Properties

Label 1156.2.h.a.757.1
Level $1156$
Weight $2$
Character 1156.757
Analytic conductor $9.231$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,2,Mod(733,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.733"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,4,0,4,0,-4,0,0,0,4,0,0,0,4,0,0,0,12,0,-4,0,-4,0, 8,0,4,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 757.1
Root \(0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1156.757
Dual form 1156.2.h.a.733.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70711 - 0.707107i) q^{3} +(-0.707107 + 1.70711i) q^{5} +(0.292893 + 0.707107i) q^{7} +(0.292893 + 0.292893i) q^{9} +(-3.12132 + 1.29289i) q^{11} -6.82843i q^{13} +(2.41421 - 2.41421i) q^{15} +(-1.82843 + 1.82843i) q^{19} -1.41421i q^{21} +(6.53553 - 2.70711i) q^{23} +(1.12132 + 1.12132i) q^{25} +(1.82843 + 4.41421i) q^{27} +(-1.53553 + 3.70711i) q^{29} +(5.94975 + 2.46447i) q^{31} +6.24264 q^{33} -1.41421 q^{35} +(-6.12132 - 2.53553i) q^{37} +(-4.82843 + 11.6569i) q^{39} +(0.464466 + 1.12132i) q^{41} +(3.00000 + 3.00000i) q^{43} +(-0.707107 + 0.292893i) q^{45} +3.65685i q^{47} +(4.53553 - 4.53553i) q^{49} +(4.17157 - 4.17157i) q^{53} -6.24264i q^{55} +(4.41421 - 1.82843i) q^{57} +(9.82843 + 9.82843i) q^{59} +(-0.707107 - 1.70711i) q^{61} +(-0.121320 + 0.292893i) q^{63} +(11.6569 + 4.82843i) q^{65} +11.3137 q^{67} -13.0711 q^{69} +(1.12132 + 0.464466i) q^{71} +(3.29289 - 7.94975i) q^{73} +(-1.12132 - 2.70711i) q^{75} +(-1.82843 - 1.82843i) q^{77} +(10.5355 - 4.36396i) q^{79} -10.0711i q^{81} +(-0.171573 + 0.171573i) q^{83} +(5.24264 - 5.24264i) q^{87} +10.8284i q^{89} +(4.82843 - 2.00000i) q^{91} +(-8.41421 - 8.41421i) q^{93} +(-1.82843 - 4.41421i) q^{95} +(-0.363961 + 0.878680i) q^{97} +(-1.29289 - 0.535534i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{7} + 4 q^{9} - 4 q^{11} + 4 q^{15} + 4 q^{19} + 12 q^{23} - 4 q^{25} - 4 q^{27} + 8 q^{29} + 4 q^{31} + 8 q^{33} - 16 q^{37} - 8 q^{39} + 16 q^{41} + 12 q^{43} + 4 q^{49} + 28 q^{53}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70711 0.707107i −0.985599 0.408248i −0.169102 0.985599i \(-0.554087\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) −0.707107 + 1.70711i −0.316228 + 0.763441i 0.683220 + 0.730213i \(0.260579\pi\)
−0.999448 + 0.0332288i \(0.989421\pi\)
\(6\) 0 0
\(7\) 0.292893 + 0.707107i 0.110703 + 0.267261i 0.969516 0.245029i \(-0.0787974\pi\)
−0.858813 + 0.512290i \(0.828797\pi\)
\(8\) 0 0
\(9\) 0.292893 + 0.292893i 0.0976311 + 0.0976311i
\(10\) 0 0
\(11\) −3.12132 + 1.29289i −0.941113 + 0.389822i −0.799884 0.600155i \(-0.795106\pi\)
−0.141230 + 0.989977i \(0.545106\pi\)
\(12\) 0 0
\(13\) 6.82843i 1.89386i −0.321433 0.946932i \(-0.604164\pi\)
0.321433 0.946932i \(-0.395836\pi\)
\(14\) 0 0
\(15\) 2.41421 2.41421i 0.623347 0.623347i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) −1.82843 + 1.82843i −0.419470 + 0.419470i −0.885021 0.465551i \(-0.845856\pi\)
0.465551 + 0.885021i \(0.345856\pi\)
\(20\) 0 0
\(21\) 1.41421i 0.308607i
\(22\) 0 0
\(23\) 6.53553 2.70711i 1.36275 0.564471i 0.422939 0.906158i \(-0.360998\pi\)
0.939814 + 0.341687i \(0.110998\pi\)
\(24\) 0 0
\(25\) 1.12132 + 1.12132i 0.224264 + 0.224264i
\(26\) 0 0
\(27\) 1.82843 + 4.41421i 0.351881 + 0.849516i
\(28\) 0 0
\(29\) −1.53553 + 3.70711i −0.285141 + 0.688392i −0.999940 0.0109378i \(-0.996518\pi\)
0.714799 + 0.699330i \(0.246518\pi\)
\(30\) 0 0
\(31\) 5.94975 + 2.46447i 1.06861 + 0.442631i 0.846499 0.532391i \(-0.178706\pi\)
0.222108 + 0.975022i \(0.428706\pi\)
\(32\) 0 0
\(33\) 6.24264 1.08670
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) −6.12132 2.53553i −1.00634 0.416839i −0.182221 0.983258i \(-0.558329\pi\)
−0.824118 + 0.566418i \(0.808329\pi\)
\(38\) 0 0
\(39\) −4.82843 + 11.6569i −0.773167 + 1.86659i
\(40\) 0 0
\(41\) 0.464466 + 1.12132i 0.0725374 + 0.175121i 0.955990 0.293400i \(-0.0947869\pi\)
−0.883452 + 0.468521i \(0.844787\pi\)
\(42\) 0 0
\(43\) 3.00000 + 3.00000i 0.457496 + 0.457496i 0.897833 0.440337i \(-0.145141\pi\)
−0.440337 + 0.897833i \(0.645141\pi\)
\(44\) 0 0
\(45\) −0.707107 + 0.292893i −0.105409 + 0.0436619i
\(46\) 0 0
\(47\) 3.65685i 0.533407i 0.963779 + 0.266704i \(0.0859344\pi\)
−0.963779 + 0.266704i \(0.914066\pi\)
\(48\) 0 0
\(49\) 4.53553 4.53553i 0.647933 0.647933i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.17157 4.17157i 0.573010 0.573010i −0.359959 0.932968i \(-0.617209\pi\)
0.932968 + 0.359959i \(0.117209\pi\)
\(54\) 0 0
\(55\) 6.24264i 0.841757i
\(56\) 0 0
\(57\) 4.41421 1.82843i 0.584677 0.242181i
\(58\) 0 0
\(59\) 9.82843 + 9.82843i 1.27955 + 1.27955i 0.940918 + 0.338634i \(0.109965\pi\)
0.338634 + 0.940918i \(0.390035\pi\)
\(60\) 0 0
\(61\) −0.707107 1.70711i −0.0905357 0.218573i 0.872125 0.489283i \(-0.162741\pi\)
−0.962661 + 0.270710i \(0.912741\pi\)
\(62\) 0 0
\(63\) −0.121320 + 0.292893i −0.0152849 + 0.0369011i
\(64\) 0 0
\(65\) 11.6569 + 4.82843i 1.44585 + 0.598893i
\(66\) 0 0
\(67\) 11.3137 1.38219 0.691095 0.722764i \(-0.257129\pi\)
0.691095 + 0.722764i \(0.257129\pi\)
\(68\) 0 0
\(69\) −13.0711 −1.57357
\(70\) 0 0
\(71\) 1.12132 + 0.464466i 0.133076 + 0.0551220i 0.448228 0.893919i \(-0.352055\pi\)
−0.315152 + 0.949041i \(0.602055\pi\)
\(72\) 0 0
\(73\) 3.29289 7.94975i 0.385404 0.930448i −0.605496 0.795848i \(-0.707025\pi\)
