Properties

Label 1134.2.l.c.215.1
Level $1134$
Weight $2$
Character 1134.215
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,2,Mod(215,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.215"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,2,0,0,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 215.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1134.215
Dual form 1134.2.l.c.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.866025 - 1.50000i) q^{5} +(0.500000 + 2.59808i) q^{7} +1.00000i q^{8} +(-1.50000 + 0.866025i) q^{10} +(-2.59808 - 1.50000i) q^{11} +(3.00000 + 1.73205i) q^{13} +(2.59808 - 0.500000i) q^{14} +1.00000 q^{16} +(1.73205 + 3.00000i) q^{17} +(3.00000 + 1.73205i) q^{19} +(0.866025 + 1.50000i) q^{20} +(-1.50000 + 2.59808i) q^{22} +(5.19615 - 3.00000i) q^{23} +(1.00000 - 1.73205i) q^{25} +(1.73205 - 3.00000i) q^{26} +(-0.500000 - 2.59808i) q^{28} +(-2.59808 + 1.50000i) q^{29} -1.73205i q^{31} -1.00000i q^{32} +(3.00000 - 1.73205i) q^{34} +(3.46410 - 3.00000i) q^{35} +(1.00000 - 1.73205i) q^{37} +(1.73205 - 3.00000i) q^{38} +(1.50000 - 0.866025i) q^{40} +(3.46410 - 6.00000i) q^{41} +(4.00000 + 6.92820i) q^{43} +(2.59808 + 1.50000i) q^{44} +(-3.00000 - 5.19615i) q^{46} +6.92820 q^{47} +(-6.50000 + 2.59808i) q^{49} +(-1.73205 - 1.00000i) q^{50} +(-3.00000 - 1.73205i) q^{52} +(7.79423 - 4.50000i) q^{53} +5.19615i q^{55} +(-2.59808 + 0.500000i) q^{56} +(1.50000 + 2.59808i) q^{58} -1.73205 q^{59} -1.73205 q^{62} -1.00000 q^{64} -6.00000i q^{65} +2.00000 q^{67} +(-1.73205 - 3.00000i) q^{68} +(-3.00000 - 3.46410i) q^{70} +12.0000i q^{71} +(6.00000 - 3.46410i) q^{73} +(-1.73205 - 1.00000i) q^{74} +(-3.00000 - 1.73205i) q^{76} +(2.59808 - 7.50000i) q^{77} -1.00000 q^{79} +(-0.866025 - 1.50000i) q^{80} +(-6.00000 - 3.46410i) q^{82} +(-4.33013 - 7.50000i) q^{83} +(3.00000 - 5.19615i) q^{85} +(6.92820 - 4.00000i) q^{86} +(1.50000 - 2.59808i) q^{88} +(5.19615 - 9.00000i) q^{89} +(-3.00000 + 8.66025i) q^{91} +(-5.19615 + 3.00000i) q^{92} -6.92820i q^{94} -6.00000i q^{95} +(-4.50000 + 2.59808i) q^{97} +(2.59808 + 6.50000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 2 q^{7} - 6 q^{10} + 12 q^{13} + 4 q^{16} + 12 q^{19} - 6 q^{22} + 4 q^{25} - 2 q^{28} + 12 q^{34} + 4 q^{37} + 6 q^{40} + 16 q^{43} - 12 q^{46} - 26 q^{49} - 12 q^{52} + 6 q^{58} - 4 q^{64}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −0.866025 1.50000i −0.387298 0.670820i 0.604787 0.796387i \(-0.293258\pi\)
−0.992085 + 0.125567i \(0.959925\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.50000 + 0.866025i −0.474342 + 0.273861i
\(11\) −2.59808 1.50000i −0.783349 0.452267i 0.0542666 0.998526i \(-0.482718\pi\)
−0.837616 + 0.546259i \(0.816051\pi\)
\(12\) 0 0
\(13\) 3.00000 + 1.73205i 0.832050 + 0.480384i 0.854554 0.519362i \(-0.173830\pi\)
−0.0225039 + 0.999747i \(0.507164\pi\)
\(14\) 2.59808 0.500000i 0.694365 0.133631i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.73205 + 3.00000i 0.420084 + 0.727607i 0.995947 0.0899392i \(-0.0286673\pi\)
−0.575863 + 0.817546i \(0.695334\pi\)
\(18\) 0 0
\(19\) 3.00000 + 1.73205i 0.688247 + 0.397360i 0.802955 0.596040i \(-0.203260\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0.866025 + 1.50000i 0.193649 + 0.335410i
\(21\) 0 0
\(22\) −1.50000 + 2.59808i −0.319801 + 0.553912i
\(23\) 5.19615 3.00000i 1.08347 0.625543i 0.151642 0.988436i \(-0.451544\pi\)
