Properties

Label 1156.2.b.d.577.4
Level $1156$
Weight $2$
Character 1156.577
Analytic conductor $9.231$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,2,Mod(577,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.4
Root \(1.84776i\) of defining polynomial
Character \(\chi\) \(=\) 1156.577
Dual form 1156.2.b.d.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.84776i q^{3} -1.84776i q^{5} -0.765367i q^{7} -0.414214 q^{9} +3.37849i q^{11} -6.82843 q^{13} +3.41421 q^{15} +2.58579 q^{19} +1.41421 q^{21} +7.07401i q^{23} +1.58579 q^{25} +4.77791i q^{27} +4.01254i q^{29} +6.43996i q^{31} -6.24264 q^{33} -1.41421 q^{35} +6.62567i q^{37} -12.6173i q^{39} -1.21371i q^{41} -4.24264 q^{43} +0.765367i q^{45} +3.65685 q^{47} +6.41421 q^{49} -5.89949 q^{53} +6.24264 q^{55} +4.77791i q^{57} +13.8995 q^{59} -1.84776i q^{61} +0.317025i q^{63} +12.6173i q^{65} -11.3137 q^{67} -13.0711 q^{69} -1.21371i q^{71} +8.60474i q^{73} +2.93015i q^{75} +2.58579 q^{77} -11.4036i q^{79} -10.0711 q^{81} -0.242641 q^{83} -7.41421 q^{87} -10.8284 q^{89} +5.22625i q^{91} -11.8995 q^{93} -4.77791i q^{95} +0.951076i q^{97} -1.39942i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} - 16 q^{13} + 8 q^{15} + 16 q^{19} + 12 q^{25} - 8 q^{33} - 8 q^{47} + 20 q^{49} + 16 q^{53} + 8 q^{55} + 16 q^{59} - 24 q^{69} + 16 q^{77} - 12 q^{81} + 16 q^{83} - 24 q^{87} - 32 q^{89}+ \cdots - 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.84776i 1.06680i 0.845862 + 0.533402i \(0.179087\pi\)
−0.845862 + 0.533402i \(0.820913\pi\)
\(4\) 0 0
\(5\) − 1.84776i − 0.826343i −0.910653 0.413171i \(-0.864421\pi\)
0.910653 0.413171i \(-0.135579\pi\)
\(6\) 0 0
\(7\) − 0.765367i − 0.289281i −0.989484 0.144641i \(-0.953797\pi\)
0.989484 0.144641i \(-0.0462026\pi\)
\(8\) 0 0
\(9\) −0.414214 −0.138071
\(10\) 0 0
\(11\) 3.37849i 1.01865i 0.860573 + 0.509327i \(0.170106\pi\)
−0.860573 + 0.509327i \(0.829894\pi\)
\(12\) 0 0
\(13\) −6.82843 −1.89386 −0.946932 0.321433i \(-0.895836\pi\)
−0.946932 + 0.321433i \(0.895836\pi\)
\(14\) 0 0
\(15\) 3.41421 0.881546
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 2.58579 0.593220 0.296610 0.954999i \(-0.404144\pi\)
0.296610 + 0.954999i \(0.404144\pi\)
\(20\) 0 0
\(21\) 1.41421 0.308607
\(22\) 0 0
\(23\) 7.07401i 1.47503i 0.675329 + 0.737517i \(0.264002\pi\)
−0.675329 + 0.737517i \(0.735998\pi\)
\(24\) 0 0
\(25\) 1.58579 0.317157
\(26\) 0 0
\(27\) 4.77791i 0.919509i
\(28\) 0 0
\(29\) 4.01254i 0.745111i 0.928010 + 0.372555i \(0.121518\pi\)
−0.928010 + 0.372555i \(0.878482\pi\)
\(30\) 0 0
\(31\) 6.43996i 1.15665i 0.815806 + 0.578326i \(0.196294\pi\)
−0.815806 + 0.578326i \(0.803706\pi\)
\(32\) 0 0
\(33\) −6.24264 −1.08670
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) 6.62567i 1.08925i 0.838679 + 0.544627i \(0.183329\pi\)
−0.838679 + 0.544627i \(0.816671\pi\)
\(38\) 0 0
\(39\) − 12.6173i − 2.02038i
\(40\) 0 0
\(41\) − 1.21371i − 0.189549i −0.995499 0.0947747i \(-0.969787\pi\)
0.995499 0.0947747i \(-0.0302131\pi\)
\(42\) 0 0
\(43\) −4.24264 −0.646997 −0.323498 0.946229i \(-0.604859\pi\)
−0.323498 + 0.946229i \(0.604859\pi\)
\(44\) 0 0
\(45\) 0.765367i 0.114094i
\(46\) 0 0
\(47\) 3.65685 0.533407 0.266704 0.963779i \(-0.414066\pi\)
0.266704 + 0.963779i \(0.414066\pi\)
\(48\) 0 0
\(49\) 6.41421 0.916316
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.89949 −0.810358 −0.405179 0.914237i \(-0.632791\pi\)
−0.405179 + 0.914237i \(0.632791\pi\)
\(54\) 0 0
\(55\) 6.24264 0.841757
\(56\) 0 0
\(57\) 4.77791i 0.632850i
\(58\) 0 0
\(59\) 13.8995 1.80956 0.904780 0.425879i \(-0.140035\pi\)
0.904780 + 0.425879i \(0.140035\pi\)
\(60\) 0 0
\(61\) − 1.84776i − 0.236581i −0.992979 0.118291i \(-0.962259\pi\)
0.992979 0.118291i \(-0.0377415\pi\)
\(62\) 0 0
\(63\) 0.317025i 0.0399414i
\(64\) 0 0
\(65\) 12.6173i 1.56498i
\(66\) 0 0
\(67\) −11.3137 −1.38219 −0.691095 0.722764i \(-0.742871\pi\)
−0.691095 + 0.722764i \(0.742871\pi\)
\(68\) 0 0
\(69\) −13.0711 −1.57357
\(70\) 0 0
\(71\) − 1.21371i − 0.144041i −0.997403 0.0720203i \(-0.977055\pi\)
0.997403 0.0720203i \(-0.0229447\pi\)
\(72\) 0 0
\(73\) 8.60474i 1.00711i 0.863963 + 0.503555i \(0.167975\pi\)
−0.863963 + 0.503555i \(0.832025\pi\)
\(74\) 0 0
\(75\) 2.93015i 0.338345i
\(76\) 0 0
\(77\) 2.58579 0.294678
\(78\) 0 0
\(79\) − 11.4036i − 1.28300i −0.767122 0.641501i \(-0.778312\pi\)
