) 0 0
\(251\) −22.9706 −1.44989 −0.724945 0.688807i \(-0.758135\pi\)
−0.724945 + 0.688807i \(0.758135\pi\)
\(252\) 0 0
\(253\) 23.8995i 1.50255i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.75736i 0.234378i −0.993110 0.117189i \(-0.962612\pi\)
0.993110 0.117189i \(-0.0373883\pi\)
\(258\) 0 0
\(259\) −5.07107 −0.315101
\(260\) 0 0
\(261\) −1.17525 + 1.17525i −0.0727459 + 0.0727459i
\(262\) 0 0
\(263\) 13.2132i 0.814761i −0.913259 0.407381i \(-0.866442\pi\)
0.913259 0.407381i \(-0.133558\pi\)
\(264\) 0 0
\(265\) −7.70806 + 7.70806i −0.473502 + 0.473502i
\(266\) 0 0
\(267\) −14.1480 14.1480i −0.865845 0.865845i
\(268\) 0 0
\(269\) 5.95316 + 5.95316i 0.362970 + 0.362970i 0.864905 0.501935i \(-0.167378\pi\)
−0.501935 + 0.864905i \(0.667378\pi\)
\(270\) 0 0
\(271\) 11.3137 0.687259 0.343629 0.939105i \(-0.388344\pi\)
0.343629 + 0.939105i \(0.388344\pi\)
\(272\) 0 0
\(273\) −9.65685 −0.584459
\(274\) 0 0
\(275\) −3.78837 3.78837i −0.228447 0.228447i
\(276\) 0 0
\(277\) 10.6767 + 10.6767i 0.641499 + 0.641499i 0.950924 0.309425i \(-0.100136\pi\)
−0.309425 + 0.950924i \(0.600136\pi\)
\(278\) 0 0
\(279\) 1.88622 1.88622i 0.112925 0.112925i
\(280\) 0 0
\(281\) 15.0711i 0.899065i −0.893264 0.449532i \(-0.851591\pi\)
0.893264 0.449532i \(-0.148409\pi\)
\(282\) 0 0
\(283\) −5.00208 + 5.00208i −0.297343 + 0.297343i −0.839972 0.542629i \(-0.817429\pi\)
0.542629 + 0.839972i \(0.317429\pi\)
\(284\) 0 0
\(285\) −8.82843 −0.522951
\(286\) 0 0
\(287\) 0.928932i 0.0548331i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 1.75736i 0.103018i
\(292\) 0 0
\(293\) 8.00000 0.467365 0.233682 0.972313i \(-0.424922\pi\)
0.233682 + 0.972313i \(0.424922\pi\)
\(294\) 0 0
\(295\) −18.1606 + 18.1606i −1.05735 + 1.05735i
\(296\) 0 0
\(297\) 16.1421i 0.936662i
\(298\) 0 0
\(299\) 34.1563 34.1563i 1.97531 1.97531i
\(300\) 0 0
\(301\) 2.29610 + 2.29610i 0.132345 + 0.132345i
\(302\) 0 0
\(303\) 16.7611 + 16.7611i 0.962903 + 0.962903i
\(304\) 0 0
\(305\) −3.41421 −0.195497
\(306\) 0 0
\(307\) 6.34315 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(308\) 0 0
\(309\) −5.22625 5.22625i −0.297311 0.297311i
\(310\) 0 0
\(311\) 9.01462 + 9.01462i 0.511172 + 0.511172i 0.914886 0.403713i \(-0.132281\pi\)
−0.403713 + 0.914886i \(0.632281\pi\)
\(312\) 0 0
\(313\) −16.0886 + 16.0886i −0.909383 + 0.909383i −0.996222 0.0868389i \(-0.972323\pi\)
0.0868389 + 0.996222i \(0.472323\pi\)
\(314\) 0 0
\(315\) 0.585786i 0.0330053i
\(316\) 0 0
\(317\) −0.278564 + 0.278564i −0.0156457 + 0.0156457i −0.714886 0.699241i \(-0.753522\pi\)
0.699241 + 0.714886i \(0.253522\pi\)
\(318\) 0 0
\(319\) 13.5563 0.759010
\(320\) 0 0
\(321\) 7.07107i 0.394669i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 10.8284i 0.600653i
\(326\) 0 0
\(327\) 9.07107 0.501631
\(328\) 0 0
\(329\) −1.97908 + 1.97908i −0.109110 + 0.109110i
\(330\) 0 0
\(331\) 28.7279i 1.57903i 0.613732 + 0.789515i \(0.289668\pi\)
−0.613732 + 0.789515i \(0.710332\pi\)
\(332\) 0 0
\(333\) 1.94061 1.94061i 0.106345 0.106345i
\(334\) 0 0
\(335\) 14.7821 + 14.7821i 0.807631 + 0.807631i
\(336\) 0 0
\(337\) −18.3847 18.3847i −1.00148 1.00148i −0.999999 0.00148149i \(-0.999528\pi\)
−0.00148149 0.999999i \(-0.500472\pi\)
\(338\) 0 0
\(339\) −2.58579 −0.140441
\(340\) 0 0
\(341\) −21.7574 −1.17823
\(342\) 0 0
\(343\) 7.25972 + 7.25972i 0.391988 + 0.391988i
\(344\) 0 0
\(345\) 17.0782 + 17.0782i 0.919458 + 0.919458i
\(346\) 0 0
\(347\) 5.50482 5.50482i 0.295514 0.295514i −0.543740 0.839254i \(-0.682992\pi\)