0.931831 + 0.362892i \(0.118211\pi\)
\(24\) 0 0
\(25\) 1.00000 1.73205i 0.200000 0.346410i
\(26\) 1.73205 3.00000i 0.339683 0.588348i
\(27\) 0 0
\(28\) −0.500000 2.59808i −0.0944911 0.490990i
\(29\) −2.59808 + 1.50000i −0.482451 + 0.278543i −0.721437 0.692480i \(-0.756518\pi\)
0.238987 + 0.971023i \(0.423185\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 3.00000 1.73205i 0.514496 0.297044i
\(35\) 3.46410 3.00000i 0.585540 0.507093i
\(36\) 0 0
\(37\) 1.00000 1.73205i 0.164399 0.284747i −0.772043 0.635571i \(-0.780765\pi\)
0.936442 + 0.350823i \(0.114098\pi\)
\(38\) 1.73205 3.00000i 0.280976 0.486664i
\(39\) 0 0
\(40\) 1.50000 0.866025i 0.237171 0.136931i
\(41\) 3.46410 6.00000i 0.541002 0.937043i −0.457845 0.889032i \(-0.651379\pi\)
0.998847 0.0480106i \(-0.0152881\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 2.59808 + 1.50000i 0.391675 + 0.226134i
\(45\) 0 0
\(46\) −3.00000 5.19615i −0.442326 0.766131i
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −1.73205 1.00000i −0.244949 0.141421i
\(51\) 0 0
\(52\) −3.00000 1.73205i −0.416025 0.240192i
\(53\) 7.79423 4.50000i 1.07062 0.618123i 0.142269 0.989828i \(-0.454560\pi\)
0.928351 + 0.371706i \(0.121227\pi\)
\(54\) 0 0
\(55\) 5.19615i 0.700649i
\(56\) −2.59808 + 0.500000i −0.347183 + 0.0668153i
\(57\) 0 0
\(58\) 1.50000 + 2.59808i 0.196960 + 0.341144i
\(59\) −1.73205 −0.225494 −0.112747 0.993624i \(-0.535965\pi\)
−0.112747 + 0.993624i \(0.535965\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.73205 −0.219971
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 6.00000i 0.744208i
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −1.73205 3.00000i −0.210042 0.363803i
\(69\) 0 0
\(70\) −3.00000 3.46410i −0.358569 0.414039i
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) 6.00000 3.46410i 0.702247 0.405442i −0.105937 0.994373i \(-0.533784\pi\)
0.808184 + 0.588930i \(0.200451\pi\)
\(74\) −1.73205 1.00000i −0.201347 0.116248i
\(75\) 0 0
\(76\) −3.00000 1.73205i −0.344124 0.198680i
\(77\) 2.59808 7.50000i 0.296078 0.854704i
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) −0.866025 1.50000i −0.0968246 0.167705i
\(81\) 0 0
\(82\) −6.00000 3.46410i −0.662589 0.382546i
\(83\) −4.33013 7.50000i −0.475293 0.823232i 0.524306 0.851530i \(-0.324325\pi\)
−0.999600 + 0.0282978i \(0.990991\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 6.92820 4.00000i 0.747087 0.431331i
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) 5.19615 9.00000i 0.550791 0.953998i −0.447427 0.894321i \(-0.647659\pi\)
0.998218 0.0596775i \(-0.0190072\pi\)
\(90\) 0 0
\(91\) −3.00000 + 8.66025i −0.314485 + 0.907841i
\(92\) −5.19615 + 3.00000i −0.541736 + 0.312772i
\(93\) 0 0
\(94\) 6.92820i 0.714590i
\(95\) 6.00000i 0.615587i
\(96\) 0 0
\(97\) −4.50000 + 2.59808i −0.456906 + 0.263795i −0.710742 0.703452i \(-0.751641\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 2.59808 + 6.50000i 0.262445 + 0.656599i
\(99\) 0 0
\(100\) −1.00000 + 1.73205i −0.100000 + 0.173205i
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 3.00000 1.73205i 0.295599 0.170664i −0.344865 0.938652i \(-0.612075\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) −1.73205 + 3.00000i −0.169842 + 0.294174i
\(105\) 0 0
\(106\) −4.50000 7.79423i −0.437079 0.757042i
\(107\) −2.59808 1.50000i −0.251166 0.145010i 0.369132 0.929377i \(-0.379655\pi\)