0.767122 0.641501i \(-0.221688\pi\)
\(80\) 0 0
\(81\) −10.0711 −1.11901
\(82\) 0 0
\(83\) −0.242641 −0.0266333 −0.0133166 0.999911i \(-0.504239\pi\)
−0.0133166 + 0.999911i \(0.504239\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7.41421 −0.794887
\(88\) 0 0
\(89\) −10.8284 −1.14781 −0.573905 0.818922i \(-0.694572\pi\)
−0.573905 + 0.818922i \(0.694572\pi\)
\(90\) 0 0
\(91\) 5.22625i 0.547860i
\(92\) 0 0
\(93\) −11.8995 −1.23392
\(94\) 0 0
\(95\) − 4.77791i − 0.490203i
\(96\) 0 0
\(97\) 0.951076i 0.0965671i 0.998834 + 0.0482836i \(0.0153751\pi\)
−0.998834 + 0.0482836i \(0.984625\pi\)
\(98\) 0 0
\(99\) − 1.39942i − 0.140647i
\(100\) 0 0
\(101\) −12.8284 −1.27648 −0.638238 0.769839i \(-0.720336\pi\)
−0.638238 + 0.769839i \(0.720336\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) − 2.61313i − 0.255015i
\(106\) 0 0
\(107\) − 3.82683i − 0.369954i −0.982743 0.184977i \(-0.940779\pi\)
0.982743 0.184977i \(-0.0592211\pi\)
\(108\) 0 0
\(109\) 4.90923i 0.470219i 0.971969 + 0.235109i \(0.0755448\pi\)
−0.971969 + 0.235109i \(0.924455\pi\)
\(110\) 0 0
\(111\) −12.2426 −1.16202
\(112\) 0 0
\(113\) 1.39942i 0.131646i 0.997831 + 0.0658231i \(0.0209673\pi\)
−0.997831 + 0.0658231i \(0.979033\pi\)
\(114\) 0 0
\(115\) 13.0711 1.21888
\(116\) 0 0
\(117\) 2.82843 0.261488
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.414214 −0.0376558
\(122\) 0 0
\(123\) 2.24264 0.202212
\(124\) 0 0
\(125\) − 12.1689i − 1.08842i
\(126\) 0 0
\(127\) 0.242641 0.0215309 0.0107654 0.999942i \(-0.496573\pi\)
0.0107654 + 0.999942i \(0.496573\pi\)
\(128\) 0 0
\(129\) − 7.83938i − 0.690219i
\(130\) 0 0
\(131\) − 10.9552i − 0.957164i −0.878043 0.478582i \(-0.841151\pi\)
0.878043 0.478582i \(-0.158849\pi\)
\(132\) 0 0
\(133\) − 1.97908i − 0.171608i
\(134\) 0 0
\(135\) 8.82843 0.759830
\(136\) 0 0
\(137\) 12.1421 1.03737 0.518686 0.854965i \(-0.326421\pi\)
0.518686 + 0.854965i \(0.326421\pi\)
\(138\) 0 0
\(139\) 17.5265i 1.48658i 0.668970 + 0.743290i \(0.266736\pi\)
−0.668970 + 0.743290i \(0.733264\pi\)
\(140\) 0 0
\(141\) 6.75699i 0.569041i
\(142\) 0 0
\(143\) − 23.0698i − 1.92919i
\(144\) 0 0
\(145\) 7.41421 0.615717
\(146\) 0 0
\(147\) 11.8519i 0.977530i
\(148\) 0 0
\(149\) −9.65685 −0.791120 −0.395560 0.918440i \(-0.629450\pi\)
−0.395560 + 0.918440i \(0.629450\pi\)
\(150\) 0 0
\(151\) −14.5858 −1.18697 −0.593487 0.804843i \(-0.702249\pi\)
−0.593487 + 0.804843i \(0.702249\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.8995 0.955790
\(156\) 0 0
\(157\) 2.34315 0.187003 0.0935017 0.995619i \(-0.470194\pi\)
0.0935017 + 0.995619i \(0.470194\pi\)
\(158\) 0 0
\(159\) − 10.9008i − 0.864493i
\(160\) 0 0
\(161\) 5.41421 0.426700
\(162\) 0 0
\(163\) 7.25972i 0.568625i 0.958732 + 0.284313i \(0.0917653\pi\)
−0.958732 + 0.284313i \(0.908235\pi\)
\(164\) 0 0
\(165\) 11.5349i 0.897990i
\(166\) 0 0
\(167\) − 12.3003i − 0.951823i −0.879493 0.475911i \(-0.842118\pi\)
0.879493 0.475911i \(-0.157882\pi\)
\(168\) 0 0
\(169\) 33.6274 2.58672
\(170\) 0 0
\(171\) −1.07107 −0.0819066
\(172\) 0 0
\(173\) − 25.1033i − 1.90857i −0.298905 0.954283i \(-0.596621\pi\)
0.298905 0.954283i \(-0.403379\pi\)
\(174\) 0 0
\(175\) − 1.21371i − 0.0917477i
\(176\) 0 0
\(177\) 25.6829i 1.93045i
\(178\) 0 0
\(179\) 18.3848 1.37414 0.687071 0.726590i \(-0.258896\pi\)
0.687071 + 0.726590i \(0.258896\pi\)
\(180\) 0 0
\(181\) − 3.82683i − 0.284446i −0.989835 0.142223i \(-0.954575\pi\)
0.989835 0.142223i \(-0.0454251\pi\)
\(182\) 0 0
\(183\) 3.41421 0.252386
\(184\) 0 0
\(185\) 12.2426 0.900097
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 3.65685 0.265997
\(190\) 0 0
\(191\) 0.343146 0.0248292 0.0124146 0.999923i \(-0.496048\pi\)
0.0124146 + 0.999923i \(0.496048\pi\)
\(192\) 0 0
\(193\) 15.5474i 1.11913i 0.828787 + 0.559565i \(0.189032\pi\)
−0.828787 + 0.559565i \(0.810968\pi\)
\(194\) 0 0
\(195\) −23.3137 −1.66953
\(196\) 0 0
\(197\) 12.5629i 0.895069i 0.894267 + 0.447535i \(0.147698\pi\)
−0.894267 + 0.447535i \(0.852302\pi\)
\(198\) 0 0
\(199\) 1.66205i 0.117820i 0.998263 + 0.0589098i \(0.0187624\pi\)
−0.998263 + 0.0589098i \(0.981238\pi\)
\(200\) 0 0
\(201\) − 20.9050i − 1.47453i
\(202\) 0 0
\(203\) 3.07107 0.215547
\(204\) 0 0
\(205\) −2.24264 −0.156633
\(206\) 0 0
\(207\) − 2.93015i − 0.203660i
\(208\) 0 0
\(209\) 8.73606i 0.604286i
\(210\) 0 0