0.990900 0.134599i \(-0.0429747\pi\)
\(74\) 0 0
\(75\) −1.12132 2.70711i −0.129479 0.312590i
\(76\) 0 0
\(77\) −1.82843 1.82843i −0.208369 0.208369i
\(78\) 0 0
\(79\) 10.5355 4.36396i 1.18534 0.490984i 0.299105 0.954220i \(-0.403312\pi\)
0.886235 + 0.463236i \(0.153312\pi\)
\(80\) 0 0
\(81\) 10.0711i 1.11901i
\(82\) 0 0
\(83\) −0.171573 + 0.171573i −0.0188326 + 0.0188326i −0.716460 0.697628i \(-0.754239\pi\)
0.697628 + 0.716460i \(0.254239\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.24264 5.24264i 0.562070 0.562070i
\(88\) 0 0
\(89\) 10.8284i 1.14781i 0.818922 + 0.573905i \(0.194572\pi\)
−0.818922 + 0.573905i \(0.805428\pi\)
\(90\) 0 0
\(91\) 4.82843 2.00000i 0.506157 0.209657i
\(92\) 0 0
\(93\) −8.41421 8.41421i −0.872513 0.872513i
\(94\) 0 0
\(95\) −1.82843 4.41421i −0.187593 0.452889i
\(96\) 0 0
\(97\) −0.363961 + 0.878680i −0.0369546 + 0.0892164i −0.941279 0.337629i \(-0.890375\pi\)
0.904325 + 0.426845i \(0.140375\pi\)
\(98\) 0 0
\(99\) −1.29289 0.535534i −0.129941 0.0538232i
\(100\) 0 0
\(101\) 12.8284 1.27648 0.638238 0.769839i \(-0.279664\pi\)
0.638238 + 0.769839i \(0.279664\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 2.41421 + 1.00000i 0.235603 + 0.0975900i
\(106\) 0 0
\(107\) −1.46447 + 3.53553i −0.141575 + 0.341793i −0.978724 0.205183i \(-0.934221\pi\)
0.837148 + 0.546976i \(0.184221\pi\)
\(108\) 0 0
\(109\) −1.87868 4.53553i −0.179945 0.434425i 0.808010 0.589169i \(-0.200545\pi\)
−0.987955 + 0.154744i \(0.950545\pi\)
\(110\) 0 0
\(111\) 8.65685 + 8.65685i 0.821672 + 0.821672i
\(112\) 0 0
\(113\) −1.29289 + 0.535534i −0.121625 + 0.0503788i −0.442666 0.896687i \(-0.645967\pi\)
0.321041 + 0.947065i \(0.395967\pi\)
\(114\) 0 0
\(115\) 13.0711i 1.21888i
\(116\) 0 0
\(117\) 2.00000 2.00000i 0.184900 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.292893 0.292893i 0.0266267 0.0266267i
\(122\) 0 0
\(123\) 2.24264i 0.202212i
\(124\) 0 0
\(125\) −11.2426 + 4.65685i −1.00557 + 0.416522i
\(126\) 0 0
\(127\) 0.171573 + 0.171573i 0.0152246 + 0.0152246i 0.714678 0.699453i \(-0.246573\pi\)
−0.699453 + 0.714678i \(0.746573\pi\)
\(128\) 0 0
\(129\) −3.00000 7.24264i −0.264135 0.637679i
\(130\) 0 0
\(131\) 4.19239 10.1213i 0.366291 0.884304i −0.628061 0.778164i \(-0.716151\pi\)
0.994351 0.106139i \(-0.0338490\pi\)
\(132\) 0 0
\(133\) −1.82843 0.757359i −0.158545 0.0656714i
\(134\) 0 0
\(135\) −8.82843 −0.759830
\(136\) 0 0
\(137\) 12.1421 1.03737 0.518686 0.854965i \(-0.326421\pi\)
0.518686 + 0.854965i \(0.326421\pi\)
\(138\) 0 0
\(139\) −16.1924 6.70711i −1.37342 0.568889i −0.430707 0.902492i \(-0.641736\pi\)
−0.942714 + 0.333603i \(0.891736\pi\)
\(140\) 0 0
\(141\) 2.58579 6.24264i 0.217763 0.525725i
\(142\) 0 0
\(143\) 8.82843 + 21.3137i 0.738270 + 1.78234i
\(144\) 0 0
\(145\) −5.24264 5.24264i −0.435378 0.435378i
\(146\) 0 0
\(147\) −10.9497 + 4.53553i −0.903120 + 0.374085i
\(148\) 0 0
\(149\) 9.65685i 0.791120i −0.918440 0.395560i \(-0.870550\pi\)
0.918440 0.395560i \(-0.129450\pi\)
\(150\) 0 0
\(151\) −10.3137 + 10.3137i −0.839318 + 0.839318i −0.988769 0.149451i \(-0.952249\pi\)
0.149451 + 0.988769i \(0.452249\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.41421 + 8.41421i −0.675846 + 0.675846i
\(156\) 0 0
\(157\) 2.34315i 0.187003i −0.995619 0.0935017i \(-0.970194\pi\)
0.995619 0.0935017i \(-0.0298061\pi\)
\(158\) 0 0
\(159\) −10.0711 + 4.17157i −0.798688 + 0.330827i
\(160\) 0 0
\(161\) 3.82843 + 3.82843i 0.301722 + 0.301722i
\(162\) 0 0
\(163\) 2.77817 + 6.70711i 0.217603 + 0.525341i 0.994554 0.104220i \(-0.0332347\pi\)
−0.776951 + 0.629561i \(0.783235\pi\)
\(164\) 0 0
\(165\) −4.41421 + 10.6569i −0.343646 + 0.829635i
\(166\) 0 0
\(167\) −11.3640 4.70711i −0.879370 0.364247i −0.103117 0.994669i \(-0.532882\pi\)
−0.776252 + 0.630422i \(0.782882\pi\)
\(168\) 0 0
\(169\) −33.6274 −2.58672
\(170\) 0 0
\(171\) −1.07107 −0.0819066
\(172\) 0 0
\(173\) 23.1924 + 9.60660i 1.76328 + 0.730376i 0.996028 + 0.0890357i \(0.0283785\pi\)
0.767256 + 0.641341i \(0.221621\pi\)
\(174\) 0 0
\(175\) −0.464466 + 1.12132i −0.0351103 + 0.0847639i
\(176\) 0 0
\(177\) −9.82843 23.7279i −0.738750 1.78350i
\(178\) 0 0
\(179\) −13.0000 13.0000i −0.971666 0.971666i 0.0279439 0.999609i \(-0.491104\pi\)
−0.999609 + 0.0279439i \(0.991104\pi\)
\(180\) 0 0
\(181\) 3.53553 1.46447i 0.262794 0.108853i −0.247396 0.968914i \(-0.579575\pi\)
0.510190 + 0.860061i \(0.329575\pi\)
\(182\) 0 0
\(183\) 3.41421i 0.252386i
\(184\) 0 0
\(185\) 8.65685 8.65685i 0.636465 0.636465i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.58579 + 2.58579i −0.188088 + 0.188088i
\(190\) 0 0
\(191\) 0.343146i 0.0248292i −0.999923 0.0124146i \(-0.996048\pi\)
0.999923 0.0124146i \(-0.00395178\pi\)
\(192\) 0 0
\(193\) 14.3640 5.94975i 1.03394 0.428272i 0.199807 0.979835i \(-0.435968\pi\)
0.834133 + 0.551563i \(0.185968\pi\)
\(194\) 0 0
\(195\) −16.4853 16.4853i −1.18054 1.18054i
\(196\) 0 0
\(197\) 4.80761 + 11.6066i 0.342528 + 0.826936i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.654931 + 0.755689i \(0.727302\pi\)
\(198\) 0 0
\(199\) −0.636039 + 1.53553i −0.0450876 + 0.108851i −0.944819 0.327593i \(-0.893762\pi\)
0.899731 + 0.436444i \(0.143762\pi\)
\(200\) 0 0
\(201\) −19.3137 8.00000i −1.36228 0.564276i
\(202\) 0 0
\(203\) −3.07107 −0.215547
\(204\) 0 0