−0.620298 + 0.784366i \(0.712988\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 5.19615 0.495434
\(111\) 0 0
\(112\) 0.500000 + 2.59808i 0.0472456 + 0.245495i
\(113\) 10.3923 + 6.00000i 0.977626 + 0.564433i 0.901553 0.432670i \(-0.142428\pi\)
0.0760733 + 0.997102i \(0.475762\pi\)
\(114\) 0 0
\(115\) −9.00000 5.19615i −0.839254 0.484544i
\(116\) 2.59808 1.50000i 0.241225 0.139272i
\(117\) 0 0
\(118\) 1.73205i 0.159448i
\(119\) −6.92820 + 6.00000i −0.635107 + 0.550019i
\(120\) 0 0
\(121\) −1.00000 1.73205i −0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.73205i 0.155543i
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −6.00000 −0.526235
\(131\) 2.59808 + 4.50000i 0.226995 + 0.393167i 0.956916 0.290365i \(-0.0937766\pi\)
−0.729921 + 0.683531i \(0.760443\pi\)
\(132\) 0 0
\(133\) −3.00000 + 8.66025i −0.260133 + 0.750939i
\(134\) 2.00000i 0.172774i
\(135\) 0 0
\(136\) −3.00000 + 1.73205i −0.257248 + 0.148522i
\(137\) 15.5885 + 9.00000i 1.33181 + 0.768922i 0.985577 0.169226i \(-0.0541268\pi\)
0.346235 + 0.938148i \(0.387460\pi\)
\(138\) 0 0
\(139\) 15.0000 + 8.66025i 1.27228 + 0.734553i 0.975417 0.220366i \(-0.0707252\pi\)
0.296866 + 0.954919i \(0.404058\pi\)
\(140\) −3.46410 + 3.00000i −0.292770 + 0.253546i
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) −5.19615 9.00000i −0.434524 0.752618i
\(144\) 0 0
\(145\) 4.50000 + 2.59808i 0.373705 + 0.215758i
\(146\) −3.46410 6.00000i −0.286691 0.496564i
\(147\) 0 0
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) −15.5885 + 9.00000i −1.27706 + 0.737309i −0.976306 0.216394i \(-0.930570\pi\)
−0.300750 + 0.953703i \(0.597237\pi\)
\(150\) 0 0
\(151\) −3.50000 + 6.06218i −0.284826 + 0.493333i −0.972567 0.232623i \(-0.925269\pi\)
0.687741 + 0.725956i \(0.258602\pi\)
\(152\) −1.73205 + 3.00000i −0.140488 + 0.243332i
\(153\) 0 0
\(154\) −7.50000 2.59808i −0.604367 0.209359i
\(155\) −2.59808 + 1.50000i −0.208683 + 0.120483i
\(156\) 0 0
\(157\) 20.7846i 1.65879i −0.558661 0.829396i \(-0.688685\pi\)
0.558661 0.829396i \(-0.311315\pi\)
\(158\) 1.00000i 0.0795557i
\(159\) 0 0
\(160\) −1.50000 + 0.866025i −0.118585 + 0.0684653i
\(161\) 10.3923 + 12.0000i 0.819028 + 0.945732i
\(162\) 0 0
\(163\) −7.00000 + 12.1244i −0.548282 + 0.949653i 0.450110 + 0.892973i \(0.351385\pi\)
−0.998392 + 0.0566798i \(0.981949\pi\)
\(164\) −3.46410 + 6.00000i −0.270501 + 0.468521i
\(165\) 0 0
\(166\) −7.50000 + 4.33013i −0.582113 + 0.336083i
\(167\) −8.66025 + 15.0000i −0.670151 + 1.16073i 0.307711 + 0.951480i \(0.400437\pi\)
−0.977861 + 0.209255i \(0.932896\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −5.19615 3.00000i −0.398527 0.230089i
\(171\) 0 0
\(172\) −4.00000 6.92820i −0.304997 0.528271i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 5.00000 + 1.73205i 0.377964 + 0.130931i
\(176\) −2.59808 1.50000i −0.195837 0.113067i
\(177\) 0 0
\(178\) −9.00000 5.19615i −0.674579 0.389468i
\(179\) −10.3923 + 6.00000i −0.776757 + 0.448461i −0.835280 0.549825i \(-0.814694\pi\)
0.0585225 + 0.998286i \(0.481361\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i −0.966282 0.257485i \(-0.917106\pi\)
0.966282 0.257485i \(-0.0828937\pi\)
\(182\) 8.66025 + 3.00000i 0.641941 + 0.222375i
\(183\) 0 0
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) −3.46410 −0.254686
\(186\) 0 0
\(187\) 10.3923i 0.759961i
\(188\) −6.92820 −0.505291