0.839254 + 0.543740i \(0.182992\pi\)
\(348\) 0 0
\(349\) 28.0416i 1.50103i −0.660851 0.750517i \(-0.729805\pi\)
0.660851 0.750517i \(-0.270195\pi\)
\(350\) 0 0
\(351\) −23.0698 + 23.0698i −1.23137 + 1.23137i
\(352\) 0 0
\(353\) −15.3137 −0.815066 −0.407533 0.913190i \(-0.633611\pi\)
−0.407533 + 0.913190i \(0.633611\pi\)
\(354\) 0 0
\(355\) 2.24264i 0.119027i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.3848i 1.60365i −0.597561 0.801824i \(-0.703863\pi\)
0.597561 0.801824i \(-0.296137\pi\)
\(360\) 0 0
\(361\) 12.3137 0.648090
\(362\) 0 0
\(363\) −0.541196 + 0.541196i −0.0284054 + 0.0284054i
\(364\) 0 0
\(365\) 15.8995i 0.832218i
\(366\) 0 0
\(367\) −2.70598 + 2.70598i −0.141251 + 0.141251i −0.774196 0.632945i \(-0.781846\pi\)
0.632945 + 0.774196i \(0.281846\pi\)
\(368\) 0 0
\(369\) 0.355487 + 0.355487i 0.0185059 + 0.0185059i
\(370\) 0 0
\(371\) −3.19278 3.19278i −0.165761 0.165761i
\(372\) 0 0
\(373\) −18.4853 −0.957132 −0.478566 0.878052i \(-0.658843\pi\)
−0.478566 + 0.878052i \(0.658843\pi\)
\(374\) 0 0
\(375\) 22.4853 1.16113
\(376\) 0 0
\(377\) 19.3743 + 19.3743i 0.997826 + 0.997826i
\(378\) 0 0
\(379\) 7.74652 + 7.74652i 0.397912 + 0.397912i 0.877496 0.479584i \(-0.159212\pi\)
−0.479584 + 0.877496i \(0.659212\pi\)
\(380\) 0 0
\(381\) −0.317025 + 0.317025i −0.0162417 + 0.0162417i
\(382\) 0 0
\(383\) 25.8995i 1.32340i 0.749768 + 0.661701i \(0.230165\pi\)
−0.749768 + 0.661701i \(0.769835\pi\)
\(384\) 0 0
\(385\) −3.37849 + 3.37849i −0.172184 + 0.172184i
\(386\) 0 0
\(387\) −1.75736 −0.0893316
\(388\) 0 0
\(389\) 2.10051i 0.106500i 0.998581 + 0.0532499i \(0.0169580\pi\)
−0.998581 + 0.0532499i \(0.983042\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 20.2426i 1.02111i
\(394\) 0 0
\(395\) 21.0711 1.06020
\(396\) 0 0
\(397\) −13.3442 + 13.3442i −0.669726 + 0.669726i −0.957652 0.287927i \(-0.907034\pi\)
0.287927 + 0.957652i \(0.407034\pi\)
\(398\) 0 0
\(399\) 3.65685i 0.183072i
\(400\) 0 0
\(401\) 6.53281 6.53281i 0.326233 0.326233i −0.524919 0.851152i \(-0.675904\pi\)
0.851152 + 0.524919i \(0.175904\pi\)
\(402\) 0 0
\(403\) −31.0949 31.0949i −1.54895 1.54895i
\(404\) 0 0
\(405\) −13.1585 13.1585i −0.653850 0.653850i
\(406\) 0 0
\(407\) −22.3848 −1.10957
\(408\) 0 0
\(409\) −11.6569 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(410\) 0 0
\(411\) −15.8645 15.8645i −0.782536 0.782536i
\(412\) 0 0
\(413\) −7.52235 7.52235i −0.370151 0.370151i
\(414\) 0 0
\(415\) −0.317025 + 0.317025i −0.0155622 + 0.0155622i
\(416\) 0 0
\(417\) 32.3848i 1.58589i
\(418\) 0 0
\(419\) 25.1961 25.1961i 1.23091 1.23091i 0.267296 0.963614i \(-0.413870\pi\)
0.963614 0.267296i \(-0.0861303\pi\)
\(420\) 0 0
\(421\) 1.17157 0.0570990 0.0285495 0.999592i \(-0.490911\pi\)
0.0285495 + 0.999592i \(0.490911\pi\)
\(422\) 0 0
\(423\) 1.51472i 0.0736481i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.41421i 0.0684386i
\(428\) 0 0
\(429\) −42.6274 −2.05807
\(430\) 0 0
\(431\) 14.5579 14.5579i 0.701229 0.701229i −0.263445 0.964674i \(-0.584859\pi\)
0.964674 + 0.263445i \(0.0848587\pi\)
\(432\) 0 0
\(433\) 8.24264i 0.396116i 0.980190 + 0.198058i \(0.0634634\pi\)
−0.980190 + 0.198058i \(0.936537\pi\)
\(434\) 0 0
\(435\) −9.68714 + 9.68714i −0.464463 + 0.464463i
\(436\) 0 0
\(437\) 12.9343 + 12.9343i 0.618732 + 0.618732i
\(438\) 0 0
\(439\) 10.4910 + 10.4910i 0.500706 + 0.500706i 0.911657 0.410951i \(-0.134803\pi\)
−0.410951 + 0.911657i \(0.634803\pi\)
\(440\) 0 0
\(441\) −2.65685 −0.126517
\(442\) 0 0
\(443\) −21.6569 −1.02895 −0.514474 0.857506i \(-0.672013\pi\)