\(205\) −2.24264 −0.156633
\(206\) 0 0
\(207\) 2.70711 + 1.12132i 0.188157 + 0.0779372i
\(208\) 0 0
\(209\) 3.34315 8.07107i 0.231250 0.558287i
\(210\) 0 0
\(211\) 0.778175 + 1.87868i 0.0535717 + 0.129334i 0.948399 0.317078i \(-0.102702\pi\)
−0.894828 + 0.446412i \(0.852702\pi\)
\(212\) 0 0
\(213\) −1.58579 1.58579i −0.108656 0.108656i
\(214\) 0 0
\(215\) −7.24264 + 3.00000i −0.493944 + 0.204598i
\(216\) 0 0
\(217\) 4.92893i 0.334598i
\(218\) 0 0
\(219\) −11.2426 + 11.2426i −0.759707 + 0.759707i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −12.1716 + 12.1716i −0.815069 + 0.815069i −0.985389 0.170320i \(-0.945520\pi\)
0.170320 + 0.985389i \(0.445520\pi\)
\(224\) 0 0
\(225\) 0.656854i 0.0437903i
\(226\) 0 0
\(227\) −17.9497 + 7.43503i −1.19137 + 0.493480i −0.888200 0.459457i \(-0.848044\pi\)
−0.303167 + 0.952938i \(0.598044\pi\)
\(228\) 0 0
\(229\) 2.65685 + 2.65685i 0.175570 + 0.175570i 0.789421 0.613852i \(-0.210381\pi\)
−0.613852 + 0.789421i \(0.710381\pi\)
\(230\) 0 0
\(231\) 1.82843 + 4.41421i 0.120302 + 0.290434i
\(232\) 0 0
\(233\) 3.43503 8.29289i 0.225036 0.543285i −0.770524 0.637411i \(-0.780005\pi\)
0.995560 + 0.0941253i \(0.0300054\pi\)
\(234\) 0 0
\(235\) −6.24264 2.58579i −0.407225 0.168678i
\(236\) 0 0
\(237\) −21.0711 −1.36871
\(238\) 0 0
\(239\) 22.6274 1.46365 0.731823 0.681495i \(-0.238670\pi\)
0.731823 + 0.681495i \(0.238670\pi\)
\(240\) 0 0
\(241\) 18.3640 + 7.60660i 1.18293 + 0.489984i 0.885445 0.464743i \(-0.153853\pi\)
0.297481 + 0.954728i \(0.403853\pi\)
\(242\) 0 0
\(243\) −1.63604 + 3.94975i −0.104952 + 0.253376i
\(244\) 0 0
\(245\) 4.53553 + 10.9497i 0.289765 + 0.699554i
\(246\) 0 0
\(247\) 12.4853 + 12.4853i 0.794419 + 0.794419i
\(248\) 0 0
\(249\) 0.414214 0.171573i 0.0262497 0.0108730i
\(250\) 0 0
\(251\) 22.9706i 1.44989i 0.688807 + 0.724945i \(0.258135\pi\)
−0.688807 + 0.724945i \(0.741865\pi\)
\(252\) 0 0
\(253\) −16.8995 + 16.8995i −1.06246 + 1.06246i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.65685 2.65685i 0.165730 0.165730i −0.619370 0.785100i \(-0.712612\pi\)
0.785100 + 0.619370i \(0.212612\pi\)
\(258\) 0 0
\(259\) 5.07107i 0.315101i
\(260\) 0 0
\(261\) −1.53553 + 0.636039i −0.0950472 + 0.0393698i
\(262\) 0 0
\(263\) 9.34315 + 9.34315i 0.576123 + 0.576123i 0.933833 0.357710i \(-0.116442\pi\)
−0.357710 + 0.933833i \(0.616442\pi\)
\(264\) 0 0
\(265\) 4.17157 + 10.0711i 0.256258 + 0.618661i
\(266\) 0 0
\(267\) 7.65685 18.4853i 0.468592 1.13128i
\(268\) 0 0
\(269\) −7.77817 3.22183i −0.474244 0.196438i 0.132742 0.991151i \(-0.457622\pi\)
−0.606986 + 0.794712i \(0.707622\pi\)
\(270\) 0 0
\(271\) −11.3137 −0.687259 −0.343629 0.939105i \(-0.611656\pi\)
−0.343629 + 0.939105i \(0.611656\pi\)
\(272\) 0 0
\(273\) −9.65685 −0.584459
\(274\) 0 0
\(275\) −4.94975 2.05025i −0.298481 0.123635i
\(276\) 0 0
\(277\) 5.77817 13.9497i 0.347177 0.838159i −0.649774 0.760127i \(-0.725136\pi\)
0.996951 0.0780317i \(-0.0248635\pi\)
\(278\) 0 0
\(279\) 1.02082 + 2.46447i 0.0611146 + 0.147544i
\(280\) 0 0
\(281\) −10.6569 10.6569i −0.635735 0.635735i 0.313766 0.949500i \(-0.398409\pi\)
−0.949500 + 0.313766i \(0.898409\pi\)
\(282\) 0 0
\(283\) 6.53553 2.70711i 0.388497 0.160921i −0.179881 0.983688i \(-0.557571\pi\)
0.568378 + 0.822768i \(0.307571\pi\)
\(284\) 0 0
\(285\) 8.82843i 0.522951i
\(286\) 0 0
\(287\) −0.656854 + 0.656854i −0.0387729 + 0.0387729i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 1.24264 1.24264i 0.0728449 0.0728449i
\(292\) 0 0
\(293\) 8.00000i 0.467365i 0.972313 + 0.233682i \(0.0750776\pi\)
−0.972313 + 0.233682i \(0.924922\pi\)
\(294\) 0 0
\(295\) −23.7279 + 9.82843i −1.38149 + 0.572233i
\(296\) 0 0
\(297\) −11.4142 11.4142i −0.662320 0.662320i
\(298\) 0 0
\(299\) −18.4853 44.6274i −1.06903 2.58087i
\(300\) 0 0
\(301\) −1.24264 + 3.00000i −0.0716246 + 0.172917i
\(302\) 0 0
\(303\) −21.8995 9.07107i −1.25809 0.521119i
\(304\) 0 0
\(305\) 3.41421 0.195497
\(306\) 0 0
\(307\) 6.34315 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(308\) 0 0
\(309\) −6.82843 2.82843i −0.388456 0.160904i
\(310\) 0 0
\(311\) 4.87868 11.7782i 0.276645 0.667879i −0.723094 0.690750i \(-0.757281\pi\)
0.999738 + 0.0228708i \(0.00728062\pi\)
\(312\) 0 0
\(313\) −8.70711 21.0208i −0.492155 1.18817i −0.953621 0.301009i \(-0.902677\pi\)
0.461466 0.887158i \(-0.347323\pi\)
\(314\) 0 0
\(315\) −0.414214 0.414214i −0.0233383 0.0233383i
\(316\) 0 0
\(317\) 0.363961 0.150758i 0.0204421 0.00846739i −0.372439 0.928057i \(-0.621478\pi\)
0.392881 + 0.919589i \(0.371478\pi\)
\(318\) 0 0
\(319\) 13.5563i 0.759010i
\(320\) 0 0
\(321\) 5.00000 5.00000i 0.279073 0.279073i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 7.65685 7.65685i 0.424726 0.424726i
\(326\) 0 0
\(327\) 9.07107i 0.501631i
\(328\) 0 0
\(329\) −2.58579 + 1.07107i −0.142559 + 0.0590499i
\(330\) 0 0
\(331\) −20.3137 20.3137i −1.11654 1.11654i −0.992245 0.124297i \(-0.960332\pi\)
−0.124297 0.992245i \(-0.539668\pi\)
\(332\) 0 0
\(333\) −1.05025 2.53553i −0.0575535 0.138946i
\(334\) 0 0
\(335\) −8.00000 + 19.3137i −0.437087 + 1.05522i
\(336\) 0 0
\(337\) 24.0208 + 9.94975i 1.30850 + 0.541997i 0.924445 0.381314i \(-0.124528\pi\)
0.384052 + 0.923312i \(0.374528\pi\)
\(338\) 0 0
\(339\) 2.58579 0.140441
\(340\) 0 0
\(341\) −21.7574 −1.17823
\(342\) 0 0
