Defining parameters
Level: | \( N \) | \(=\) | \( 1156 = 2^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1156.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(306\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1156))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 180 | 22 | 158 |
Cusp forms | 127 | 22 | 105 |
Eisenstein series | 53 | 0 | 53 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(45\) | \(0\) | \(45\) | \(28\) | \(0\) | \(28\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(-\) | \(-\) | \(49\) | \(0\) | \(49\) | \(31\) | \(0\) | \(31\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(45\) | \(13\) | \(32\) | \(36\) | \(13\) | \(23\) | \(9\) | \(0\) | \(9\) | |||
\(-\) | \(-\) | \(+\) | \(41\) | \(9\) | \(32\) | \(32\) | \(9\) | \(23\) | \(9\) | \(0\) | \(9\) | |||
Plus space | \(+\) | \(86\) | \(9\) | \(77\) | \(60\) | \(9\) | \(51\) | \(26\) | \(0\) | \(26\) | ||||
Minus space | \(-\) | \(94\) | \(13\) | \(81\) | \(67\) | \(13\) | \(54\) | \(27\) | \(0\) | \(27\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1156))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1156)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 2}\)