−0.514474 + 0.857506i \(0.672013\pi\)
\(444\) 0 0
\(445\) −14.1480 14.1480i −0.670681 0.670681i
\(446\) 0 0
\(447\) −12.6173 12.6173i −0.596777 0.596777i
\(448\) 0 0
\(449\) 15.0062 15.0062i 0.708188 0.708188i −0.257966 0.966154i \(-0.583052\pi\)
0.966154 + 0.257966i \(0.0830521\pi\)
\(450\) 0 0
\(451\) 4.10051i 0.193085i
\(452\) 0 0
\(453\) −19.0572 + 19.0572i −0.895388 + 0.895388i
\(454\) 0 0
\(455\) −9.65685 −0.452720
\(456\) 0 0
\(457\) 4.24264i 0.198462i −0.995064 0.0992312i \(-0.968362\pi\)
0.995064 0.0992312i \(-0.0316383\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.75736i 0.361296i 0.983548 + 0.180648i \(0.0578195\pi\)
−0.983548 + 0.180648i \(0.942180\pi\)
\(462\) 0 0
\(463\) −7.65685 −0.355844 −0.177922 0.984045i \(-0.556938\pi\)
−0.177922 + 0.984045i \(0.556938\pi\)
\(464\) 0 0
\(465\) 15.5474 15.5474i 0.720995 0.720995i
\(466\) 0 0
\(467\) 28.2426i 1.30691i −0.756964 0.653457i \(-0.773318\pi\)
0.756964 0.653457i \(-0.226682\pi\)
\(468\) 0 0
\(469\) −6.12293 + 6.12293i −0.282731 + 0.282731i
\(470\) 0 0
\(471\) 3.06147 + 3.06147i 0.141065 + 0.141065i
\(472\) 0 0
\(473\) 10.1355 + 10.1355i 0.466030 + 0.466030i
\(474\) 0 0
\(475\) 4.10051 0.188144
\(476\) 0 0
\(477\) 2.44365 0.111887
\(478\) 0 0
\(479\) 5.82184 + 5.82184i 0.266007 + 0.266007i 0.827489 0.561482i \(-0.189769\pi\)
−0.561482 + 0.827489i \(0.689769\pi\)
\(480\) 0 0
\(481\) −31.9916 31.9916i −1.45869 1.45869i
\(482\) 0 0
\(483\) −7.07401 + 7.07401i −0.321879 + 0.321879i
\(484\) 0 0
\(485\) 1.75736i 0.0797976i
\(486\) 0 0
\(487\) −2.57466 + 2.57466i −0.116669 + 0.116669i −0.763031 0.646362i \(-0.776290\pi\)
0.646362 + 0.763031i \(0.276290\pi\)
\(488\) 0 0
\(489\) 13.4142 0.606612
\(490\) 0 0
\(491\) 23.7574i 1.07215i 0.844169 + 0.536077i \(0.180094\pi\)
−0.844169 + 0.536077i \(0.819906\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.58579i 0.116222i
\(496\) 0 0
\(497\) 0.928932 0.0416683
\(498\) 0 0
\(499\) 26.5411 26.5411i 1.18814 1.18814i 0.210565 0.977580i \(-0.432470\pi\)
0.977580 0.210565i \(-0.0675302\pi\)
\(500\) 0 0
\(501\) 22.7279i 1.01541i
\(502\) 0 0
\(503\) 5.58174 5.58174i 0.248877 0.248877i −0.571632 0.820510i \(-0.693690\pi\)
0.820510 + 0.571632i \(0.193690\pi\)
\(504\) 0 0
\(505\) 16.7611 + 16.7611i 0.745861 + 0.745861i
\(506\) 0 0
\(507\) −43.9363 43.9363i −1.95128 1.95128i
\(508\) 0 0
\(509\) −6.68629 −0.296365 −0.148182 0.988960i \(-0.547342\pi\)
−0.148182 + 0.988960i \(0.547342\pi\)
\(510\) 0 0
\(511\) 6.58579 0.291338
\(512\) 0 0
\(513\) −8.73606 8.73606i −0.385707 0.385707i
\(514\) 0 0
\(515\) −5.22625 5.22625i −0.230296 0.230296i
\(516\) 0 0
\(517\) −8.73606 + 8.73606i −0.384212 + 0.384212i
\(518\) 0 0
\(519\) 46.3848i 2.03607i
\(520\) 0 0
\(521\) 19.4671 19.4671i 0.852870 0.852870i −0.137615 0.990486i \(-0.543944\pi\)
0.990486 + 0.137615i \(0.0439438\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 0 0
\(525\) 2.24264i 0.0978769i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 27.0416i 1.17572i
\(530\) 0 0
\(531\) 5.75736 0.249848
\(532\) 0 0
\(533\) 5.86030 5.86030i 0.253838 0.253838i
\(534\) 0 0
\(535\) 7.07107i 0.305709i
\(536\) 0 0
\(537\) −24.0209 + 24.0209i −1.03658 + 1.03658i
\(538\) 0 0
\(539\) 15.3233 + 15.3233i 0.660020 + 0.660020i
\(540\) 0 0
\(541\) 5.58174 + 5.58174i 0.239978 + 0.239978i 0.816841 0.576863i \(-0.195723\pi\)
−0.576863 + 0.816841i \(0.695723\pi\)
\(542\) 0 0
\(543\) 7.07107 0.303449
\(544\) 0 0
\(545\) 9.07107 0.388562
\(546\) 0 0