\(343\) 9.48528 + 3.92893i 0.512157 + 0.212142i
\(344\) 0 0
\(345\) 9.24264 22.3137i 0.497607 1.20133i
\(346\) 0 0
\(347\) 2.97918 + 7.19239i 0.159931 + 0.386108i 0.983450 0.181182i \(-0.0579922\pi\)
−0.823519 + 0.567289i \(0.807992\pi\)
\(348\) 0 0
\(349\) −19.8284 19.8284i −1.06139 1.06139i −0.997988 0.0634034i \(-0.979805\pi\)
−0.0634034 0.997988i \(-0.520195\pi\)
\(350\) 0 0
\(351\) 30.1421 12.4853i 1.60887 0.666415i
\(352\) 0 0
\(353\) 15.3137i 0.815066i 0.913190 + 0.407533i \(0.133611\pi\)
−0.913190 + 0.407533i \(0.866389\pi\)
\(354\) 0 0
\(355\) −1.58579 + 1.58579i −0.0841648 + 0.0841648i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.4853 21.4853i 1.13395 1.13395i 0.144436 0.989514i \(-0.453863\pi\)
0.989514 0.144436i \(-0.0461366\pi\)
\(360\) 0 0
\(361\) 12.3137i 0.648090i
\(362\) 0 0
\(363\) −0.707107 + 0.292893i −0.0371135 + 0.0153729i
\(364\) 0 0
\(365\) 11.2426 + 11.2426i 0.588467 + 0.588467i
\(366\) 0 0
\(367\) 1.46447 + 3.53553i 0.0764445 + 0.184553i 0.957482 0.288493i \(-0.0931542\pi\)
−0.881037 + 0.473047i \(0.843154\pi\)
\(368\) 0 0
\(369\) −0.192388 + 0.464466i −0.0100153 + 0.0241791i
\(370\) 0 0
\(371\) 4.17157 + 1.72792i 0.216577 + 0.0897092i
\(372\) 0 0
\(373\) 18.4853 0.957132 0.478566 0.878052i \(-0.341157\pi\)
0.478566 + 0.878052i \(0.341157\pi\)
\(374\) 0 0
\(375\) 22.4853 1.16113
\(376\) 0 0
\(377\) 25.3137 + 10.4853i 1.30372 + 0.540019i
\(378\) 0 0
\(379\) 4.19239 10.1213i 0.215349 0.519897i −0.778881 0.627172i \(-0.784212\pi\)
0.994229 + 0.107275i \(0.0342124\pi\)
\(380\) 0 0
\(381\) −0.171573 0.414214i −0.00878994 0.0212208i
\(382\) 0 0
\(383\) 18.3137 + 18.3137i 0.935787 + 0.935787i 0.998059 0.0622724i \(-0.0198348\pi\)
−0.0622724 + 0.998059i \(0.519835\pi\)
\(384\) 0 0
\(385\) 4.41421 1.82843i 0.224969 0.0931853i
\(386\) 0 0
\(387\) 1.75736i 0.0893316i
\(388\) 0 0
\(389\) 1.48528 1.48528i 0.0753068 0.0753068i −0.668450 0.743757i \(-0.733042\pi\)
0.743757 + 0.668450i \(0.233042\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −14.3137 + 14.3137i −0.722031 + 0.722031i
\(394\) 0 0
\(395\) 21.0711i 1.06020i
\(396\) 0 0
\(397\) −17.4350 + 7.22183i −0.875039 + 0.362453i −0.774571 0.632487i \(-0.782034\pi\)
−0.100468 + 0.994940i \(0.532034\pi\)
\(398\) 0 0
\(399\) 2.58579 + 2.58579i 0.129451 + 0.129451i
\(400\) 0 0
\(401\) −3.53553 8.53553i −0.176556 0.426244i 0.810684 0.585484i \(-0.199096\pi\)
−0.987240 + 0.159240i \(0.949096\pi\)
\(402\) 0 0
\(403\) 16.8284 40.6274i 0.838284 2.02380i
\(404\) 0 0
\(405\) 17.1924 + 7.12132i 0.854297 + 0.353861i
\(406\) 0 0
\(407\) 22.3848 1.10957
\(408\) 0 0
\(409\) −11.6569 −0.576394 −0.288197 0.957571i \(-0.593056\pi\)
−0.288197 + 0.957571i \(0.593056\pi\)
\(410\) 0 0
\(411\) −20.7279 8.58579i −1.02243 0.423506i
\(412\) 0 0
\(413\) −4.07107 + 9.82843i −0.200324 + 0.483625i
\(414\) 0 0
\(415\) −0.171573 0.414214i −0.00842218 0.0203329i
\(416\) 0 0
\(417\) 22.8995 + 22.8995i 1.12139 + 1.12139i
\(418\) 0 0
\(419\) −32.9203 + 13.6360i −1.60826 + 0.666164i −0.992553 0.121810i \(-0.961130\pi\)
−0.615709 + 0.787974i \(0.711130\pi\)
\(420\) 0 0
\(421\) 1.17157i 0.0570990i −0.999592 0.0285495i \(-0.990911\pi\)
0.999592 0.0285495i \(-0.00908882\pi\)
\(422\) 0 0
\(423\) −1.07107 + 1.07107i −0.0520771 + 0.0520771i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.00000 1.00000i 0.0483934 0.0483934i
\(428\) 0 0
\(429\) 42.6274i 2.05807i
\(430\) 0 0
\(431\) 19.0208 7.87868i 0.916200 0.379503i 0.125774 0.992059i \(-0.459859\pi\)
0.790427 + 0.612556i \(0.209859\pi\)
\(432\) 0 0
\(433\) −5.82843 5.82843i −0.280096 0.280096i 0.553051 0.833147i \(-0.313463\pi\)
−0.833147 + 0.553051i \(0.813463\pi\)
\(434\) 0 0
\(435\) 5.24264 + 12.6569i 0.251365 + 0.606850i
\(436\) 0 0
\(437\) −7.00000 + 16.8995i −0.334855 + 0.808412i
\(438\) 0 0
\(439\) −13.7071 5.67767i −0.654205 0.270980i 0.0307930 0.999526i \(-0.490197\pi\)
−0.684998 + 0.728545i \(0.740197\pi\)
\(440\) 0 0
\(441\) 2.65685 0.126517
\(442\) 0 0
\(443\) −21.6569 −1.02895 −0.514474 0.857506i \(-0.672013\pi\)
−0.514474 + 0.857506i \(0.672013\pi\)
\(444\) 0 0
\(445\) −18.4853 7.65685i −0.876286 0.362970i
\(446\) 0 0
\(447\) −6.82843 + 16.4853i −0.322974 + 0.779727i
\(448\) 0 0
\(449\) 8.12132 + 19.6066i 0.383269 + 0.925293i 0.991329 + 0.131402i \(0.0419479\pi\)
−0.608060 + 0.793891i \(0.708052\pi\)
\(450\) 0 0
\(451\) −2.89949 2.89949i −0.136532 0.136532i
\(452\) 0 0
\(453\) 24.8995 10.3137i 1.16988 0.484580i
\(454\) 0 0
\(455\) 9.65685i 0.452720i
\(456\) 0 0
\(457\) −3.00000 + 3.00000i −0.140334 + 0.140334i −0.773784 0.633450i \(-0.781638\pi\)
0.633450 + 0.773784i \(0.281638\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.48528 + 5.48528i −0.255475 + 0.255475i −0.823211 0.567736i \(-0.807820\pi\)
0.567736 + 0.823211i \(0.307820\pi\)
\(462\) 0 0
\(463\) 7.65685i 0.355844i −0.984045 0.177922i \(-0.943062\pi\)
0.984045 0.177922i \(-0.0569375\pi\)
\(464\) 0 0
\(465\) 20.3137 8.41421i 0.942026 0.390200i
\(466\) 0 0
\(467\) 19.9706 + 19.9706i 0.924127 + 0.924127i 0.997318 0.0731905i \(-0.0233181\pi\)
−0.0731905 + 0.997318i \(0.523318\pi\)
\(468\) 0 0
\(469\) 3.31371 + 8.00000i 0.153013 + 0.369406i
\(470\) 0 0
\(471\) −1.65685 + 4.00000i −0.0763438 + 0.184310i
\(472\) 0 0
\(473\) −13.2426 5.48528i −0.608897 0.252214i
\(474\) 0 0
\(475\) −4.10051 −0.188144
\(476\) 0 0