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −23.0000 −1.65558 −0.827788 0.561041i \(-0.810401\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 2.59808 + 4.50000i 0.186531 + 0.323081i
\(195\) 0 0
\(196\) 6.50000 2.59808i 0.464286 0.185577i
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 9.00000 5.19615i 0.637993 0.368345i −0.145848 0.989307i \(-0.546591\pi\)
0.783841 + 0.620962i \(0.213258\pi\)
\(200\) 1.73205 + 1.00000i 0.122474 + 0.0707107i
\(201\) 0 0
\(202\) 0 0
\(203\) −5.19615 6.00000i −0.364698 0.421117i
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −1.73205 3.00000i −0.120678 0.209020i
\(207\) 0 0
\(208\) 3.00000 + 1.73205i 0.208013 + 0.120096i
\(209\) −5.19615 9.00000i −0.359425 0.622543i
\(210\) 0 0
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) −7.79423 + 4.50000i −0.535310 + 0.309061i
\(213\) 0 0
\(214\) −1.50000 + 2.59808i −0.102538 + 0.177601i
\(215\) 6.92820 12.0000i 0.472500 0.818393i
\(216\) 0 0
\(217\) 4.50000 0.866025i 0.305480 0.0587896i
\(218\) 1.73205 1.00000i 0.117309 0.0677285i
\(219\) 0 0
\(220\) 5.19615i 0.350325i
\(221\) 12.0000i 0.807207i
\(222\) 0 0
\(223\) 22.5000 12.9904i 1.50671 0.869900i 0.506742 0.862098i \(-0.330850\pi\)
0.999970 0.00780243i \(-0.00248362\pi\)
\(224\) 2.59808 0.500000i 0.173591 0.0334077i
\(225\) 0 0
\(226\) 6.00000 10.3923i 0.399114 0.691286i
\(227\) −2.59808 + 4.50000i −0.172440 + 0.298675i −0.939272 0.343172i \(-0.888499\pi\)
0.766832 + 0.641848i \(0.221832\pi\)
\(228\) 0 0
\(229\) 12.0000 6.92820i 0.792982 0.457829i −0.0480291 0.998846i \(-0.515294\pi\)
0.841011 + 0.541017i \(0.181961\pi\)
\(230\) −5.19615 + 9.00000i −0.342624 + 0.593442i
\(231\) 0 0
\(232\) −1.50000 2.59808i −0.0984798 0.170572i
\(233\) −15.5885 9.00000i −1.02123 0.589610i −0.106773 0.994283i \(-0.534052\pi\)
−0.914461 + 0.404674i \(0.867385\pi\)
\(234\) 0 0
\(235\) −6.00000 10.3923i −0.391397 0.677919i
\(236\) 1.73205 0.112747
\(237\) 0 0
\(238\) 6.00000 + 6.92820i 0.388922 + 0.449089i
\(239\) 5.19615 + 3.00000i 0.336111 + 0.194054i 0.658551 0.752536i \(-0.271170\pi\)
−0.322440 + 0.946590i \(0.604503\pi\)
\(240\) 0 0
\(241\) 22.5000 + 12.9904i 1.44935 + 0.836784i 0.998443 0.0557856i \(-0.0177663\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) −1.73205 + 1.00000i −0.111340 + 0.0642824i
\(243\) 0 0
\(244\) 0 0
\(245\) 9.52628 + 7.50000i 0.608612 + 0.479157i
\(246\) 0 0
\(247\) 6.00000 + 10.3923i 0.381771 + 0.661247i
\(248\) 1.73205 0.109985
\(249\) 0 0
\(250\) 12.1244i 0.766812i
\(251\) −19.0526 −1.20259 −0.601293 0.799028i \(-0.705348\pi\)
−0.601293 + 0.799028i \(0.705348\pi\)
\(252\) 0 0
\(253\) −18.0000 −1.13165
\(254\) 11.0000i 0.690201i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.19615 9.00000i −0.324127 0.561405i 0.657208 0.753709i \(-0.271737\pi\)
−0.981335 + 0.192304i \(0.938404\pi\)
\(258\) 0 0
\(259\) 5.00000 + 1.73205i 0.310685 + 0.107624i
\(260\) 6.00000i 0.372104i
\(261\) 0 0
\(262\) 4.50000 2.59808i 0.278011 0.160510i
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) −13.5000 7.79423i −0.829298 0.478796i
\(266\) 8.66025 + 3.00000i 0.530994 + 0.183942i
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) −14.7224 25.5000i −0.897643 1.55476i −0.830500 0.557019i \(-0.811945\pi\)
−0.0671428 0.997743i \(-0.521388\pi\)
\(270\) 0 0
\(271\) 4.50000 + 2.59808i 0.273356 + 0.157822i 0.630412 0.776261i \(-0.282886\pi\)
−0.357056 + 0.934083i \(0.616219\pi\)
