Properties

Label 1156.2.a
Level $1156$
Weight $2$
Character orbit 1156.a
Rep. character $\chi_{1156}(1,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $8$
Sturm bound $306$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(306\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1156))\).

Total New Old
Modular forms 180 22 158
Cusp forms 127 22 105
Eisenstein series 53 0 53

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(45\)\(0\)\(45\)\(28\)\(0\)\(28\)\(17\)\(0\)\(17\)
\(+\)\(-\)\(-\)\(49\)\(0\)\(49\)\(31\)\(0\)\(31\)\(18\)\(0\)\(18\)
\(-\)\(+\)\(-\)\(45\)\(13\)\(32\)\(36\)\(13\)\(23\)\(9\)\(0\)\(9\)
\(-\)\(-\)\(+\)\(41\)\(9\)\(32\)\(32\)\(9\)\(23\)\(9\)\(0\)\(9\)
Plus space\(+\)\(86\)\(9\)\(77\)\(60\)\(9\)\(51\)\(26\)\(0\)\(26\)
Minus space\(-\)\(94\)\(13\)\(81\)\(67\)\(13\)\(54\)\(27\)\(0\)\(27\)

Trace form

\( 22 q - 2 q^{3} + 2 q^{7} + 22 q^{9} + 6 q^{11} - 2 q^{13} + 14 q^{15} - 2 q^{19} + 4 q^{21} + 6 q^{23} + 12 q^{25} - 8 q^{27} + 2 q^{31} - 2 q^{33} - 16 q^{35} - 16 q^{37} - 16 q^{39} + 12 q^{41} - 6 q^{43}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 17
1156.2.a.a 1156.a 1.a $2$ $9.231$ \(\Q(\sqrt{3}) \) None 68.2.a.a \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{3}-2\beta q^{5}+(1-\beta )q^{7}+\cdots\)
1156.2.a.b 1156.a 1.a $2$ $9.231$ \(\Q(\sqrt{21}) \) None 1156.2.a.b \(0\) \(-1\) \(-3\) \(-5\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(-1-\beta )q^{5}+(-3+\beta )q^{7}+\cdots\)
1156.2.a.c 1156.a 1.a $2$ $9.231$ \(\Q(\sqrt{2}) \) None 68.2.b.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+2\beta q^{5}+3\beta q^{7}-q^{9}+\beta q^{11}+\cdots\)
1156.2.a.d 1156.a 1.a $2$ $9.231$ \(\Q(\sqrt{21}) \) None 1156.2.a.b \(0\) \(1\) \(3\) \(5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(1+\beta )q^{5}+(3-\beta )q^{7}+(2+\beta )q^{9}+\cdots\)
1156.2.a.e 1156.a 1.a $3$ $9.231$ \(\Q(\zeta_{18})^+\) None 1156.2.a.e \(0\) \(-3\) \(-6\) \(6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+(-2+\beta _{1}-\beta _{2})q^{5}+\cdots\)
1156.2.a.f 1156.a 1.a $3$ $9.231$ \(\Q(\zeta_{18})^+\) None 1156.2.a.e \(0\) \(3\) \(6\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(2-\beta _{1}+\beta _{2})q^{5}+(-2+\cdots)q^{7}+\cdots\)
1156.2.a.g 1156.a 1.a $4$ $9.231$ \(\Q(\zeta_{16})^+\) None 68.2.h.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{1}q^{5}+\beta _{3}q^{7}+(-1+\beta _{2}+\cdots)q^{9}+\cdots\)
1156.2.a.h 1156.a 1.a $4$ $9.231$ \(\Q(\sqrt{2}, \sqrt{13})\) None 68.2.e.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2})q^{3}-\beta _{2}q^{5}+(\beta _{1}+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1156))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1156)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 2}\)