\(477\) 2.44365 0.111887
\(478\) 0 0
\(479\) 7.60660 + 3.15076i 0.347555 + 0.143962i 0.549630 0.835408i \(-0.314769\pi\)
−0.202076 + 0.979370i \(0.564769\pi\)
\(480\) 0 0
\(481\) −17.3137 + 41.7990i −0.789437 + 1.90587i
\(482\) 0 0
\(483\) −3.82843 9.24264i −0.174199 0.420555i
\(484\) 0 0
\(485\) −1.24264 1.24264i −0.0564254 0.0564254i
\(486\) 0 0
\(487\) 3.36396 1.39340i 0.152436 0.0631409i −0.305161 0.952301i \(-0.598710\pi\)
0.457597 + 0.889160i \(0.348710\pi\)
\(488\) 0 0
\(489\) 13.4142i 0.606612i
\(490\) 0 0
\(491\) 16.7990 16.7990i 0.758128 0.758128i −0.217854 0.975981i \(-0.569906\pi\)
0.975981 + 0.217854i \(0.0699055\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 1.82843 1.82843i 0.0821817 0.0821817i
\(496\) 0 0
\(497\) 0.928932i 0.0416683i
\(498\) 0 0
\(499\) 34.6777 14.3640i 1.55239 0.643019i 0.568640 0.822587i \(-0.307470\pi\)
0.983746 + 0.179567i \(0.0574698\pi\)
\(500\) 0 0
\(501\) 16.0711 + 16.0711i 0.718002 + 0.718002i
\(502\) 0 0
\(503\) −3.02082 7.29289i −0.134691 0.325174i 0.842115 0.539298i \(-0.181310\pi\)
−0.976806 + 0.214124i \(0.931310\pi\)
\(504\) 0 0
\(505\) −9.07107 + 21.8995i −0.403657 + 0.974515i
\(506\) 0 0
\(507\) 57.4056 + 23.7782i 2.54947 + 1.05603i
\(508\) 0 0
\(509\) 6.68629 0.296365 0.148182 0.988960i \(-0.452658\pi\)
0.148182 + 0.988960i \(0.452658\pi\)
\(510\) 0 0
\(511\) 6.58579 0.291338
\(512\) 0 0
\(513\) −11.4142 4.72792i −0.503950 0.208743i
\(514\) 0 0
\(515\) −2.82843 + 6.82843i −0.124635 + 0.300896i
\(516\) 0 0
\(517\) −4.72792 11.4142i −0.207934 0.501997i
\(518\) 0 0
\(519\) −32.7990 32.7990i −1.43972 1.43972i
\(520\) 0 0
\(521\) −25.4350 + 10.5355i −1.11433 + 0.461570i −0.862426 0.506183i \(-0.831056\pi\)
−0.251902 + 0.967753i \(0.581056\pi\)
\(522\) 0 0
\(523\) 34.0000i 1.48672i −0.668894 0.743358i \(-0.733232\pi\)
0.668894 0.743358i \(-0.266768\pi\)
\(524\) 0 0
\(525\) 1.58579 1.58579i 0.0692094 0.0692094i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 19.1213 19.1213i 0.831362 0.831362i
\(530\) 0 0
\(531\) 5.75736i 0.249848i
\(532\) 0 0
\(533\) 7.65685 3.17157i 0.331655 0.137376i
\(534\) 0 0
\(535\) −5.00000 5.00000i −0.216169 0.216169i
\(536\) 0 0
\(537\) 13.0000 + 31.3848i 0.560991 + 1.35435i
\(538\) 0 0
\(539\) −8.29289 + 20.0208i −0.357200 + 0.862358i
\(540\) 0 0
\(541\) −7.29289 3.02082i −0.313546 0.129875i 0.220361 0.975418i \(-0.429277\pi\)
−0.533907 + 0.845543i \(0.679277\pi\)
\(542\) 0 0
\(543\) −7.07107 −0.303449
\(544\) 0 0
\(545\) 9.07107 0.388562
\(546\) 0 0
\(547\) −22.6777 9.39340i −0.969627 0.401633i −0.159054 0.987270i \(-0.550844\pi\)
−0.810573 + 0.585637i \(0.800844\pi\)
\(548\) 0 0
\(549\) 0.292893 0.707107i 0.0125004 0.0301786i
\(550\) 0 0
\(551\) −3.97056 9.58579i −0.169152 0.408368i
\(552\) 0 0
\(553\) 6.17157 + 6.17157i 0.262442 + 0.262442i
\(554\) 0 0
\(555\) −20.8995 + 8.65685i −0.887134 + 0.367463i
\(556\) 0 0
\(557\) 22.8284i 0.967272i −0.875269 0.483636i \(-0.839316\pi\)
0.875269 0.483636i \(-0.160684\pi\)
\(558\) 0 0
\(559\) 20.4853 20.4853i 0.866435 0.866435i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.2843 + 27.2843i −1.14989 + 1.14989i −0.163322 + 0.986573i \(0.552221\pi\)
−0.986573 + 0.163322i \(0.947779\pi\)
\(564\) 0 0
\(565\) 2.58579i 0.108785i
\(566\) 0 0
\(567\) 7.12132 2.94975i 0.299067 0.123878i
\(568\) 0 0
\(569\) 19.4853 + 19.4853i 0.816865 + 0.816865i 0.985653 0.168787i \(-0.0539850\pi\)
−0.168787 + 0.985653i \(0.553985\pi\)
\(570\) 0 0
\(571\) 9.74874 + 23.5355i 0.407972 + 0.984931i 0.985671 + 0.168681i \(0.0539509\pi\)
−0.577699 + 0.816250i \(0.696049\pi\)
\(572\) 0 0
\(573\) −0.242641 + 0.585786i −0.0101365 + 0.0244716i
\(574\) 0 0
\(575\) 10.3640 + 4.29289i 0.432207 + 0.179026i
\(576\) 0 0
\(577\) 1.79899 0.0748929 0.0374465 0.999299i \(-0.488078\pi\)
0.0374465 + 0.999299i \(0.488078\pi\)
\(578\) 0 0
\(579\) −28.7279 −1.19389
\(580\) 0 0
\(581\) −0.171573 0.0710678i −0.00711804 0.00294839i
\(582\) 0 0
\(583\) −7.62742 + 18.4142i −0.315895 + 0.762639i
\(584\) 0 0
\(585\) 2.00000 + 4.82843i 0.0826898 + 0.199631i
\(586\) 0 0
\(587\) 20.6569 + 20.6569i 0.852600 + 0.852600i 0.990453 0.137853i \(-0.0440202\pi\)
−0.137853 + 0.990453i \(0.544020\pi\)
\(588\) 0 0
\(589\) −15.3848 + 6.37258i −0.633919 + 0.262578i
\(590\) 0 0
\(591\) 23.2132i 0.954864i
\(592\) 0 0
\(593\) 23.4853 23.4853i 0.964425 0.964425i −0.0349637 0.999389i \(-0.511132\pi\)
0.999389 + 0.0349637i \(0.0111316\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.17157 2.17157i 0.0888766 0.0888766i
\(598\) 0 0
\(599\) 37.3137i 1.52460i −0.647226 0.762298i \(-0.724071\pi\)
0.647226 0.762298i \(-0.275929\pi\)
\(600\) 0 0
\(601\) 4.70711 1.94975i 0.192007 0.0795319i −0.284608 0.958644i \(-0.591864\pi\)
0.476615 + 0.879112i \(0.341864\pi\)
\(602\) 0 0
\(603\) 3.31371 + 3.31371i 0.134945 + 0.134945i
\(604\) 0 0
\(605\) 0.292893 + 0.707107i 0.0119078 + 0.0287480i
\(606\) 0 0
\(607\) −6.09188 + 14.7071i −0.247262 + 0.596943i −0.997970 0.0636914i \(-0.979713\pi\)
0.750708 + 0.660634i \(0.229713\pi\)
\(608\) 0 0
\(609\) 5.24264 + 2.17157i 0.212443 + 0.0879966i
\(610\) 0 0
\(611\) 24.9706 1.01020
\(612\) 0 0
\(613\) 0.343146 0.0138595 0.00692976 0.999976i \(-0.497794\pi\)
0.00692976 + 0.999976i \(0.497794\pi\)
\(614\) 0 0
\(615\) 3.82843 + 1.58579i 0.154377 + 0.0639451i
\(616\) 0 0