\(272\) 1.73205 + 3.00000i 0.105021 + 0.181902i
\(273\) 0 0
\(274\) 9.00000 15.5885i 0.543710 0.941733i
\(275\) −5.19615 + 3.00000i −0.313340 + 0.180907i
\(276\) 0 0
\(277\) −4.00000 + 6.92820i −0.240337 + 0.416275i −0.960810 0.277207i \(-0.910591\pi\)
0.720473 + 0.693482i \(0.243925\pi\)
\(278\) 8.66025 15.0000i 0.519408 0.899640i
\(279\) 0 0
\(280\) 3.00000 + 3.46410i 0.179284 + 0.207020i
\(281\) −25.9808 + 15.0000i −1.54988 + 0.894825i −0.551733 + 0.834021i \(0.686033\pi\)
−0.998150 + 0.0608039i \(0.980634\pi\)
\(282\) 0 0
\(283\) 27.7128i 1.64736i 0.567058 + 0.823678i \(0.308082\pi\)
−0.567058 + 0.823678i \(0.691918\pi\)
\(284\) 12.0000i 0.712069i
\(285\) 0 0
\(286\) −9.00000 + 5.19615i −0.532181 + 0.307255i
\(287\) 17.3205 + 6.00000i 1.02240 + 0.354169i
\(288\) 0 0
\(289\) 2.50000 4.33013i 0.147059 0.254713i
\(290\) 2.59808 4.50000i 0.152564 0.264249i
\(291\) 0 0
\(292\) −6.00000 + 3.46410i −0.351123 + 0.202721i
\(293\) −9.52628 + 16.5000i −0.556531 + 0.963940i 0.441251 + 0.897384i \(0.354535\pi\)
−0.997783 + 0.0665568i \(0.978799\pi\)
\(294\) 0 0
\(295\) 1.50000 + 2.59808i 0.0873334 + 0.151266i
\(296\) 1.73205 + 1.00000i 0.100673 + 0.0581238i
\(297\) 0 0
\(298\) 9.00000 + 15.5885i 0.521356 + 0.903015i
\(299\) 20.7846 1.20201
\(300\) 0 0
\(301\) −16.0000 + 13.8564i −0.922225 + 0.798670i
\(302\) 6.06218 + 3.50000i 0.348839 + 0.201402i
\(303\) 0 0
\(304\) 3.00000 + 1.73205i 0.172062 + 0.0993399i
\(305\) 0 0
\(306\) 0 0
\(307\) 24.2487i 1.38395i 0.721923 + 0.691974i \(0.243259\pi\)
−0.721923 + 0.691974i \(0.756741\pi\)
\(308\) −2.59808 + 7.50000i −0.148039 + 0.427352i
\(309\) 0 0
\(310\) 1.50000 + 2.59808i 0.0851943 + 0.147561i
\(311\) −13.8564 −0.785725 −0.392862 0.919597i \(-0.628515\pi\)
−0.392862 + 0.919597i \(0.628515\pi\)
\(312\) 0 0
\(313\) 1.73205i 0.0979013i −0.998801 0.0489506i \(-0.984412\pi\)
0.998801 0.0489506i \(-0.0155877\pi\)
\(314\) −20.7846 −1.17294
\(315\) 0 0
\(316\) 1.00000 0.0562544
\(317\) 15.0000i 0.842484i 0.906948 + 0.421242i \(0.138406\pi\)
−0.906948 + 0.421242i \(0.861594\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 0.866025 + 1.50000i 0.0484123 + 0.0838525i
\(321\) 0 0
\(322\) 12.0000 10.3923i 0.668734 0.579141i
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) 6.00000 3.46410i 0.332820 0.192154i
\(326\) 12.1244 + 7.00000i 0.671506 + 0.387694i
\(327\) 0 0
\(328\) 6.00000 + 3.46410i 0.331295 + 0.191273i
\(329\) 3.46410 + 18.0000i 0.190982 + 0.992372i
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 4.33013 + 7.50000i 0.237647 + 0.411616i
\(333\) 0 0
\(334\) 15.0000 + 8.66025i 0.820763 + 0.473868i
\(335\) −1.73205 3.00000i −0.0946320 0.163908i
\(336\) 0 0
\(337\) −6.50000 + 11.2583i −0.354078 + 0.613280i −0.986960 0.160968i \(-0.948538\pi\)
0.632882 + 0.774248i \(0.281872\pi\)
\(338\) −0.866025 + 0.500000i −0.0471056 + 0.0271964i
\(339\) 0 0
\(340\) −3.00000 + 5.19615i −0.162698 + 0.281801i
\(341\) −2.59808 + 4.50000i −0.140694 + 0.243689i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −6.92820 + 4.00000i −0.373544 + 0.215666i
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 0 0
\(349\) −9.00000 + 5.19615i −0.481759 + 0.278144i −0.721149 0.692780i \(-0.756386\pi\)
0.239390 + 0.970923i \(0.423052\pi\)
\(350\) 1.73205 5.00000i 0.0925820 0.267261i
\(351\) 0 0
\(352\) −1.50000 + 2.59808i −0.0799503 + 0.138478i
\(353\) 17.3205 30.0000i 0.921878 1.59674i 0.125370 0.992110i \(-0.459988\pi\)