\(211\) − 2.03347i − 0.139990i −0.997547 0.0699949i \(-0.977702\pi\)
0.997547 0.0699949i \(-0.0222983\pi\)
\(212\) 0 0
\(213\) 2.24264 0.153663
\(214\) 0 0
\(215\) 7.83938i 0.534641i
\(216\) 0 0
\(217\) 4.92893 0.334598
\(218\) 0 0
\(219\) −15.8995 −1.07439
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 17.2132 1.15268 0.576341 0.817210i \(-0.304480\pi\)
0.576341 + 0.817210i \(0.304480\pi\)
\(224\) 0 0
\(225\) −0.656854 −0.0437903
\(226\) 0 0
\(227\) − 19.4287i − 1.28953i −0.764383 0.644763i \(-0.776956\pi\)
0.764383 0.644763i \(-0.223044\pi\)
\(228\) 0 0
\(229\) 3.75736 0.248293 0.124147 0.992264i \(-0.460381\pi\)
0.124147 + 0.992264i \(0.460381\pi\)
\(230\) 0 0
\(231\) 4.77791i 0.314363i
\(232\) 0 0
\(233\) − 8.97616i − 0.588048i −0.955798 0.294024i \(-0.905005\pi\)
0.955798 0.294024i \(-0.0949946\pi\)
\(234\) 0 0
\(235\) − 6.75699i − 0.440777i
\(236\) 0 0
\(237\) 21.0711 1.36871
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) − 19.8770i − 1.28039i −0.768212 0.640195i \(-0.778853\pi\)
0.768212 0.640195i \(-0.221147\pi\)
\(242\) 0 0
\(243\) − 4.27518i − 0.274253i
\(244\) 0 0
\(245\) − 11.8519i − 0.757191i
\(246\) 0 0
\(247\) −17.6569 −1.12348
\(248\) 0 0
\(249\) − 0.448342i − 0.0284125i
\(250\) 0 0
\(251\) 22.9706 1.44989 0.724945 0.688807i \(-0.241865\pi\)
0.724945 + 0.688807i \(0.241865\pi\)
\(252\) 0 0
\(253\) −23.8995 −1.50255
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.75736 −0.234378 −0.117189 0.993110i \(-0.537388\pi\)
−0.117189 + 0.993110i \(0.537388\pi\)
\(258\) 0 0
\(259\) 5.07107 0.315101
\(260\) 0 0
\(261\) − 1.66205i − 0.102878i
\(262\) 0 0
\(263\) 13.2132 0.814761 0.407381 0.913259i \(-0.366442\pi\)
0.407381 + 0.913259i \(0.366442\pi\)
\(264\) 0 0
\(265\) 10.9008i 0.669634i
\(266\) 0 0
\(267\) − 20.0083i − 1.22449i
\(268\) 0 0
\(269\) − 8.41904i − 0.513318i −0.966502 0.256659i \(-0.917378\pi\)
0.966502 0.256659i \(-0.0826217\pi\)
\(270\) 0 0
\(271\) 11.3137 0.687259 0.343629 0.939105i \(-0.388344\pi\)
0.343629 + 0.939105i \(0.388344\pi\)
\(272\) 0 0
\(273\) −9.65685 −0.584459
\(274\) 0 0
\(275\) 5.35757i 0.323074i
\(276\) 0 0
\(277\) 15.0991i 0.907217i 0.891201 + 0.453608i \(0.149864\pi\)
−0.891201 + 0.453608i \(0.850136\pi\)
\(278\) 0 0
\(279\) − 2.66752i − 0.159700i
\(280\) 0 0
\(281\) 15.0711 0.899065 0.449532 0.893264i \(-0.351591\pi\)
0.449532 + 0.893264i \(0.351591\pi\)
\(282\) 0 0
\(283\) − 7.07401i − 0.420506i −0.977647 0.210253i \(-0.932571\pi\)
0.977647 0.210253i \(-0.0674288\pi\)
\(284\) 0 0
\(285\) 8.82843 0.522951
\(286\) 0 0
\(287\) −0.928932 −0.0548331
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −1.75736 −0.103018
\(292\) 0 0
\(293\) −8.00000 −0.467365 −0.233682 0.972313i \(-0.575078\pi\)
−0.233682 + 0.972313i \(0.575078\pi\)
\(294\) 0 0
\(295\) − 25.6829i − 1.49532i
\(296\) 0 0
\(297\) −16.1421 −0.936662
\(298\) 0 0
\(299\) − 48.3044i − 2.79351i
\(300\) 0 0
\(301\) 3.24718i 0.187164i
\(302\) 0 0
\(303\) − 23.7038i − 1.36175i
\(304\) 0 0
\(305\) −3.41421 −0.195497
\(306\) 0 0
\(307\) 6.34315 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(308\) 0 0
\(309\) 7.39104i 0.420461i
\(310\) 0 0
\(311\) 12.7486i 0.722907i 0.932390 + 0.361454i \(0.117719\pi\)
−0.932390 + 0.361454i \(0.882281\pi\)
\(312\) 0 0
\(313\) 22.7528i 1.28606i 0.765840 + 0.643031i \(0.222323\pi\)
−0.765840 + 0.643031i \(0.777677\pi\)
\(314\) 0 0
\(315\) 0.585786 0.0330053
\(316\) 0 0
\(317\) − 0.393949i − 0.0221264i −0.999939 0.0110632i \(-0.996478\pi\)
0.999939 0.0110632i \(-0.00352159\pi\)
\(318\) 0 0
\(319\) −13.5563 −0.759010
\(320\) 0 0
\(321\) 7.07107 0.394669
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −10.8284 −0.600653
\(326\) 0 0
\(327\) −9.07107 −0.501631
\(328\) 0 0
\(329\) − 2.79884i − 0.154305i
\(330\) 0 0
\(331\) −28.7279 −1.57903 −0.789515 0.613732i \(-0.789668\pi\)
−0.789515 + 0.613732i \(0.789668\pi\)
\(332\) 0 0
\(333\) − 2.74444i − 0.150395i
\(334\) 0 0
\(335\) 20.9050i 1.14216i
\(336\) 0 0
\(337\) 25.9999i 1.41631i 0.706058 + 0.708154i \(0.250472\pi\)
−0.706058 + 0.708154i \(0.749528\pi\)
\(338\) 0 0
\(339\) −2.58579 −0.140441
\(340\) 0 0
\(341\) −21.7574 −1.17823
\(342\) 0 0
\(343\) − 10.2668i − 0.554355i
\(344\) 0 0
\(345\) 24.1522i 1.30031i
\(346\) 0 0
\(347\) − 7.78498i − 0.417920i −0.977924 0.208960i \(-0.932992\pi\)