\(617\) −13.0503 + 31.5061i −0.525383 + 1.26839i 0.409135 + 0.912474i \(0.365830\pi\)
−0.934519 + 0.355914i \(0.884170\pi\)
\(618\) 0 0
\(619\) 5.12132 + 12.3640i 0.205843 + 0.496950i 0.992761 0.120109i \(-0.0383243\pi\)
−0.786918 + 0.617058i \(0.788324\pi\)
\(620\) 0 0
\(621\) 23.8995 + 23.8995i 0.959054 + 0.959054i
\(622\) 0 0
\(623\) −7.65685 + 3.17157i −0.306765 + 0.127066i
\(624\) 0 0
\(625\) 14.5563i 0.582254i
\(626\) 0 0
\(627\) −11.4142 + 11.4142i −0.455840 + 0.455840i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −10.3137 + 10.3137i −0.410582 + 0.410582i −0.881941 0.471359i \(-0.843764\pi\)
0.471359 + 0.881941i \(0.343764\pi\)
\(632\) 0 0
\(633\) 3.75736i 0.149342i
\(634\) 0 0
\(635\) −0.414214 + 0.171573i −0.0164376 + 0.00680866i
\(636\) 0 0
\(637\) −30.9706 30.9706i −1.22710 1.22710i
\(638\) 0 0
\(639\) 0.192388 + 0.464466i 0.00761076 + 0.0183740i
\(640\) 0 0
\(641\) 17.7782 42.9203i 0.702196 1.69525i −0.0164412 0.999865i \(-0.505234\pi\)
0.718637 0.695385i \(-0.244766\pi\)
\(642\) 0 0
\(643\) 5.12132 + 2.12132i 0.201965 + 0.0836567i 0.481373 0.876516i \(-0.340138\pi\)
−0.279408 + 0.960172i \(0.590138\pi\)
\(644\) 0 0
\(645\) 14.4853 0.570357
\(646\) 0 0
\(647\) 32.9706 1.29621 0.648103 0.761552i \(-0.275563\pi\)
0.648103 + 0.761552i \(0.275563\pi\)
\(648\) 0 0
\(649\) −43.3848 17.9706i −1.70300 0.705406i
\(650\) 0 0
\(651\) 3.48528 8.41421i 0.136599 0.329779i
\(652\) 0 0
\(653\) 17.2929 + 41.7487i 0.676723 + 1.63375i 0.769946 + 0.638109i \(0.220283\pi\)
−0.0932228 + 0.995645i \(0.529717\pi\)
\(654\) 0 0
\(655\) 14.3137 + 14.3137i 0.559283 + 0.559283i
\(656\) 0 0
\(657\) 3.29289 1.36396i 0.128468 0.0532132i
\(658\) 0 0
\(659\) 2.68629i 0.104643i −0.998630 0.0523215i \(-0.983338\pi\)
0.998630 0.0523215i \(-0.0166621\pi\)
\(660\) 0 0
\(661\) −9.00000 + 9.00000i −0.350059 + 0.350059i −0.860132 0.510072i \(-0.829619\pi\)
0.510072 + 0.860132i \(0.329619\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.58579 2.58579i 0.100272 0.100272i
\(666\) 0 0
\(667\) 28.3848i 1.09906i
\(668\) 0 0
\(669\) 29.3848 12.1716i 1.13608 0.470580i
\(670\) 0 0
\(671\) 4.41421 + 4.41421i 0.170409 + 0.170409i
\(672\) 0 0
\(673\) −11.8787 28.6777i −0.457889 1.10544i −0.969250 0.246077i \(-0.920858\pi\)
0.511361 0.859366i \(-0.329142\pi\)
\(674\) 0 0
\(675\) −2.89949 + 7.00000i −0.111602 + 0.269430i
\(676\) 0 0
\(677\) 1.53553 + 0.636039i 0.0590154 + 0.0244450i 0.411996 0.911186i \(-0.364832\pi\)
−0.352981 + 0.935631i \(0.614832\pi\)
\(678\) 0 0
\(679\) −0.727922 −0.0279351
\(680\) 0 0
\(681\) 35.8995 1.37567
\(682\) 0 0
\(683\) 3.94975 + 1.63604i 0.151133 + 0.0626013i 0.456968 0.889483i \(-0.348936\pi\)
−0.305835 + 0.952085i \(0.598936\pi\)
\(684\) 0 0
\(685\) −8.58579 + 20.7279i −0.328046 + 0.791973i
\(686\) 0 0
\(687\) −2.65685 6.41421i −0.101365 0.244718i
\(688\) 0 0
\(689\) −28.4853 28.4853i −1.08520 1.08520i
\(690\) 0 0
\(691\) 6.53553 2.70711i 0.248623 0.102983i −0.254892 0.966970i \(-0.582040\pi\)
0.503515 + 0.863986i \(0.332040\pi\)
\(692\) 0 0
\(693\) 1.07107i 0.0406865i
\(694\) 0 0
\(695\) 22.8995 22.8995i 0.868627 0.868627i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −11.7279 + 11.7279i −0.443591 + 0.443591i
\(700\) 0 0
\(701\) 19.5147i 0.737061i 0.929616 + 0.368530i \(0.120139\pi\)
−0.929616 + 0.368530i \(0.879861\pi\)
\(702\) 0 0
\(703\) 15.8284 6.55635i 0.596980 0.247277i
\(704\) 0 0
\(705\) 8.82843 + 8.82843i 0.332498 + 0.332498i
\(706\) 0 0
\(707\) 3.75736 + 9.07107i 0.141310 + 0.341153i
\(708\) 0 0
\(709\) 1.29289 3.12132i 0.0485556 0.117224i −0.897741 0.440524i \(-0.854793\pi\)
0.946296 + 0.323301i \(0.104793\pi\)
\(710\) 0 0
\(711\) 4.36396 + 1.80761i 0.163661 + 0.0677907i
\(712\) 0 0
\(713\) 45.5563 1.70610
\(714\) 0 0
\(715\) −42.6274 −1.59418
\(716\) 0 0
\(717\) −38.6274 16.0000i −1.44257 0.597531i
\(718\) 0 0
\(719\) −5.74874 + 13.8787i −0.214392 + 0.517587i −0.994089 0.108569i \(-0.965373\pi\)
0.779697 + 0.626157i \(0.215373\pi\)
\(720\) 0 0
\(721\) 1.17157 + 2.82843i 0.0436317 + 0.105336i
\(722\) 0 0
\(723\) −25.9706 25.9706i −0.965856 0.965856i
\(724\) 0 0
\(725\) −5.87868 + 2.43503i −0.218329 + 0.0904347i
\(726\) 0 0
\(727\) 19.6569i 0.729032i 0.931197 + 0.364516i \(0.118766\pi\)
−0.931197 + 0.364516i \(0.881234\pi\)
\(728\) 0 0
\(729\) −15.7782 + 15.7782i −0.584377 + 0.584377i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −3.34315 + 3.34315i −0.123482 + 0.123482i −0.766147 0.642665i \(-0.777829\pi\)
0.642665 + 0.766147i \(0.277829\pi\)
\(734\) 0 0
\(735\) 21.8995i 0.807775i
\(736\) 0 0
\(737\) −35.3137 + 14.6274i −1.30080 + 0.538808i
\(738\) 0 0
\(739\) 11.9706 + 11.9706i 0.440344 + 0.440344i 0.892128 0.451783i \(-0.149212\pi\)
−0.451783 + 0.892128i \(0.649212\pi\)
\(740\) 0 0
\(741\) −12.4853 30.1421i −0.458658 1.10730i
\(742\) 0 0
\(743\) −10.7782 + 26.0208i −0.395413 + 0.954611i 0.593326 + 0.804962i \(0.297814\pi\)
−0.988739 + 0.149649i \(0.952186\pi\)
\(744\) 0 0
\(745\) 16.4853 + 6.82843i 0.603974 + 0.250174i
\(746\) 0 0
\(747\) −0.100505 −0.00367729
\(748\) 0 0
\(749\) −2.92893 −0.107021
\(750\) 0 0
\(751\) 42.5772 + 17.6360i 1.55366 + 0.643548i 0.983974 0.178312i \(-0.0570637\pi\)
0.569689 + 0.821860i \(0.307064\pi\)
\(752\) 0 0
\(753\) 16.2426 39.2132i 0.591915 1.42901i
\(754\) 0 0
\(755\) −10.3137 24.8995i −0.375354 0.906185i