0.796507 0.604629i \(-0.206679\pi\)
\(354\) 0 0
\(355\) 18.0000 10.3923i 0.955341 0.551566i
\(356\) −5.19615 + 9.00000i −0.275396 + 0.476999i
\(357\) 0 0
\(358\) 6.00000 + 10.3923i 0.317110 + 0.549250i
\(359\) 5.19615 + 3.00000i 0.274242 + 0.158334i 0.630814 0.775934i \(-0.282721\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(360\) 0 0
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) −6.92820 −0.364138
\(363\) 0 0
\(364\) 3.00000 8.66025i 0.157243 0.453921i
\(365\) −10.3923 6.00000i −0.543958 0.314054i
\(366\) 0 0
\(367\) 19.5000 + 11.2583i 1.01789 + 0.587680i 0.913493 0.406855i \(-0.133375\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 5.19615 3.00000i 0.270868 0.156386i
\(369\) 0 0
\(370\) 3.46410i 0.180090i
\(371\) 15.5885 + 18.0000i 0.809312 + 0.934513i
\(372\) 0 0
\(373\) −16.0000 27.7128i −0.828449 1.43492i −0.899255 0.437425i \(-0.855891\pi\)
0.0708063 0.997490i \(-0.477443\pi\)
\(374\) −10.3923 −0.537373
\(375\) 0 0
\(376\) 6.92820i 0.357295i
\(377\) −10.3923 −0.535231
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 6.00000i 0.307794i
\(381\) 0 0
\(382\) 0 0
\(383\) −1.73205 3.00000i −0.0885037 0.153293i 0.818375 0.574684i \(-0.194875\pi\)
−0.906879 + 0.421392i \(0.861542\pi\)
\(384\) 0 0
\(385\) −13.5000 + 2.59808i −0.688024 + 0.132410i
\(386\) 23.0000i 1.17067i
\(387\) 0 0
\(388\) 4.50000 2.59808i 0.228453 0.131897i
\(389\) −15.5885 9.00000i −0.790366 0.456318i 0.0497253 0.998763i \(-0.484165\pi\)
−0.840091 + 0.542445i \(0.817499\pi\)
\(390\) 0 0
\(391\) 18.0000 + 10.3923i 0.910299 + 0.525561i
\(392\) −2.59808 6.50000i −0.131223 0.328300i
\(393\) 0 0
\(394\) 18.0000 0.906827
\(395\) 0.866025 + 1.50000i 0.0435745 + 0.0754732i
\(396\) 0 0
\(397\) −24.0000 13.8564i −1.20453 0.695433i −0.242967 0.970034i \(-0.578121\pi\)
−0.961558 + 0.274601i \(0.911454\pi\)
\(398\) −5.19615 9.00000i −0.260460 0.451129i
\(399\) 0 0
\(400\) 1.00000 1.73205i 0.0500000 0.0866025i
\(401\) 10.3923 6.00000i 0.518967 0.299626i −0.217545 0.976050i \(-0.569805\pi\)
0.736512 + 0.676425i \(0.236472\pi\)
\(402\) 0 0
\(403\) 3.00000 5.19615i 0.149441 0.258839i
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 + 5.19615i −0.297775 + 0.257881i
\(407\) −5.19615 + 3.00000i −0.257564 + 0.148704i
\(408\) 0 0
\(409\) 8.66025i 0.428222i 0.976809 + 0.214111i \(0.0686854\pi\)
−0.976809 + 0.214111i \(0.931315\pi\)
\(410\) 12.0000i 0.592638i
\(411\) 0 0
\(412\) −3.00000 + 1.73205i −0.147799 + 0.0853320i
\(413\) −0.866025 4.50000i −0.0426143 0.221431i
\(414\) 0 0
\(415\) −7.50000 + 12.9904i −0.368161 + 0.637673i
\(416\) 1.73205 3.00000i 0.0849208 0.147087i
\(417\) 0 0
\(418\) −9.00000 + 5.19615i −0.440204 + 0.254152i
\(419\) 12.1244 21.0000i 0.592314 1.02592i −0.401606 0.915812i \(-0.631548\pi\)
0.993920 0.110105i \(-0.0351186\pi\)
\(420\) 0 0
\(421\) −16.0000 27.7128i −0.779792 1.35064i −0.932061 0.362301i \(-0.881991\pi\)
0.152269 0.988339i \(-0.451342\pi\)
\(422\) 3.46410 + 2.00000i 0.168630 + 0.0973585i
\(423\) 0 0
\(424\) 4.50000 + 7.79423i 0.218539 + 0.378521i
\(425\) 6.92820 0.336067
\(426\) 0 0
\(427\) 0 0
\(428\) 2.59808 + 1.50000i 0.125583 + 0.0725052i
\(429\) 0 0
\(430\) −12.0000 6.92820i −0.578691 0.334108i
\(431\) 20.7846 12.0000i 1.00116 0.578020i 0.0925683 0.995706i \(-0.470492\pi\)
0.908591 + 0.417687i \(0.137159\pi\)
\(432\) 0 0
\(433\) 34.6410i 1.66474i −0.554220 0.832370i \(-0.686983\pi\)