\(547\) −17.3567 17.3567i −0.742120 0.742120i 0.230865 0.972986i \(-0.425844\pi\)
−0.972986 + 0.230865i \(0.925844\pi\)
\(548\) 0 0
\(549\) 0.541196 + 0.541196i 0.0230977 + 0.0230977i
\(550\) 0 0
\(551\) −7.33664 + 7.33664i −0.312552 + 0.312552i
\(552\) 0 0
\(553\) 8.72792i 0.371149i
\(554\) 0 0
\(555\) 15.9958 15.9958i 0.678983 0.678983i
\(556\) 0 0
\(557\) 22.8284 0.967272 0.483636 0.875269i \(-0.339316\pi\)
0.483636 + 0.875269i \(0.339316\pi\)
\(558\) 0 0
\(559\) 28.9706i 1.22532i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 38.5858i 1.62620i 0.582126 + 0.813099i \(0.302221\pi\)
−0.582126 + 0.813099i \(0.697779\pi\)
\(564\) 0 0
\(565\) −2.58579 −0.108785
\(566\) 0 0
\(567\) 5.45042 5.45042i 0.228896 0.228896i
\(568\) 0 0
\(569\) 27.5563i 1.15522i −0.816312 0.577611i \(-0.803985\pi\)
0.816312 0.577611i \(-0.196015\pi\)
\(570\) 0 0
\(571\) −18.0133 + 18.0133i −0.753834 + 0.753834i −0.975192 0.221359i \(-0.928951\pi\)
0.221359 + 0.975192i \(0.428951\pi\)
\(572\) 0 0
\(573\) 0.448342 + 0.448342i 0.0187297 + 0.0187297i
\(574\) 0 0
\(575\) −7.93223 7.93223i −0.330797 0.330797i
\(576\) 0 0
\(577\) −1.79899 −0.0748929 −0.0374465 0.999299i \(-0.511922\pi\)
−0.0374465 + 0.999299i \(0.511922\pi\)
\(578\) 0 0
\(579\) −28.7279 −1.19389
\(580\) 0 0
\(581\) −0.131316 0.131316i −0.00544791 0.00544791i
\(582\) 0 0
\(583\) −14.0936 14.0936i −0.583698 0.583698i
\(584\) 0 0
\(585\) 3.69552 3.69552i 0.152791 0.152791i
\(586\) 0 0
\(587\) 29.2132i 1.20576i 0.797833 + 0.602879i \(0.205980\pi\)
−0.797833 + 0.602879i \(0.794020\pi\)
\(588\) 0 0
\(589\) 11.7750 11.7750i 0.485180 0.485180i
\(590\) 0 0
\(591\) 23.2132 0.954864
\(592\) 0 0
\(593\) 33.2132i 1.36390i 0.731397 + 0.681951i \(0.238868\pi\)
−0.731397 + 0.681951i \(0.761132\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.07107i 0.125690i
\(598\) 0 0
\(599\) −37.3137 −1.52460 −0.762298 0.647226i \(-0.775929\pi\)
−0.762298 + 0.647226i \(0.775929\pi\)
\(600\) 0 0
\(601\) 3.60266 3.60266i 0.146956 0.146956i −0.629801 0.776757i \(-0.716864\pi\)
0.776757 + 0.629801i \(0.216864\pi\)
\(602\) 0 0
\(603\) 4.68629i 0.190841i
\(604\) 0 0
\(605\) −0.541196 + 0.541196i −0.0220028 + 0.0220028i
\(606\) 0 0
\(607\) 11.2563 + 11.2563i 0.456880 + 0.456880i 0.897630 0.440750i \(-0.145287\pi\)
−0.440750 + 0.897630i \(0.645287\pi\)
\(608\) 0 0
\(609\) −4.01254 4.01254i −0.162596 0.162596i
\(610\) 0 0
\(611\) −24.9706 −1.01020
\(612\) 0 0
\(613\) 0.343146 0.0138595 0.00692976 0.999976i \(-0.497794\pi\)
0.00692976 + 0.999976i \(0.497794\pi\)
\(614\) 0 0
\(615\) 2.93015 + 2.93015i 0.118155 + 0.118155i
\(616\) 0 0
\(617\) −24.1137 24.1137i −0.970782 0.970782i 0.0288032 0.999585i \(-0.490830\pi\)
−0.999585 + 0.0288032i \(0.990830\pi\)
\(618\) 0 0
\(619\) 9.46297 9.46297i 0.380349 0.380349i −0.490879 0.871228i \(-0.663324\pi\)
0.871228 + 0.490879i \(0.163324\pi\)
\(620\) 0 0
\(621\) 33.7990i 1.35631i
\(622\) 0 0
\(623\) 5.86030 5.86030i 0.234788 0.234788i
\(624\) 0 0
\(625\) 14.5563 0.582254
\(626\) 0 0
\(627\) 16.1421i 0.644655i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 14.5858i 0.580651i 0.956928 + 0.290325i \(0.0937636\pi\)
−0.956928 + 0.290325i \(0.906236\pi\)
\(632\) 0 0
\(633\) −3.75736 −0.149342
\(634\) 0 0
\(635\) −0.317025 + 0.317025i −0.0125808 + 0.0125808i
\(636\) 0 0
\(637\) 43.7990i 1.73538i
\(638\) 0 0
\(639\) −0.355487 + 0.355487i −0.0140628 + 0.0140628i
\(640\) 0 0
\(641\) −32.8498 32.8498i −1.29749 1.29749i −0.930046 0.367442i \(-0.880234\pi\)
−0.367442 0.930046i \(-0.619766\pi\)
\(642\) 0 0