\(756\) 0 0
\(757\) 33.0000 + 33.0000i 1.19941 + 1.19941i 0.974345 + 0.225061i \(0.0722580\pi\)
0.225061 + 0.974345i \(0.427742\pi\)
\(758\) 0 0
\(759\) 40.7990 16.8995i 1.48091 0.613413i
\(760\) 0 0
\(761\) 17.8579i 0.647347i −0.946169 0.323674i \(-0.895082\pi\)
0.946169 0.323674i \(-0.104918\pi\)
\(762\) 0 0
\(763\) 2.65685 2.65685i 0.0961846 0.0961846i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 67.1127 67.1127i 2.42330 2.42330i
\(768\) 0 0
\(769\) 3.79899i 0.136995i −0.997651 0.0684975i \(-0.978179\pi\)
0.997651 0.0684975i \(-0.0218205\pi\)
\(770\) 0 0
\(771\) −6.41421 + 2.65685i −0.231002 + 0.0956843i
\(772\) 0 0
\(773\) −14.7990 14.7990i −0.532283 0.532283i 0.388968 0.921251i \(-0.372832\pi\)
−0.921251 + 0.388968i \(0.872832\pi\)
\(774\) 0 0
\(775\) 3.90812 + 9.43503i 0.140384 + 0.338916i
\(776\) 0 0
\(777\) −3.58579 + 8.65685i −0.128639 + 0.310563i
\(778\) 0 0
\(779\) −2.89949 1.20101i −0.103885 0.0430307i
\(780\) 0 0
\(781\) −4.10051 −0.146728
\(782\) 0 0
\(783\) −19.1716 −0.685136
\(784\) 0 0
\(785\) 4.00000 + 1.65685i 0.142766 + 0.0591357i
\(786\) 0 0
\(787\) 13.5061 32.6066i 0.481440 1.16230i −0.477485 0.878640i \(-0.658451\pi\)
0.958925 0.283660i \(-0.0915486\pi\)
\(788\) 0 0
\(789\) −9.34315 22.5563i −0.332625 0.803027i
\(790\) 0 0
\(791\) −0.757359 0.757359i −0.0269286 0.0269286i
\(792\) 0 0
\(793\) −11.6569 + 4.82843i −0.413947 + 0.171462i
\(794\) 0 0
\(795\) 20.1421i 0.714368i
\(796\) 0 0
\(797\) 34.3137 34.3137i 1.21545 1.21545i 0.246247 0.969207i \(-0.420803\pi\)
0.969207 0.246247i \(-0.0791974\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −3.17157 + 3.17157i −0.112062 + 0.112062i
\(802\) 0 0
\(803\) 29.0711i 1.02590i
\(804\) 0 0
\(805\) −9.24264 + 3.82843i −0.325760 + 0.134934i
\(806\) 0 0
\(807\) 11.0000 + 11.0000i 0.387218 + 0.387218i
\(808\) 0 0
\(809\) −11.3934 27.5061i −0.400571 0.967063i −0.987528 0.157445i \(-0.949674\pi\)
0.586957 0.809618i \(-0.300326\pi\)
\(810\) 0 0
\(811\) −9.12132 + 22.0208i −0.320293 + 0.773255i 0.678944 + 0.734190i \(0.262438\pi\)
−0.999237 + 0.0390652i \(0.987562\pi\)
\(812\) 0 0
\(813\) 19.3137 + 8.00000i 0.677361 + 0.280572i
\(814\) 0 0
\(815\) −13.4142 −0.469879
\(816\) 0 0
\(817\) −10.9706 −0.383811
\(818\) 0 0
\(819\) 2.00000 + 0.828427i 0.0698857 + 0.0289476i
\(820\) 0 0
\(821\) 2.26346 5.46447i 0.0789952 0.190711i −0.879448 0.475995i \(-0.842088\pi\)
0.958443 + 0.285284i \(0.0920879\pi\)
\(822\) 0 0
\(823\) −11.5650 27.9203i −0.403130 0.973241i −0.986902 0.161323i \(-0.948424\pi\)
0.583772 0.811918i \(-0.301576\pi\)
\(824\) 0 0
\(825\) 7.00000 + 7.00000i 0.243709 + 0.243709i
\(826\) 0 0
\(827\) 3.36396 1.39340i 0.116976 0.0484532i −0.323428 0.946253i \(-0.604835\pi\)
0.440404 + 0.897800i \(0.354835\pi\)
\(828\) 0 0
\(829\) 29.6569i 1.03003i 0.857183 + 0.515013i \(0.172213\pi\)
−0.857183 + 0.515013i \(0.827787\pi\)
\(830\) 0 0
\(831\) −19.7279 + 19.7279i −0.684354 + 0.684354i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.0711 16.0711i 0.556162 0.556162i
\(836\) 0 0
\(837\) 30.7696i 1.06355i
\(838\) 0 0
\(839\) −5.60660 + 2.32233i −0.193561 + 0.0801758i −0.477359 0.878709i \(-0.658406\pi\)
0.283797 + 0.958884i \(0.408406\pi\)
\(840\) 0 0
\(841\) 9.12132 + 9.12132i 0.314528 + 0.314528i
\(842\) 0 0
\(843\) 10.6569 + 25.7279i 0.367042 + 0.886117i
\(844\) 0 0
\(845\) 23.7782 57.4056i 0.817994 1.97481i
\(846\) 0 0
\(847\) 0.292893 + 0.121320i 0.0100639 + 0.00416862i
\(848\) 0 0
\(849\) −13.0711 −0.448598
\(850\) 0 0
\(851\) −46.8701 −1.60668
\(852\) 0 0
\(853\) 20.0208 + 8.29289i 0.685500 + 0.283943i 0.698124 0.715977i \(-0.254018\pi\)
−0.0126242 + 0.999920i \(0.504018\pi\)
\(854\) 0 0
\(855\) 0.757359 1.82843i 0.0259011 0.0625309i
\(856\) 0 0
\(857\) 4.94975 + 11.9497i 0.169080 + 0.408196i 0.985594 0.169131i \(-0.0540960\pi\)
−0.816513 + 0.577326i \(0.804096\pi\)
\(858\) 0 0
\(859\) −11.8284 11.8284i −0.403581 0.403581i 0.475912 0.879493i \(-0.342118\pi\)
−0.879493 + 0.475912i \(0.842118\pi\)
\(860\) 0 0
\(861\) 1.58579 0.656854i 0.0540435 0.0223855i
\(862\) 0 0
\(863\) 14.0000i 0.476566i 0.971196 + 0.238283i \(0.0765845\pi\)
−0.971196 + 0.238283i \(0.923415\pi\)
\(864\) 0 0
\(865\) −32.7990 + 32.7990i −1.11520 + 1.11520i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −27.2426 + 27.2426i −0.924143 + 0.924143i
\(870\) 0 0
\(871\) 77.2548i 2.61768i
\(872\) 0 0
\(873\) −0.363961 + 0.150758i −0.0123182 + 0.00510237i
\(874\) 0 0
\(875\) −6.58579 6.58579i −0.222640 0.222640i
\(876\) 0 0
\(877\) 3.29289 + 7.94975i 0.111193 + 0.268444i 0.969674 0.244401i \(-0.0785914\pi\)
−0.858481 + 0.512845i \(0.828591\pi\)
\(878\) 0 0
\(879\) 5.65685 13.6569i 0.190801 0.460634i
\(880\) 0 0
\(881\) −8.94975 3.70711i −0.301525 0.124896i 0.226791 0.973943i \(-0.427176\pi\)
−0.528316 + 0.849048i \(0.677176\pi\)
\(882\) 0 0
\(883\) 14.3431 0.482685 0.241343 0.970440i \(-0.422412\pi\)
0.241343 + 0.970440i \(0.422412\pi\)
\(884\) 0 0
\(885\) 47.4558 1.59521
\(886\) 0 0
\(887\) 32.7782 + 13.5772i 1.10058 + 0.455877i 0.857685 0.514175i \(-0.171902\pi\)
0.242898 + 0.970052i \(0.421902\pi\)
\(888\) 0 0
\(889\) −0.0710678 + 0.171573i −0.00238354 + 0.00575437i
\(890\) 0 0
\(891\) 13.0208 + 31.4350i 0.436214 + 1.05311i
\(892\) 0 0
\(893\) −6.68629 6.68629i −0.223748 0.223748i
\(894\) 0 0