0.977924 0.208960i \(-0.0670078\pi\)
\(348\) 0 0
\(349\) 28.0416 1.50103 0.750517 0.660851i \(-0.229805\pi\)
0.750517 + 0.660851i \(0.229805\pi\)
\(350\) 0 0
\(351\) − 32.6256i − 1.74143i
\(352\) 0 0
\(353\) 15.3137 0.815066 0.407533 0.913190i \(-0.366389\pi\)
0.407533 + 0.913190i \(0.366389\pi\)
\(354\) 0 0
\(355\) −2.24264 −0.119027
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −30.3848 −1.60365 −0.801824 0.597561i \(-0.796137\pi\)
−0.801824 + 0.597561i \(0.796137\pi\)
\(360\) 0 0
\(361\) −12.3137 −0.648090
\(362\) 0 0
\(363\) − 0.765367i − 0.0401713i
\(364\) 0 0
\(365\) 15.8995 0.832218
\(366\) 0 0
\(367\) 3.82683i 0.199759i 0.995000 + 0.0998796i \(0.0318458\pi\)
−0.995000 + 0.0998796i \(0.968154\pi\)
\(368\) 0 0
\(369\) 0.502734i 0.0261713i
\(370\) 0 0
\(371\) 4.51528i 0.234422i
\(372\) 0 0
\(373\) −18.4853 −0.957132 −0.478566 0.878052i \(-0.658843\pi\)
−0.478566 + 0.878052i \(0.658843\pi\)
\(374\) 0 0
\(375\) 22.4853 1.16113
\(376\) 0 0
\(377\) − 27.3994i − 1.41114i
\(378\) 0 0
\(379\) 10.9552i 0.562733i 0.959600 + 0.281366i \(0.0907876\pi\)
−0.959600 + 0.281366i \(0.909212\pi\)
\(380\) 0 0
\(381\) 0.448342i 0.0229692i
\(382\) 0 0
\(383\) −25.8995 −1.32340 −0.661701 0.749768i \(-0.730165\pi\)
−0.661701 + 0.749768i \(0.730165\pi\)
\(384\) 0 0
\(385\) − 4.77791i − 0.243505i
\(386\) 0 0
\(387\) 1.75736 0.0893316
\(388\) 0 0
\(389\) 2.10051 0.106500 0.0532499 0.998581i \(-0.483042\pi\)
0.0532499 + 0.998581i \(0.483042\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 20.2426 1.02111
\(394\) 0 0
\(395\) −21.0711 −1.06020
\(396\) 0 0
\(397\) − 18.8715i − 0.947135i −0.880757 0.473568i \(-0.842966\pi\)
0.880757 0.473568i \(-0.157034\pi\)
\(398\) 0 0
\(399\) 3.65685 0.183072
\(400\) 0 0
\(401\) − 9.23880i − 0.461363i −0.973029 0.230682i \(-0.925904\pi\)
0.973029 0.230682i \(-0.0740956\pi\)
\(402\) 0 0
\(403\) − 43.9748i − 2.19054i
\(404\) 0 0
\(405\) 18.6089i 0.924684i
\(406\) 0 0
\(407\) −22.3848 −1.10957
\(408\) 0 0
\(409\) −11.6569 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(410\) 0 0
\(411\) 22.4357i 1.10667i
\(412\) 0 0
\(413\) − 10.6382i − 0.523472i
\(414\) 0 0
\(415\) 0.448342i 0.0220082i
\(416\) 0 0
\(417\) −32.3848 −1.58589
\(418\) 0 0
\(419\) 35.6327i 1.74077i 0.492371 + 0.870385i \(0.336130\pi\)
−0.492371 + 0.870385i \(0.663870\pi\)
\(420\) 0 0
\(421\) −1.17157 −0.0570990 −0.0285495 0.999592i \(-0.509089\pi\)
−0.0285495 + 0.999592i \(0.509089\pi\)
\(422\) 0 0
\(423\) −1.51472 −0.0736481
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.41421 −0.0684386
\(428\) 0 0
\(429\) 42.6274 2.05807
\(430\) 0 0
\(431\) 20.5880i 0.991688i 0.868412 + 0.495844i \(0.165141\pi\)
−0.868412 + 0.495844i \(0.834859\pi\)
\(432\) 0 0
\(433\) −8.24264 −0.396116 −0.198058 0.980190i \(-0.563463\pi\)
−0.198058 + 0.980190i \(0.563463\pi\)
\(434\) 0 0
\(435\) 13.6997i 0.656849i
\(436\) 0 0
\(437\) 18.2919i 0.875019i
\(438\) 0 0
\(439\) − 14.8365i − 0.708106i −0.935225 0.354053i \(-0.884803\pi\)
0.935225 0.354053i \(-0.115197\pi\)
\(440\) 0 0
\(441\) −2.65685 −0.126517
\(442\) 0 0
\(443\) −21.6569 −1.02895 −0.514474 0.857506i \(-0.672013\pi\)
−0.514474 + 0.857506i \(0.672013\pi\)
\(444\) 0 0
\(445\) 20.0083i 0.948486i
\(446\) 0 0
\(447\) − 17.8435i − 0.843970i
\(448\) 0 0
\(449\) − 21.2220i − 1.00153i −0.865583 0.500765i \(-0.833052\pi\)
0.865583 0.500765i \(-0.166948\pi\)
\(450\) 0 0
\(451\) 4.10051 0.193085
\(452\) 0 0
\(453\) − 26.9510i − 1.26627i
\(454\) 0 0
\(455\) 9.65685 0.452720
\(456\) 0 0
\(457\) −4.24264 −0.198462 −0.0992312 0.995064i \(-0.531638\pi\)
−0.0992312 + 0.995064i \(0.531638\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.75736 0.361296 0.180648 0.983548i \(-0.442180\pi\)
0.180648 + 0.983548i \(0.442180\pi\)
\(462\) 0 0
\(463\) 7.65685 0.355844 0.177922 0.984045i \(-0.443062\pi\)
0.177922 + 0.984045i \(0.443062\pi\)
\(464\) 0 0
\(465\) 21.9874i 1.01964i
\(466\) 0 0
\(467\) 28.2426 1.30691 0.653457 0.756964i \(-0.273318\pi\)
0.653457 + 0.756964i \(0.273318\pi\)
\(468\) 0 0
\(469\) 8.65914i 0.399842i
\(470\) 0 0
\(471\) 4.32957i 0.199496i
\(472\) 0 0
\(473\) − 14.3337i − 0.659066i
\(474\) 0 0
\(475\) 4.10051 0.188144
\(476\) 0 0
\(477\) 2.44365 0.111887
\(478\) 0 0
\(479\) − 8.23333i − 0.376190i −0.982151 0.188095i \(-0.939769\pi\)
0.982151 0.188095i \(-0.0602313\pi\)
\(480\) 0 0