\(643\) −3.91969 3.91969i −0.154577 0.154577i 0.625581 0.780159i \(-0.284862\pi\)
−0.780159 + 0.625581i \(0.784862\pi\)
\(644\) 0 0
\(645\) −14.4853 −0.570357
\(646\) 0 0
\(647\) 32.9706 1.29621 0.648103 0.761552i \(-0.275563\pi\)
0.648103 + 0.761552i \(0.275563\pi\)
\(648\) 0 0
\(649\) −33.2053 33.2053i −1.30342 1.30342i
\(650\) 0 0
\(651\) 6.43996 + 6.43996i 0.252402 + 0.252402i
\(652\) 0 0
\(653\) 31.9531 31.9531i 1.25042 1.25042i 0.294890 0.955531i \(-0.404717\pi\)
0.955531 0.294890i \(-0.0952831\pi\)
\(654\) 0 0
\(655\) 20.2426i 0.790945i
\(656\) 0 0
\(657\) −2.52027 + 2.52027i −0.0983252 + 0.0983252i
\(658\) 0 0
\(659\) 2.68629 0.104643 0.0523215 0.998630i \(-0.483338\pi\)
0.0523215 + 0.998630i \(0.483338\pi\)
\(660\) 0 0
\(661\) 12.7279i 0.495059i −0.968880 0.247529i \(-0.920381\pi\)
0.968880 0.247529i \(-0.0796187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.65685i 0.141807i
\(666\) 0 0
\(667\) 28.3848 1.09906
\(668\) 0 0
\(669\) 22.4901 22.4901i 0.869519 0.869519i
\(670\) 0 0
\(671\) 6.24264i 0.240994i
\(672\) 0 0
\(673\) 21.9489 21.9489i 0.846069 0.846069i −0.143571 0.989640i \(-0.545858\pi\)
0.989640 + 0.143571i \(0.0458584\pi\)
\(674\) 0 0
\(675\) 5.35757 + 5.35757i 0.206213 + 0.206213i
\(676\) 0 0
\(677\) −1.17525 1.17525i −0.0451684 0.0451684i 0.684162 0.729330i \(-0.260168\pi\)
−0.729330 + 0.684162i \(0.760168\pi\)
\(678\) 0 0
\(679\) 0.727922 0.0279351
\(680\) 0 0
\(681\) 35.8995 1.37567
\(682\) 0 0
\(683\) 3.02301 + 3.02301i 0.115672 + 0.115672i 0.762574 0.646901i \(-0.223936\pi\)
−0.646901 + 0.762574i \(0.723936\pi\)
\(684\) 0 0
\(685\) −15.8645 15.8645i −0.606150 0.606150i
\(686\) 0 0
\(687\) −4.90923 + 4.90923i −0.187299 + 0.187299i
\(688\) 0 0
\(689\) 40.2843i 1.53471i
\(690\) 0 0
\(691\) −5.00208 + 5.00208i −0.190288 + 0.190288i −0.795821 0.605532i \(-0.792960\pi\)
0.605532 + 0.795821i \(0.292960\pi\)
\(692\) 0 0
\(693\) 1.07107 0.0406865
\(694\) 0 0
\(695\) 32.3848i 1.22842i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 16.5858i 0.627332i
\(700\) 0 0
\(701\) 19.5147 0.737061 0.368530 0.929616i \(-0.379861\pi\)
0.368530 + 0.929616i \(0.379861\pi\)
\(702\) 0 0
\(703\) 12.1146 12.1146i 0.456909 0.456909i
\(704\) 0 0
\(705\) 12.4853i 0.470223i
\(706\) 0 0
\(707\) −6.94269 + 6.94269i −0.261107 + 0.261107i
\(708\) 0 0
\(709\) −2.38896 2.38896i −0.0897191 0.0897191i 0.660823 0.750542i \(-0.270207\pi\)
−0.750542 + 0.660823i \(0.770207\pi\)
\(710\) 0 0
\(711\) −3.34003 3.34003i −0.125261 0.125261i
\(712\) 0 0
\(713\) −45.5563 −1.70610
\(714\) 0 0
\(715\) −42.6274 −1.59418
\(716\) 0 0
\(717\) −29.5641 29.5641i −1.10409 1.10409i
\(718\) 0 0
\(719\) −10.6223 10.6223i −0.396144 0.396144i 0.480726 0.876871i \(-0.340373\pi\)
−0.876871 + 0.480726i \(0.840373\pi\)
\(720\) 0 0
\(721\) 2.16478 2.16478i 0.0806208 0.0806208i
\(722\) 0 0
\(723\) 36.7279i 1.36593i
\(724\) 0 0
\(725\) 4.49935 4.49935i 0.167102 0.167102i
\(726\) 0 0
\(727\) −19.6569 −0.729032 −0.364516 0.931197i \(-0.618766\pi\)
−0.364516 + 0.931197i \(0.618766\pi\)
\(728\) 0 0
\(729\) 22.3137i 0.826434i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 4.72792i 0.174630i 0.996181 + 0.0873149i \(0.0278286\pi\)
−0.996181 + 0.0873149i \(0.972171\pi\)
\(734\) 0 0
\(735\) −21.8995 −0.807775
\(736\) 0 0
\(737\) −27.0279 + 27.0279i −0.995587 + 0.995587i
\(738\) 0 0
\(739\) 16.9289i 0.622741i −0.950289 0.311370i \(-0.899212\pi\)
0.950289 0.311370i \(-0.100788\pi\)
\(740\) 0 0
\(741\) 23.0698 23.0698i 0.847490 0.847490i
\(742\) 0 0