0.554220 0.832370i \(-0.313017\pi\)
\(434\) −0.866025 4.50000i −0.0415705 0.216007i
\(435\) 0 0
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 20.7846 0.994263
\(438\) 0 0
\(439\) 36.3731i 1.73599i −0.496571 0.867996i \(-0.665408\pi\)
0.496571 0.867996i \(-0.334592\pi\)
\(440\) −5.19615 −0.247717
\(441\) 0 0
\(442\) 12.0000 0.570782
\(443\) 9.00000i 0.427603i −0.976877 0.213801i \(-0.931415\pi\)
0.976877 0.213801i \(-0.0685846\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) −12.9904 22.5000i −0.615112 1.06541i
\(447\) 0 0
\(448\) −0.500000 2.59808i −0.0236228 0.122748i
\(449\) 30.0000i 1.41579i 0.706319 + 0.707894i \(0.250354\pi\)
−0.706319 + 0.707894i \(0.749646\pi\)
\(450\) 0 0
\(451\) −18.0000 + 10.3923i −0.847587 + 0.489355i
\(452\) −10.3923 6.00000i −0.488813 0.282216i
\(453\) 0 0
\(454\) 4.50000 + 2.59808i 0.211195 + 0.121934i
\(455\) 15.5885 3.00000i 0.730798 0.140642i
\(456\) 0 0
\(457\) −5.00000 −0.233890 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(458\) −6.92820 12.0000i −0.323734 0.560723i
\(459\) 0 0
\(460\) 9.00000 + 5.19615i 0.419627 + 0.242272i
\(461\) −6.92820 12.0000i −0.322679 0.558896i 0.658361 0.752702i \(-0.271250\pi\)
−0.981040 + 0.193806i \(0.937917\pi\)
\(462\) 0 0
\(463\) 2.00000 3.46410i 0.0929479 0.160990i −0.815802 0.578331i \(-0.803704\pi\)
0.908750 + 0.417340i \(0.137038\pi\)
\(464\) −2.59808 + 1.50000i −0.120613 + 0.0696358i
\(465\) 0 0
\(466\) −9.00000 + 15.5885i −0.416917 + 0.722121i
\(467\) 15.5885 27.0000i 0.721348 1.24941i −0.239112 0.970992i \(-0.576856\pi\)
0.960460 0.278419i \(-0.0898104\pi\)
\(468\) 0 0
\(469\) 1.00000 + 5.19615i 0.0461757 + 0.239936i
\(470\) −10.3923 + 6.00000i −0.479361 + 0.276759i
\(471\) 0 0
\(472\) 1.73205i 0.0797241i
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) 6.00000 3.46410i 0.275299 0.158944i
\(476\) 6.92820 6.00000i 0.317554 0.275010i
\(477\) 0 0
\(478\) 3.00000 5.19615i 0.137217 0.237666i
\(479\) 3.46410 6.00000i 0.158279 0.274147i −0.775969 0.630771i \(-0.782739\pi\)
0.934248 + 0.356624i \(0.116072\pi\)
\(480\) 0 0
\(481\) 6.00000 3.46410i 0.273576 0.157949i
\(482\) 12.9904 22.5000i 0.591696 1.02485i
\(483\) 0 0
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 7.79423 + 4.50000i 0.353918 + 0.204334i
\(486\) 0 0
\(487\) −0.500000 0.866025i −0.0226572 0.0392434i 0.854475 0.519493i \(-0.173879\pi\)
−0.877132 + 0.480250i \(0.840546\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 7.50000 9.52628i 0.338815 0.430353i
\(491\) 28.5788 + 16.5000i 1.28974 + 0.744635i 0.978609 0.205731i \(-0.0659571\pi\)
0.311136 + 0.950365i \(0.399290\pi\)
\(492\) 0 0
\(493\) −9.00000 5.19615i −0.405340 0.234023i
\(494\) 10.3923 6.00000i 0.467572 0.269953i
\(495\) 0 0
\(496\) 1.73205i 0.0777714i
\(497\) −31.1769 + 6.00000i −1.39848 + 0.269137i
\(498\) 0 0
\(499\) −11.0000 19.0526i −0.492428 0.852910i 0.507534 0.861632i \(-0.330557\pi\)
−0.999962 + 0.00872186i \(0.997224\pi\)
\(500\) 12.1244 0.542218
\(501\) 0 0
\(502\) 19.0526i 0.850357i
\(503\) −38.1051 −1.69902 −0.849512 0.527570i \(-0.823103\pi\)
−0.849512 + 0.527570i \(0.823103\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 18.0000i 0.800198i
\(507\) 0 0
\(508\) −11.0000 −0.488046
\(509\) −9.52628 16.5000i −0.422245 0.731350i 0.573914 0.818916i \(-0.305424\pi\)
−0.996159 + 0.0875661i \(0.972091\pi\)
\(510\) 0 0