\(481\) − 45.2429i − 2.06290i
\(482\) 0 0
\(483\) 10.0042i 0.455205i
\(484\) 0 0
\(485\) 1.75736 0.0797976
\(486\) 0 0
\(487\) − 3.64113i − 0.164995i −0.996591 0.0824976i \(-0.973710\pi\)
0.996591 0.0824976i \(-0.0262897\pi\)
\(488\) 0 0
\(489\) −13.4142 −0.606612
\(490\) 0 0
\(491\) 23.7574 1.07215 0.536077 0.844169i \(-0.319906\pi\)
0.536077 + 0.844169i \(0.319906\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.58579 −0.116222
\(496\) 0 0
\(497\) −0.928932 −0.0416683
\(498\) 0 0
\(499\) 37.5348i 1.68029i 0.542362 + 0.840145i \(0.317530\pi\)
−0.542362 + 0.840145i \(0.682470\pi\)
\(500\) 0 0
\(501\) 22.7279 1.01541
\(502\) 0 0
\(503\) − 7.89377i − 0.351966i −0.984393 0.175983i \(-0.943690\pi\)
0.984393 0.175983i \(-0.0563104\pi\)
\(504\) 0 0
\(505\) 23.7038i 1.05481i
\(506\) 0 0
\(507\) 62.1354i 2.75953i
\(508\) 0 0
\(509\) −6.68629 −0.296365 −0.148182 0.988960i \(-0.547342\pi\)
−0.148182 + 0.988960i \(0.547342\pi\)
\(510\) 0 0
\(511\) 6.58579 0.291338
\(512\) 0 0
\(513\) 12.3547i 0.545471i
\(514\) 0 0
\(515\) − 7.39104i − 0.325688i
\(516\) 0 0
\(517\) 12.3547i 0.543357i
\(518\) 0 0
\(519\) 46.3848 2.03607
\(520\) 0 0
\(521\) 27.5307i 1.20614i 0.797688 + 0.603070i \(0.206056\pi\)
−0.797688 + 0.603070i \(0.793944\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) 2.24264 0.0978769
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −27.0416 −1.17572
\(530\) 0 0
\(531\) −5.75736 −0.249848
\(532\) 0 0
\(533\) 8.28772i 0.358981i
\(534\) 0 0
\(535\) −7.07107 −0.305709
\(536\) 0 0
\(537\) 33.9706i 1.46594i
\(538\) 0 0
\(539\) 21.6704i 0.933409i
\(540\) 0 0
\(541\) − 7.89377i − 0.339380i −0.985498 0.169690i \(-0.945723\pi\)
0.985498 0.169690i \(-0.0542766\pi\)
\(542\) 0 0
\(543\) 7.07107 0.303449
\(544\) 0 0
\(545\) 9.07107 0.388562
\(546\) 0 0
\(547\) 24.5461i 1.04952i 0.851251 + 0.524758i \(0.175844\pi\)
−0.851251 + 0.524758i \(0.824156\pi\)
\(548\) 0 0
\(549\) 0.765367i 0.0326651i
\(550\) 0 0
\(551\) 10.3756i 0.442015i
\(552\) 0 0
\(553\) −8.72792 −0.371149
\(554\) 0 0
\(555\) 22.6215i 0.960227i
\(556\) 0 0
\(557\) −22.8284 −0.967272 −0.483636 0.875269i \(-0.660684\pi\)
−0.483636 + 0.875269i \(0.660684\pi\)
\(558\) 0 0
\(559\) 28.9706 1.22532
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 38.5858 1.62620 0.813099 0.582126i \(-0.197779\pi\)
0.813099 + 0.582126i \(0.197779\pi\)
\(564\) 0 0
\(565\) 2.58579 0.108785
\(566\) 0 0
\(567\) 7.70806i 0.323708i
\(568\) 0 0
\(569\) 27.5563 1.15522 0.577611 0.816312i \(-0.303985\pi\)
0.577611 + 0.816312i \(0.303985\pi\)
\(570\) 0 0
\(571\) 25.4747i 1.06608i 0.846089 + 0.533041i \(0.178951\pi\)
−0.846089 + 0.533041i \(0.821049\pi\)
\(572\) 0 0
\(573\) 0.634051i 0.0264878i
\(574\) 0 0
\(575\) 11.2179i 0.467818i
\(576\) 0 0
\(577\) −1.79899 −0.0748929 −0.0374465 0.999299i \(-0.511922\pi\)
−0.0374465 + 0.999299i \(0.511922\pi\)
\(578\) 0 0
\(579\) −28.7279 −1.19389
\(580\) 0 0
\(581\) 0.185709i 0.00770451i
\(582\) 0 0
\(583\) − 19.9314i − 0.825474i
\(584\) 0 0
\(585\) − 5.22625i − 0.216079i
\(586\) 0 0
\(587\) −29.2132 −1.20576 −0.602879 0.797833i \(-0.705980\pi\)
−0.602879 + 0.797833i \(0.705980\pi\)
\(588\) 0 0
\(589\) 16.6524i 0.686149i
\(590\) 0 0
\(591\) −23.2132 −0.954864
\(592\) 0 0
\(593\) 33.2132 1.36390 0.681951 0.731397i \(-0.261132\pi\)
0.681951 + 0.731397i \(0.261132\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.07107 −0.125690
\(598\) 0 0
\(599\) 37.3137 1.52460 0.762298 0.647226i \(-0.224071\pi\)
0.762298 + 0.647226i \(0.224071\pi\)
\(600\) 0 0
\(601\) 5.09494i 0.207827i 0.994586 + 0.103913i \(0.0331365\pi\)
−0.994586 + 0.103913i \(0.966864\pi\)
\(602\) 0 0
\(603\) 4.68629 0.190841
\(604\) 0 0
\(605\) 0.765367i 0.0311166i
\(606\) 0 0
\(607\) 15.9189i 0.646127i 0.946377 + 0.323063i \(0.104713\pi\)
−0.946377 + 0.323063i \(0.895287\pi\)
\(608\) 0 0
\(609\) 5.67459i 0.229946i
\(610\) 0 0
\(611\) −24.9706 −1.01020
\(612\) 0 0
\(613\) 0.343146 0.0138595 0.00692976 0.999976i \(-0.497794\pi\)
0.00692976 + 0.999976i \(0.497794\pi\)
\(614\) 0 0
\(615\) − 4.14386i − 0.167097i
\(616\) 0 0
\(617\) − 34.1020i − 1.37289i −0.727180 0.686446i \(-0.759170\pi\)
0.727180 0.686446i \(-0.240830\pi\)
\(618\) 0 0
\(619\) − 13.3827i − 0.537894i −0.963155 0.268947i \(-0.913324\pi\)
0.963155 0.268947i \(-0.0866757\pi\)
\(620\) 0 0
\(621\) −33.7990 −1.35631
\(622\) 0 0