\(743\) 19.9155 + 19.9155i 0.730628 + 0.730628i 0.970744 0.240116i \(-0.0771856\pi\)
−0.240116 + 0.970744i \(0.577186\pi\)
\(744\) 0 0
\(745\) −12.6173 12.6173i −0.462262 0.462262i
\(746\) 0 0
\(747\) 0.100505 0.00367729
\(748\) 0 0
\(749\) −2.92893 −0.107021
\(750\) 0 0
\(751\) 32.5872 + 32.5872i 1.18912 + 1.18912i 0.977311 + 0.211811i \(0.0679363\pi\)
0.211811 + 0.977311i \(0.432064\pi\)
\(752\) 0 0
\(753\) 30.0125 + 30.0125i 1.09372 + 1.09372i
\(754\) 0 0
\(755\) −19.0572 + 19.0572i −0.693564 + 0.693564i
\(756\) 0 0
\(757\) 46.6690i 1.69622i 0.529824 + 0.848108i \(0.322258\pi\)
−0.529824 + 0.848108i \(0.677742\pi\)
\(758\) 0 0
\(759\) −31.2262 + 31.2262i −1.13344 + 1.13344i
\(760\) 0 0
\(761\) 17.8579 0.647347 0.323674 0.946169i \(-0.395082\pi\)
0.323674 + 0.946169i \(0.395082\pi\)
\(762\) 0 0
\(763\) 3.75736i 0.136026i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 94.9117i 3.42706i
\(768\) 0 0
\(769\) −3.79899 −0.136995 −0.0684975 0.997651i \(-0.521821\pi\)
−0.0684975 + 0.997651i \(0.521821\pi\)
\(770\) 0 0
\(771\) −4.90923 + 4.90923i −0.176801 + 0.176801i
\(772\) 0 0
\(773\) 20.9289i 0.752761i 0.926465 + 0.376381i \(0.122832\pi\)
−0.926465 + 0.376381i \(0.877168\pi\)
\(774\) 0 0
\(775\) −7.22126 + 7.22126i −0.259395 + 0.259395i
\(776\) 0 0
\(777\) 6.62567 + 6.62567i 0.237695 + 0.237695i
\(778\) 0 0
\(779\) 2.21918 + 2.21918i 0.0795103 + 0.0795103i
\(780\) 0 0
\(781\) 4.10051 0.146728
\(782\) 0 0
\(783\) −19.1716 −0.685136
\(784\) 0 0
\(785\) 3.06147 + 3.06147i 0.109268 + 0.109268i
\(786\) 0 0
\(787\) 24.9560 + 24.9560i 0.889586 + 0.889586i 0.994483 0.104897i \(-0.0334514\pi\)
−0.104897 + 0.994483i \(0.533451\pi\)
\(788\) 0 0
\(789\) −17.2639 + 17.2639i −0.614610 + 0.614610i
\(790\) 0 0
\(791\) 1.07107i 0.0380828i
\(792\) 0 0
\(793\) 8.92177 8.92177i 0.316821 0.316821i
\(794\) 0 0
\(795\) 20.1421 0.714368
\(796\) 0 0
\(797\) 48.5269i 1.71891i 0.511210 + 0.859456i \(0.329197\pi\)
−0.511210 + 0.859456i \(0.670803\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 4.48528i 0.158480i
\(802\) 0 0
\(803\) 29.0711 1.02590
\(804\) 0 0
\(805\) −7.07401 + 7.07401i −0.249326 + 0.249326i
\(806\) 0 0
\(807\) 15.5563i 0.547609i
\(808\) 0 0
\(809\) 21.0523 21.0523i 0.740158 0.740158i −0.232450 0.972608i \(-0.574674\pi\)
0.972608 + 0.232450i \(0.0746743\pi\)
\(810\) 0 0
\(811\) 16.8540 + 16.8540i 0.591824 + 0.591824i 0.938124 0.346300i \(-0.112562\pi\)
−0.346300 + 0.938124i \(0.612562\pi\)
\(812\) 0 0
\(813\) −14.7821 14.7821i −0.518430 0.518430i
\(814\) 0 0
\(815\) 13.4142 0.469879
\(816\) 0 0
\(817\) −10.9706 −0.383811
\(818\) 0 0
\(819\) 1.53073 + 1.53073i 0.0534882 + 0.0534882i
\(820\) 0 0
\(821\) 4.18232 + 4.18232i 0.145964 + 0.145964i 0.776312 0.630348i \(-0.217088\pi\)
−0.630348 + 0.776312i \(0.717088\pi\)
\(822\) 0 0
\(823\) −21.3693 + 21.3693i −0.744886 + 0.744886i −0.973514 0.228628i \(-0.926576\pi\)
0.228628 + 0.973514i \(0.426576\pi\)
\(824\) 0 0
\(825\) 9.89949i 0.344656i
\(826\) 0 0
\(827\) −2.57466 + 2.57466i −0.0895299 + 0.0895299i −0.750453 0.660923i \(-0.770165\pi\)
0.660923 + 0.750453i \(0.270165\pi\)
\(828\) 0 0
\(829\) −29.6569 −1.03003 −0.515013 0.857183i \(-0.672213\pi\)
−0.515013 + 0.857183i \(0.672213\pi\)
\(830\) 0 0
\(831\) 27.8995i 0.967823i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 22.7279i 0.786532i
\(836\) 0 0
\(837\) 30.7696 1.06355
\(838\) 0 0
\(839\) −4.29111 + 4.29111i −0.148145 + 0.148145i −0.777289 0.629144i \(-0.783406\pi\)
0.629144 + 0.777289i \(0.283406\pi\)
\(840\) 0 0
\(841\) 12.8995i 0.444810i