\(895\) 31.3848 13.0000i 1.04908 0.434542i
\(896\) 0 0
\(897\) 89.2548i 2.98013i
\(898\) 0 0
\(899\) −18.2721 + 18.2721i −0.609408 + 0.609408i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 4.24264 4.24264i 0.141186 0.141186i
\(904\) 0 0
\(905\) 7.07107i 0.235050i
\(906\) 0 0
\(907\) 7.02082 2.90812i 0.233122 0.0965624i −0.263064 0.964778i \(-0.584733\pi\)
0.496187 + 0.868216i \(0.334733\pi\)
\(908\) 0 0
\(909\) 3.75736 + 3.75736i 0.124624 + 0.124624i
\(910\) 0 0
\(911\) −1.16295 2.80761i −0.0385303 0.0930203i 0.903443 0.428708i \(-0.141031\pi\)
−0.941973 + 0.335688i \(0.891031\pi\)
\(912\) 0 0
\(913\) 0.313708 0.757359i 0.0103822 0.0250649i
\(914\) 0 0
\(915\) −5.82843 2.41421i −0.192682 0.0798114i
\(916\) 0 0
\(917\) 8.38478 0.276890
\(918\) 0 0
\(919\) −14.3431 −0.473137 −0.236568 0.971615i \(-0.576023\pi\)
−0.236568 + 0.971615i \(0.576023\pi\)
\(920\) 0 0
\(921\) −10.8284 4.48528i −0.356809 0.147795i
\(922\) 0 0
\(923\) 3.17157 7.65685i 0.104394 0.252028i
\(924\) 0 0
\(925\) −4.02082 9.70711i −0.132204 0.319168i
\(926\) 0 0
\(927\) 1.17157 + 1.17157i 0.0384795 + 0.0384795i
\(928\) 0 0
\(929\) 45.6777 18.9203i 1.49864 0.620755i 0.525460 0.850818i \(-0.323893\pi\)
0.973176 + 0.230063i \(0.0738932\pi\)
\(930\) 0 0
\(931\) 16.5858i 0.543577i
\(932\) 0 0
\(933\) −16.6569 + 16.6569i −0.545321 + 0.545321i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −16.5147 + 16.5147i −0.539512 + 0.539512i −0.923386 0.383873i \(-0.874590\pi\)
0.383873 + 0.923386i \(0.374590\pi\)
\(938\) 0 0
\(939\) 42.0416i 1.37198i
\(940\) 0 0
\(941\) 1.53553 0.636039i 0.0500570 0.0207343i −0.357514 0.933908i \(-0.616376\pi\)
0.407571 + 0.913173i \(0.366376\pi\)
\(942\) 0 0
\(943\) 6.07107 + 6.07107i 0.197701 + 0.197701i
\(944\) 0 0
\(945\) −2.58579 6.24264i −0.0841156 0.203073i
\(946\) 0 0
\(947\) −3.46447 + 8.36396i −0.112580 + 0.271792i −0.970120 0.242625i \(-0.921992\pi\)
0.857540 + 0.514417i \(0.171992\pi\)
\(948\) 0 0
\(949\) −54.2843 22.4853i −1.76214 0.729903i
\(950\) 0 0
\(951\) −0.727922 −0.0236045
\(952\) 0 0
\(953\) 12.1421 0.393322 0.196661 0.980472i \(-0.436990\pi\)
0.196661 + 0.980472i \(0.436990\pi\)
\(954\) 0 0
\(955\) 0.585786 + 0.242641i 0.0189556 + 0.00785167i
\(956\) 0 0
\(957\) −9.58579 + 23.1421i −0.309864 + 0.748079i
\(958\) 0 0
\(959\) 3.55635 + 8.58579i 0.114841 + 0.277250i
\(960\) 0 0
\(961\) 7.40559 + 7.40559i 0.238890 + 0.238890i
\(962\) 0 0
\(963\) −1.46447 + 0.606602i −0.0471918 + 0.0195475i
\(964\) 0 0
\(965\) 28.7279i 0.924785i
\(966\) 0 0
\(967\) 23.3431 23.3431i 0.750665 0.750665i −0.223938 0.974603i \(-0.571891\pi\)
0.974603 + 0.223938i \(0.0718914\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.3137 + 26.3137i −0.844447 + 0.844447i −0.989434 0.144987i \(-0.953686\pi\)
0.144987 + 0.989434i \(0.453686\pi\)
\(972\) 0 0
\(973\) 13.4142i 0.430040i
\(974\) 0 0
\(975\) −18.4853 + 7.65685i −0.592003 + 0.245216i
\(976\) 0 0
\(977\) −27.1421 27.1421i −0.868354 0.868354i 0.123936 0.992290i \(-0.460448\pi\)
−0.992290 + 0.123936i \(0.960448\pi\)
\(978\) 0 0
\(979\) −14.0000 33.7990i −0.447442 1.08022i
\(980\) 0 0
\(981\) 0.778175 1.87868i 0.0248452 0.0599816i
\(982\) 0 0
\(983\) −36.3345 15.0503i −1.15889 0.480029i −0.281386 0.959595i \(-0.590794\pi\)
−0.877506 + 0.479566i \(0.840794\pi\)
\(984\) 0 0
\(985\) −23.2132 −0.739634
\(986\) 0 0
\(987\) 5.17157 0.164613
\(988\) 0 0
\(989\) 27.7279 + 11.4853i 0.881697 + 0.365211i
\(990\) 0 0
\(991\) 17.3640 41.9203i 0.551584 1.33164i −0.364704 0.931123i \(-0.618830\pi\)
0.916288 0.400519i \(-0.131170\pi\)
\(992\) 0 0
\(993\) 20.3137 + 49.0416i 0.644636 + 1.55629i
\(994\) 0 0
\(995\) −2.17157 2.17157i −0.0688435 0.0688435i
\(996\) 0 0
\(997\) −28.6066 + 11.8492i −0.905980 + 0.375269i −0.786516 0.617569i \(-0.788118\pi\)
−0.119464 + 0.992839i \(0.538118\pi\)
\(998\) 0 0
\(999\) 31.6569i 1.00158i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.h.a.757.1 4
17.2 even 8 inner 1156.2.h.a.733.1 4
17.3 odd 16 1156.2.e.f.829.1 8
17.4 even 4 68.2.h.a.25.1 4
17.5 odd 16 1156.2.e.f.905.4 8
17.6 odd 16 1156.2.a.g.1.1 4
17.7 odd 16 1156.2.b.d.577.4 4
17.8 even 8 1156.2.h.b.1001.1 4
17.9 even 8 68.2.h.a.49.1 yes 4
17.10 odd 16 1156.2.b.d.577.1 4
17.11 odd 16 1156.2.a.g.1.4 4
17.12 odd 16 1156.2.e.f.905.1 8
17.13 even 4 1156.2.h.b.977.1 4
17.14 odd 16 1156.2.e.f.829.4 8
17.15 even 8 1156.2.h.c.733.1 4
17.16 even 2 1156.2.h.c.757.1 4
51.26 odd 8 612.2.w.a.253.1 4
51.38 odd 4 612.2.w.a.433.1 4
68.11 even 16 4624.2.a.bl.1.1 4
68.23 even 16 4624.2.a.bl.1.4 4
68.43 odd 8 272.2.v.c.49.1 4
68.55 odd 4 272.2.v.c.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.h.a.25.1 4 17.4 even 4
68.2.h.a.49.1 yes 4 17.9 even 8
272.2.v.c.49.1 4 68.43 odd 8
272.2.v.c.161.1 4 68.55 odd 4
612.2.w.a.253.1 4 51.26 odd 8
612.2.w.a.433.1 4 51.38 odd 4
1156.2.a.g.1.1 4 17.6 odd 16
1156.2.a.g.1.4 4 17.11 odd 16
1156.2.b.d.577.1 4 17.10 odd 16
1156.2.b.d.577.4 4 17.7 odd 16
1156.2.e.f.829.1 8 17.3 odd 16
1156.2.e.f.829.4 8 17.14 odd 16
1156.2.e.f.905.1 8 17.12 odd 16
1156.2.e.f.905.4 8 17.5 odd 16
1156.2.h.a.733.1 4 17.2 even 8 inner
1156.2.h.a.757.1 4 1.1 even 1 trivial
1156.2.h.b.977.1 4 17.13 even 4
1156.2.h.b.1001.1 4 17.8 even 8
1156.2.h.c.733.1 4 17.15 even 8
1156.2.h.c.757.1 4 17.16 even 2
4624.2.a.bl.1.1 4 68.11 even 16
4624.2.a.bl.1.4 4 68.23 even 16