\(623\) 8.28772i 0.332040i
\(624\) 0 0
\(625\) −14.5563 −0.582254
\(626\) 0 0
\(627\) −16.1421 −0.644655
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 14.5858 0.580651 0.290325 0.956928i \(-0.406236\pi\)
0.290325 + 0.956928i \(0.406236\pi\)
\(632\) 0 0
\(633\) 3.75736 0.149342
\(634\) 0 0
\(635\) − 0.448342i − 0.0177919i
\(636\) 0 0
\(637\) −43.7990 −1.73538
\(638\) 0 0
\(639\) 0.502734i 0.0198879i
\(640\) 0 0
\(641\) − 46.4566i − 1.83493i −0.397821 0.917463i \(-0.630234\pi\)
0.397821 0.917463i \(-0.369766\pi\)
\(642\) 0 0
\(643\) 5.54328i 0.218606i 0.994009 + 0.109303i \(0.0348618\pi\)
−0.994009 + 0.109303i \(0.965138\pi\)
\(644\) 0 0
\(645\) −14.4853 −0.570357
\(646\) 0 0
\(647\) 32.9706 1.29621 0.648103 0.761552i \(-0.275563\pi\)
0.648103 + 0.761552i \(0.275563\pi\)
\(648\) 0 0
\(649\) 46.9593i 1.84332i
\(650\) 0 0
\(651\) 9.10748i 0.356950i
\(652\) 0 0
\(653\) − 45.1885i − 1.76836i −0.467144 0.884181i \(-0.654717\pi\)
0.467144 0.884181i \(-0.345283\pi\)
\(654\) 0 0
\(655\) −20.2426 −0.790945
\(656\) 0 0
\(657\) − 3.56420i − 0.139053i
\(658\) 0 0
\(659\) −2.68629 −0.104643 −0.0523215 0.998630i \(-0.516662\pi\)
−0.0523215 + 0.998630i \(0.516662\pi\)
\(660\) 0 0
\(661\) −12.7279 −0.495059 −0.247529 0.968880i \(-0.579619\pi\)
−0.247529 + 0.968880i \(0.579619\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.65685 −0.141807
\(666\) 0 0
\(667\) −28.3848 −1.09906
\(668\) 0 0
\(669\) 31.8059i 1.22969i
\(670\) 0 0
\(671\) 6.24264 0.240994
\(672\) 0 0
\(673\) − 31.0405i − 1.19652i −0.801301 0.598261i \(-0.795858\pi\)
0.801301 0.598261i \(-0.204142\pi\)
\(674\) 0 0
\(675\) 7.57675i 0.291629i
\(676\) 0 0
\(677\) 1.66205i 0.0638778i 0.999490 + 0.0319389i \(0.0101682\pi\)
−0.999490 + 0.0319389i \(0.989832\pi\)
\(678\) 0 0
\(679\) 0.727922 0.0279351
\(680\) 0 0
\(681\) 35.8995 1.37567
\(682\) 0 0
\(683\) − 4.27518i − 0.163585i −0.996649 0.0817925i \(-0.973936\pi\)
0.996649 0.0817925i \(-0.0260645\pi\)
\(684\) 0 0
\(685\) − 22.4357i − 0.857226i
\(686\) 0 0
\(687\) 6.94269i 0.264880i
\(688\) 0 0
\(689\) 40.2843 1.53471
\(690\) 0 0
\(691\) − 7.07401i − 0.269108i −0.990906 0.134554i \(-0.957040\pi\)
0.990906 0.134554i \(-0.0429602\pi\)
\(692\) 0 0
\(693\) −1.07107 −0.0406865
\(694\) 0 0
\(695\) 32.3848 1.22842
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 16.5858 0.627332
\(700\) 0 0
\(701\) −19.5147 −0.737061 −0.368530 0.929616i \(-0.620139\pi\)
−0.368530 + 0.929616i \(0.620139\pi\)
\(702\) 0 0
\(703\) 17.1326i 0.646167i
\(704\) 0 0
\(705\) 12.4853 0.470223
\(706\) 0 0
\(707\) 9.81845i 0.369261i
\(708\) 0 0
\(709\) − 3.37849i − 0.126882i −0.997986 0.0634410i \(-0.979793\pi\)
0.997986 0.0634410i \(-0.0202075\pi\)
\(710\) 0 0
\(711\) 4.72352i 0.177146i
\(712\) 0 0
\(713\) −45.5563 −1.70610
\(714\) 0 0
\(715\) −42.6274 −1.59418
\(716\) 0 0
\(717\) 41.8100i 1.56142i
\(718\) 0 0
\(719\) − 15.0222i − 0.560233i −0.959966 0.280116i \(-0.909627\pi\)
0.959966 0.280116i \(-0.0903730\pi\)
\(720\) 0 0
\(721\) − 3.06147i − 0.114015i
\(722\) 0 0
\(723\) 36.7279 1.36593
\(724\) 0 0
\(725\) 6.36304i 0.236317i
\(726\) 0 0
\(727\) 19.6569 0.729032 0.364516 0.931197i \(-0.381234\pi\)
0.364516 + 0.931197i \(0.381234\pi\)
\(728\) 0 0
\(729\) −22.3137 −0.826434
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 4.72792 0.174630 0.0873149 0.996181i \(-0.472171\pi\)
0.0873149 + 0.996181i \(0.472171\pi\)
\(734\) 0 0
\(735\) 21.8995 0.807775
\(736\) 0 0
\(737\) − 38.2233i − 1.40797i
\(738\) 0 0
\(739\) 16.9289 0.622741 0.311370 0.950289i \(-0.399212\pi\)
0.311370 + 0.950289i \(0.399212\pi\)
\(740\) 0 0
\(741\) − 32.6256i − 1.19853i
\(742\) 0 0
\(743\) 28.1647i 1.03326i 0.856208 + 0.516632i \(0.172814\pi\)
−0.856208 + 0.516632i \(0.827186\pi\)
\(744\) 0 0
\(745\) 17.8435i 0.653737i
\(746\) 0 0
\(747\) 0.100505 0.00367729
\(748\) 0 0
\(749\) −2.92893 −0.107021
\(750\) 0 0
\(751\) − 46.0852i − 1.68167i −0.541290 0.840836i \(-0.682064\pi\)
0.541290 0.840836i \(-0.317936\pi\)
\(752\) 0 0
\(753\) 42.4441i 1.54675i
\(754\) 0 0
\(755\) 26.9510i 0.980848i
\(756\) 0 0
\(757\) −46.6690 −1.69622 −0.848108 0.529824i \(-0.822258\pi\)
−0.848108 + 0.529824i \(0.822258\pi\)
\(758\) 0 0
\(759\) − 44.1605i − 1.60292i
\(760\) 0 0
\(761\) −17.8579 −0.647347 −0.323674 0.946169i \(-0.604918\pi\)
−0.323674 + 0.946169i \(0.604918\pi\)
\(762\) 0 0