\(842\) 0 0
\(843\) −19.6913 + 19.6913i −0.678204 + 0.678204i
\(844\) 0 0
\(845\) −43.9363 43.9363i −1.51146 1.51146i
\(846\) 0 0
\(847\) −0.224171 0.224171i −0.00770260 0.00770260i
\(848\) 0 0
\(849\) 13.0711 0.448598
\(850\) 0 0
\(851\) −46.8701 −1.60668
\(852\) 0 0
\(853\) 15.3233 + 15.3233i 0.524659 + 0.524659i 0.918975 0.394316i \(-0.129018\pi\)
−0.394316 + 0.918975i \(0.629018\pi\)
\(854\) 0 0
\(855\) 1.39942 + 1.39942i 0.0478591 + 0.0478591i
\(856\) 0 0
\(857\) 9.14594 9.14594i 0.312419 0.312419i −0.533427 0.845846i \(-0.679096\pi\)
0.845846 + 0.533427i \(0.179096\pi\)
\(858\) 0 0
\(859\) 16.7279i 0.570749i −0.958416 0.285375i \(-0.907882\pi\)
0.958416 0.285375i \(-0.0921180\pi\)
\(860\) 0 0
\(861\) −1.21371 + 1.21371i −0.0413631 + 0.0413631i
\(862\) 0 0
\(863\) −14.0000 −0.476566 −0.238283 0.971196i \(-0.576585\pi\)
−0.238283 + 0.971196i \(0.576585\pi\)
\(864\) 0 0
\(865\) 46.3848i 1.57713i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 38.5269i 1.30694i
\(870\) 0 0
\(871\) −77.2548 −2.61768
\(872\) 0 0
\(873\) −0.278564 + 0.278564i −0.00942795 + 0.00942795i
\(874\) 0 0
\(875\) 9.31371i 0.314861i
\(876\) 0 0
\(877\) −6.08447 + 6.08447i −0.205458 + 0.205458i −0.802334 0.596876i \(-0.796409\pi\)
0.596876 + 0.802334i \(0.296409\pi\)
\(878\) 0 0
\(879\) −10.4525 10.4525i −0.352554 0.352554i
\(880\) 0 0
\(881\) 6.84984 + 6.84984i 0.230777 + 0.230777i 0.813017 0.582240i \(-0.197824\pi\)
−0.582240 + 0.813017i \(0.697824\pi\)
\(882\) 0 0
\(883\) −14.3431 −0.482685 −0.241343 0.970440i \(-0.577588\pi\)
−0.241343 + 0.970440i \(0.577588\pi\)
\(884\) 0 0
\(885\) 47.4558 1.59521
\(886\) 0 0
\(887\) 25.0873 + 25.0873i 0.842350 + 0.842350i 0.989164 0.146814i \(-0.0469019\pi\)
−0.146814 + 0.989164i \(0.546902\pi\)
\(888\) 0 0
\(889\) −0.131316 0.131316i −0.00440420 0.00440420i
\(890\) 0 0
\(891\) 24.0593 24.0593i 0.806018 0.806018i
\(892\) 0 0
\(893\) 9.45584i 0.316428i
\(894\) 0 0
\(895\) −24.0209 + 24.0209i −0.802929 + 0.802929i
\(896\) 0 0
\(897\) −89.2548 −2.98013
\(898\) 0 0
\(899\) 25.8406i 0.861833i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 6.00000i 0.199667i
\(904\) 0 0
\(905\) 7.07107 0.235050
\(906\) 0 0
\(907\) 5.37350 5.37350i 0.178424 0.178424i −0.612244 0.790669i \(-0.709733\pi\)
0.790669 + 0.612244i \(0.209733\pi\)
\(908\) 0 0
\(909\) 5.31371i 0.176245i
\(910\) 0 0
\(911\) 2.14885 2.14885i 0.0711947 0.0711947i −0.670613 0.741808i \(-0.733969\pi\)
0.741808 + 0.670613i \(0.233969\pi\)
\(912\) 0 0
\(913\) −0.579658 0.579658i −0.0191839 0.0191839i
\(914\) 0 0
\(915\) 4.46088 + 4.46088i 0.147472 + 0.147472i
\(916\) 0 0
\(917\) −8.38478 −0.276890
\(918\) 0 0
\(919\) −14.3431 −0.473137 −0.236568 0.971615i \(-0.576023\pi\)
−0.236568 + 0.971615i \(0.576023\pi\)
\(920\) 0 0
\(921\) −8.28772 8.28772i −0.273090 0.273090i
\(922\) 0 0
\(923\) 5.86030 + 5.86030i 0.192894 + 0.192894i
\(924\) 0 0
\(925\) −7.42950 + 7.42950i −0.244280 + 0.244280i
\(926\) 0 0
\(927\) 1.65685i 0.0544182i
\(928\) 0 0
\(929\) −34.9602 + 34.9602i −1.14701 + 1.14701i −0.159868 + 0.987138i \(0.551107\pi\)
−0.987138 + 0.159868i \(0.948893\pi\)
\(930\) 0 0
\(931\) −16.5858 −0.543577
\(932\) 0 0
\(933\) 23.5563i 0.771200i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 23.3553i 0.762986i 0.924372 + 0.381493i \(0.124590\pi\)
−0.924372 + 0.381493i \(0.875410\pi\)
\(938\) 0 0
\(939\) 42.0416 1.37198
\(940\) 0 0
\(941\) 1.17525 1.17525i 0.0383119 0.0383119i −0.687691 0.726003i \(-0.741376\pi\)
0.726003 + 0.687691i \(0.241376\pi\)