\(763\) 3.75736 0.136026
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −94.9117 −3.42706
\(768\) 0 0
\(769\) 3.79899 0.136995 0.0684975 0.997651i \(-0.478179\pi\)
0.0684975 + 0.997651i \(0.478179\pi\)
\(770\) 0 0
\(771\) − 6.94269i − 0.250035i
\(772\) 0 0
\(773\) −20.9289 −0.752761 −0.376381 0.926465i \(-0.622832\pi\)
−0.376381 + 0.926465i \(0.622832\pi\)
\(774\) 0 0
\(775\) 10.2124i 0.366840i
\(776\) 0 0
\(777\) 9.37011i 0.336151i
\(778\) 0 0
\(779\) − 3.13839i − 0.112445i
\(780\) 0 0
\(781\) 4.10051 0.146728
\(782\) 0 0
\(783\) −19.1716 −0.685136
\(784\) 0 0
\(785\) − 4.32957i − 0.154529i
\(786\) 0 0
\(787\) 35.2931i 1.25806i 0.777379 + 0.629032i \(0.216549\pi\)
−0.777379 + 0.629032i \(0.783451\pi\)
\(788\) 0 0
\(789\) 24.4148i 0.869190i
\(790\) 0 0
\(791\) 1.07107 0.0380828
\(792\) 0 0
\(793\) 12.6173i 0.448053i
\(794\) 0 0
\(795\) −20.1421 −0.714368
\(796\) 0 0
\(797\) 48.5269 1.71891 0.859456 0.511210i \(-0.170803\pi\)
0.859456 + 0.511210i \(0.170803\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 4.48528 0.158480
\(802\) 0 0
\(803\) −29.0711 −1.02590
\(804\) 0 0
\(805\) − 10.0042i − 0.352600i
\(806\) 0 0
\(807\) 15.5563 0.547609
\(808\) 0 0
\(809\) − 29.7724i − 1.04674i −0.852105 0.523371i \(-0.824674\pi\)
0.852105 0.523371i \(-0.175326\pi\)
\(810\) 0 0
\(811\) 23.8352i 0.836966i 0.908225 + 0.418483i \(0.137438\pi\)
−0.908225 + 0.418483i \(0.862562\pi\)
\(812\) 0 0
\(813\) 20.9050i 0.733171i
\(814\) 0 0
\(815\) 13.4142 0.469879
\(816\) 0 0
\(817\) −10.9706 −0.383811
\(818\) 0 0
\(819\) − 2.16478i − 0.0756437i
\(820\) 0 0
\(821\) 5.91470i 0.206424i 0.994659 + 0.103212i \(0.0329121\pi\)
−0.994659 + 0.103212i \(0.967088\pi\)
\(822\) 0 0
\(823\) 30.2207i 1.05343i 0.850042 + 0.526714i \(0.176576\pi\)
−0.850042 + 0.526714i \(0.823424\pi\)
\(824\) 0 0
\(825\) −9.89949 −0.344656
\(826\) 0 0
\(827\) − 3.64113i − 0.126614i −0.997994 0.0633072i \(-0.979835\pi\)
0.997994 0.0633072i \(-0.0201648\pi\)
\(828\) 0 0
\(829\) 29.6569 1.03003 0.515013 0.857183i \(-0.327787\pi\)
0.515013 + 0.857183i \(0.327787\pi\)
\(830\) 0 0
\(831\) −27.8995 −0.967823
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −22.7279 −0.786532
\(836\) 0 0
\(837\) −30.7696 −1.06355
\(838\) 0 0
\(839\) − 6.06854i − 0.209509i −0.994498 0.104755i \(-0.966594\pi\)
0.994498 0.104755i \(-0.0334057\pi\)
\(840\) 0 0
\(841\) 12.8995 0.444810
\(842\) 0 0
\(843\) 27.8477i 0.959126i
\(844\) 0 0
\(845\) − 62.1354i − 2.13752i
\(846\) 0 0
\(847\) 0.317025i 0.0108931i
\(848\) 0 0
\(849\) 13.0711 0.448598
\(850\) 0 0
\(851\) −46.8701 −1.60668
\(852\) 0 0
\(853\) − 21.6704i − 0.741979i −0.928637 0.370990i \(-0.879018\pi\)
0.928637 0.370990i \(-0.120982\pi\)
\(854\) 0 0
\(855\) 1.97908i 0.0676829i
\(856\) 0 0
\(857\) − 12.9343i − 0.441828i −0.975293 0.220914i \(-0.929096\pi\)
0.975293 0.220914i \(-0.0709040\pi\)
\(858\) 0 0
\(859\) 16.7279 0.570749 0.285375 0.958416i \(-0.407882\pi\)
0.285375 + 0.958416i \(0.407882\pi\)
\(860\) 0 0
\(861\) − 1.71644i − 0.0584962i
\(862\) 0 0
\(863\) 14.0000 0.476566 0.238283 0.971196i \(-0.423415\pi\)
0.238283 + 0.971196i \(0.423415\pi\)
\(864\) 0 0
\(865\) −46.3848 −1.57713
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 38.5269 1.30694
\(870\) 0 0
\(871\) 77.2548 2.61768
\(872\) 0 0
\(873\) − 0.393949i − 0.0133331i
\(874\) 0 0
\(875\) −9.31371 −0.314861
\(876\) 0 0
\(877\) 8.60474i 0.290562i 0.989390 + 0.145281i \(0.0464086\pi\)
−0.989390 + 0.145281i \(0.953591\pi\)
\(878\) 0 0
\(879\) − 14.7821i − 0.498587i
\(880\) 0 0
\(881\) − 9.68714i − 0.326368i −0.986596 0.163184i \(-0.947824\pi\)
0.986596 0.163184i \(-0.0521764\pi\)
\(882\) 0 0
\(883\) −14.3431 −0.482685 −0.241343 0.970440i \(-0.577588\pi\)
−0.241343 + 0.970440i \(0.577588\pi\)
\(884\) 0 0
\(885\) 47.4558 1.59521
\(886\) 0 0
\(887\) − 35.4788i − 1.19126i −0.803258 0.595631i \(-0.796902\pi\)
0.803258 0.595631i \(-0.203098\pi\)
\(888\) 0 0
\(889\) − 0.185709i − 0.00622848i
\(890\) 0 0
\(891\) − 34.0250i − 1.13988i
\(892\) 0 0
\(893\) 9.45584 0.316428
\(894\) 0 0
\(895\) − 33.9706i − 1.13551i
\(896\) 0 0
\(897\) 89.2548 2.98013
\(898\) 0 0
\(899\) −25.8406 −0.861833
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −6.00000 −0.199667
\(904\) 0 0
\(905\) −7.07107 −0.235050
\(906\) 0 0
\(907\) 7.59928i 0.252330i 0.992009 + 0.126165i \(0.0402668\pi\)
−0.992009 + 0.126165i \(0.959733\pi\)
\(908\) 0 0
\(909\) 5.31371 0.176245
\(910\) 0 0
\(911\) − 3.03894i − 0.100684i −0.998732 0.0503422i \(-0.983969\pi\)
0.998732 0.0503422i \(-0.0160312\pi\)
\(912\) 0 0
\(913\) − 0.819760i − 0.0271301i
\(914\) 0 0
\(915\) − 6.30864i − 0.208557i
\(916\) 0 0
\(917\) −8.38478 −0.276890
\(918\) 0 0
\(919\) −14.3431 −0.473137 −0.236568 0.971615i \(-0.576023\pi\)
−0.236568 + 0.971615i \(0.576023\pi\)
\(920\) 0 0
\(921\) 11.7206i 0.386207i
\(922\) 0 0
\(923\) 8.28772i 0.272794i
\(924\) 0 0
\(925\) 10.5069i 0.345465i
\(926\) 0 0
\(927\) −1.65685 −0.0544182
\(928\) 0 0
\(929\) − 49.4412i − 1.62211i −0.584969 0.811056i \(-0.698893\pi\)
0.584969 0.811056i \(-0.301107\pi\)
\(930\) 0 0
\(931\) 16.5858 0.543577
\(932\) 0 0
\(933\) −23.5563 −0.771200
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 23.3553 0.762986 0.381493 0.924372i \(-0.375410\pi\)
0.381493 + 0.924372i \(0.375410\pi\)
\(938\) 0 0
\(939\) −42.0416 −1.37198
\(940\) 0 0
\(941\) 1.66205i 0.0541813i 0.999633 + 0.0270906i \(0.00862427\pi\)
−0.999633 + 0.0270906i \(0.991376\pi\)
\(942\) 0 0
\(943\) 8.58579 0.279592
\(944\) 0 0
\(945\) − 6.75699i − 0.219805i
\(946\) 0 0
\(947\) 9.05309i 0.294186i 0.989123 + 0.147093i \(0.0469916\pi\)
−0.989123 + 0.147093i \(0.953008\pi\)
\(948\) 0 0
\(949\) − 58.7569i − 1.90733i
\(950\) 0 0
\(951\) 0.727922 0.0236045
\(952\) 0 0
\(953\) 12.1421 0.393322 0.196661 0.980472i \(-0.436990\pi\)
0.196661 + 0.980472i \(0.436990\pi\)
\(954\) 0 0
\(955\) − 0.634051i − 0.0205174i
\(956\) 0 0
\(957\) − 25.0489i − 0.809715i
\(958\) 0 0
\(959\) − 9.29319i − 0.300093i
\(960\) 0 0
\(961\) −10.4731 −0.337842
\(962\) 0 0
\(963\) 1.58513i 0.0510800i
\(964\) 0 0
\(965\) 28.7279 0.924785
\(966\) 0 0
\(967\) 33.0122 1.06160 0.530800 0.847497i \(-0.321891\pi\)
0.530800 + 0.847497i \(0.321891\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 37.2132 1.19423 0.597114 0.802156i \(-0.296314\pi\)
0.597114 + 0.802156i \(0.296314\pi\)
\(972\) 0 0
\(973\) 13.4142 0.430040
\(974\) 0 0
\(975\) − 20.0083i − 0.640779i
\(976\) 0 0
\(977\) −38.3848 −1.22804 −0.614019 0.789291i \(-0.710448\pi\)
−0.614019 + 0.789291i \(0.710448\pi\)
\(978\) 0 0
\(979\) − 36.5838i − 1.16922i
\(980\) 0 0
\(981\) − 2.03347i − 0.0649236i
\(982\) 0 0
\(983\) − 39.3282i − 1.25437i −0.778868 0.627187i \(-0.784206\pi\)
0.778868 0.627187i \(-0.215794\pi\)
\(984\) 0 0
\(985\) 23.2132 0.739634
\(986\) 0 0
\(987\) 5.17157 0.164613
\(988\) 0 0
\(989\) − 30.0125i − 0.954342i
\(990\) 0 0
\(991\) 45.3742i 1.44136i 0.693268 + 0.720680i \(0.256170\pi\)
−0.693268 + 0.720680i \(0.743830\pi\)
\(992\) 0 0
\(993\) − 53.0823i − 1.68452i
\(994\) 0 0
\(995\) 3.07107 0.0973594
\(996\) 0 0
\(997\) 30.9636i 0.980626i 0.871546 + 0.490313i \(0.163118\pi\)
−0.871546 + 0.490313i \(0.836882\pi\)
\(998\) 0 0
\(999\) −31.6569 −1.00158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.b.d.577.4 4
17.2 even 8 1156.2.e.f.829.4 8
17.3 odd 16 68.2.h.a.25.1 4
17.4 even 4 1156.2.a.g.1.4 4
17.5 odd 16 1156.2.h.a.757.1 4
17.6 odd 16 1156.2.h.b.1001.1 4
17.7 odd 16 1156.2.h.c.733.1 4
17.8 even 8 1156.2.e.f.905.4 8
17.9 even 8 1156.2.e.f.905.1 8
17.10 odd 16 1156.2.h.a.733.1 4
17.11 odd 16 68.2.h.a.49.1 yes 4
17.12 odd 16 1156.2.h.c.757.1 4
17.13 even 4 1156.2.a.g.1.1 4
17.14 odd 16 1156.2.h.b.977.1 4
17.15 even 8 1156.2.e.f.829.1 8
17.16 even 2 inner 1156.2.b.d.577.1 4
51.11 even 16 612.2.w.a.253.1 4
51.20 even 16 612.2.w.a.433.1 4
68.3 even 16 272.2.v.c.161.1 4
68.11 even 16 272.2.v.c.49.1 4
68.47 odd 4 4624.2.a.bl.1.4 4
68.55 odd 4 4624.2.a.bl.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.h.a.25.1 4 17.3 odd 16
68.2.h.a.49.1 yes 4 17.11 odd 16
272.2.v.c.49.1 4 68.11 even 16
272.2.v.c.161.1 4 68.3 even 16
612.2.w.a.253.1 4 51.11 even 16
612.2.w.a.433.1 4 51.20 even 16
1156.2.a.g.1.1 4 17.13 even 4
1156.2.a.g.1.4 4 17.4 even 4
1156.2.b.d.577.1 4 17.16 even 2 inner
1156.2.b.d.577.4 4 1.1 even 1 trivial
1156.2.e.f.829.1 8 17.15 even 8
1156.2.e.f.829.4 8 17.2 even 8
1156.2.e.f.905.1 8 17.9 even 8
1156.2.e.f.905.4 8 17.8 even 8
1156.2.h.a.733.1 4 17.10 odd 16
1156.2.h.a.757.1 4 17.5 odd 16
1156.2.h.b.977.1 4 17.14 odd 16
1156.2.h.b.1001.1 4 17.6 odd 16
1156.2.h.c.733.1 4 17.7 odd 16
1156.2.h.c.757.1 4 17.12 odd 16
4624.2.a.bl.1.1 4 68.55 odd 4
4624.2.a.bl.1.4 4 68.47 odd 4