\(942\) 0 0
\(943\) 8.58579i 0.279592i
\(944\) 0 0
\(945\) 4.77791 4.77791i 0.155425 0.155425i
\(946\) 0 0
\(947\) 6.40150 + 6.40150i 0.208021 + 0.208021i 0.803426 0.595405i \(-0.203008\pi\)
−0.595405 + 0.803426i \(0.703008\pi\)
\(948\) 0 0
\(949\) 41.5474 + 41.5474i 1.34869 + 1.34869i
\(950\) 0 0
\(951\) 0.727922 0.0236045
\(952\) 0 0
\(953\) 12.1421 0.393322 0.196661 0.980472i \(-0.436990\pi\)
0.196661 + 0.980472i \(0.436990\pi\)
\(954\) 0 0
\(955\) 0.448342 + 0.448342i 0.0145080 + 0.0145080i
\(956\) 0 0
\(957\) −17.7122 17.7122i −0.572555 0.572555i
\(958\) 0 0
\(959\) 6.57128 6.57128i 0.212198 0.212198i
\(960\) 0 0
\(961\) 10.4731i 0.337842i
\(962\) 0 0
\(963\) 1.12085 1.12085i 0.0361190 0.0361190i
\(964\) 0 0
\(965\) −28.7279 −0.924785
\(966\) 0 0
\(967\) 33.0122i 1.06160i 0.847497 + 0.530800i \(0.178109\pi\)
−0.847497 + 0.530800i \(0.821891\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 37.2132i 1.19423i 0.802156 + 0.597114i \(0.203686\pi\)
−0.802156 + 0.597114i \(0.796314\pi\)
\(972\) 0 0
\(973\) −13.4142 −0.430040
\(974\) 0 0
\(975\) −14.1480 + 14.1480i −0.453099 + 0.453099i
\(976\) 0 0
\(977\) 38.3848i 1.22804i 0.789291 + 0.614019i \(0.210448\pi\)
−0.789291 + 0.614019i \(0.789552\pi\)
\(978\) 0 0
\(979\) 25.8686 25.8686i 0.826765 0.826765i
\(980\) 0 0
\(981\) −1.43788 1.43788i −0.0459079 0.0459079i
\(982\) 0 0
\(983\) 27.8092 + 27.8092i 0.886977 + 0.886977i 0.994232 0.107255i \(-0.0342060\pi\)
−0.107255 + 0.994232i \(0.534206\pi\)
\(984\) 0 0
\(985\) 23.2132 0.739634
\(986\) 0 0
\(987\) 5.17157 0.164613
\(988\) 0 0
\(989\) 21.2220 + 21.2220i 0.674821 + 0.674821i
\(990\) 0 0
\(991\) 32.0844 + 32.0844i 1.01920 + 1.01920i 0.999812 + 0.0193829i \(0.00617017\pi\)
0.0193829 + 0.999812i \(0.493830\pi\)
\(992\) 0 0
\(993\) 37.5348 37.5348i 1.19113 1.19113i
\(994\) 0 0
\(995\) 3.07107i 0.0973594i
\(996\) 0 0
\(997\) 21.8945 21.8945i 0.693407 0.693407i −0.269573 0.962980i \(-0.586882\pi\)
0.962980 + 0.269573i \(0.0868825\pi\)
\(998\) 0 0
\(999\) 31.6569 1.00158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.e.f.829.1 8
17.2 even 8 1156.2.a.g.1.1 4
17.3 odd 16 68.2.h.a.49.1 yes 4
17.4 even 4 inner 1156.2.e.f.905.1 8
17.5 odd 16 1156.2.h.c.733.1 4
17.6 odd 16 1156.2.h.a.757.1 4
17.7 odd 16 68.2.h.a.25.1 4
17.8 even 8 1156.2.b.d.577.4 4
17.9 even 8 1156.2.b.d.577.1 4
17.10 odd 16 1156.2.h.b.977.1 4
17.11 odd 16 1156.2.h.c.757.1 4
17.12 odd 16 1156.2.h.a.733.1 4
17.13 even 4 inner 1156.2.e.f.905.4 8
17.14 odd 16 1156.2.h.b.1001.1 4
17.15 even 8 1156.2.a.g.1.4 4
17.16 even 2 inner 1156.2.e.f.829.4 8
51.20 even 16 612.2.w.a.253.1 4
51.41 even 16 612.2.w.a.433.1 4
68.3 even 16 272.2.v.c.49.1 4
68.7 even 16 272.2.v.c.161.1 4
68.15 odd 8 4624.2.a.bl.1.1 4
68.19 odd 8 4624.2.a.bl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.h.a.25.1 4 17.7 odd 16
68.2.h.a.49.1 yes 4 17.3 odd 16
272.2.v.c.49.1 4 68.3 even 16
272.2.v.c.161.1 4 68.7 even 16
612.2.w.a.253.1 4 51.20 even 16
612.2.w.a.433.1 4 51.41 even 16
1156.2.a.g.1.1 4 17.2 even 8
1156.2.a.g.1.4 4 17.15 even 8
1156.2.b.d.577.1 4 17.9 even 8
1156.2.b.d.577.4 4 17.8 even 8
1156.2.e.f.829.1 8 1.1 even 1 trivial
1156.2.e.f.829.4 8 17.16 even 2 inner
1156.2.e.f.905.1 8 17.4 even 4 inner
1156.2.e.f.905.4 8 17.13 even 4 inner
1156.2.h.a.733.1 4 17.12 odd 16
1156.2.h.a.757.1 4 17.6 odd 16
1156.2.h.b.977.1 4 17.10 odd 16
1156.2.h.b.1001.1 4 17.14 odd 16
1156.2.h.c.733.1 4 17.5 odd 16
1156.2.h.c.757.1 4 17.11 odd 16
4624.2.a.bl.1.1 4 68.15 odd 8
4624.2.a.bl.1.4 4 68.19 odd 8