\(511\) 12.0000 + 13.8564i 0.530849 + 0.612971i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −9.00000 + 5.19615i −0.396973 + 0.229192i
\(515\) −5.19615 3.00000i −0.228970 0.132196i
\(516\) 0 0
\(517\) −18.0000 10.3923i −0.791639 0.457053i
\(518\) 1.73205 5.00000i 0.0761019 0.219687i
\(519\) 0 0
\(520\) 6.00000 0.263117
\(521\) 13.8564 + 24.0000i 0.607060 + 1.05146i 0.991722 + 0.128402i \(0.0409847\pi\)
−0.384662 + 0.923057i \(0.625682\pi\)
\(522\) 0 0
\(523\) −33.0000 19.0526i −1.44299 0.833110i −0.444941 0.895560i \(-0.646775\pi\)
−0.998048 + 0.0624496i \(0.980109\pi\)
\(524\) −2.59808 4.50000i −0.113497 0.196583i
\(525\) 0 0
\(526\) 0 0
\(527\) 5.19615 3.00000i 0.226348 0.130682i
\(528\) 0 0
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) −7.79423 + 13.5000i −0.338560 + 0.586403i
\(531\) 0 0
\(532\) 3.00000 8.66025i 0.130066 0.375470i
\(533\) 20.7846 12.0000i 0.900281 0.519778i
\(534\) 0 0
\(535\) 5.19615i 0.224649i
\(536\) 2.00000i 0.0863868i
\(537\) 0 0
\(538\) −25.5000 + 14.7224i −1.09938 + 0.634729i
\(539\) 20.7846 + 3.00000i 0.895257 + 0.129219i
\(540\) 0 0
\(541\) 8.00000 13.8564i 0.343947 0.595733i −0.641215 0.767361i \(-0.721569\pi\)
0.985162 + 0.171628i \(0.0549027\pi\)
\(542\) 2.59808 4.50000i 0.111597 0.193292i
\(543\) 0 0
\(544\) 3.00000 1.73205i 0.128624 0.0742611i
\(545\) 1.73205 3.00000i 0.0741929 0.128506i
\(546\) 0 0
\(547\) −1.00000 1.73205i −0.0427569 0.0740571i 0.843855 0.536571i \(-0.180281\pi\)
−0.886612 + 0.462514i \(0.846947\pi\)
\(548\) −15.5885 9.00000i −0.665906 0.384461i
\(549\) 0 0
\(550\) 3.00000 + 5.19615i 0.127920 + 0.221565i
\(551\) −10.3923 −0.442727
\(552\) 0 0
\(553\) −0.500000 2.59808i −0.0212622 0.110481i
\(554\) 6.92820 + 4.00000i 0.294351 + 0.169944i
\(555\) 0 0
\(556\) −15.0000 8.66025i −0.636142 0.367277i
\(557\) 2.59808 1.50000i 0.110084 0.0635570i −0.443947 0.896053i \(-0.646422\pi\)
0.554031 + 0.832496i \(0.313089\pi\)
\(558\) 0 0
\(559\) 27.7128i 1.17213i
\(560\) 3.46410 3.00000i 0.146385 0.126773i
\(561\) 0 0
\(562\) 15.0000 + 25.9808i 0.632737 + 1.09593i
\(563\) −25.9808 −1.09496 −0.547479 0.836819i \(-0.684413\pi\)
−0.547479 + 0.836819i \(0.684413\pi\)
\(564\) 0 0
\(565\) 20.7846i 0.874415i
\(566\) 27.7128 1.16486
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) 6.00000i 0.251533i 0.992060 + 0.125767i \(0.0401390\pi\)
−0.992060 + 0.125767i \(0.959861\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 5.19615 + 9.00000i 0.217262 + 0.376309i
\(573\) 0 0
\(574\) 6.00000 17.3205i 0.250435 0.722944i
\(575\) 12.0000i 0.500435i
\(576\) 0 0
\(577\) −1.50000 + 0.866025i −0.0624458 + 0.0360531i −0.530898 0.847436i \(-0.678145\pi\)
0.468452 + 0.883489i \(0.344812\pi\)
\(578\) −4.33013 2.50000i −0.180110 0.103986i
\(579\) 0 0
\(580\) −4.50000 2.59808i −0.186852 0.107879i
\(581\) 17.3205 15.0000i 0.718576 0.622305i
\(582\) 0 0
\(583\) −27.0000 −1.11823
\(584\) 3.46410 + 6.00000i 0.143346 + 0.248282i
\(585\) 0 0
\(586\) 16.5000 + 9.52628i 0.681609 + 0.393527i
\(587\) −7.79423 13.5000i −0.321702 0.557205i 0.659137 0.752023i \(-0.270922\pi\)
−0.980839 + 0.194818i \(0.937588\pi\)
\(588\) 0 0
\(589\) 3.00000 5.19615i 0.123613 0.214104i
\(590\) 2.59808 1.50000i 0.106961 0.0617540i
\(591\) 0 0
\(592\) 1.00000 1.73205i 0.0410997 0.0711868i
\(593\) 19.0526 33.0000i 0.782395 1.35515i −0.148148 0.988965i \(-0.547331\pi\)
0.930543 0.366182i \(-0.119335\pi\)
\(594\) 0 0
\(595\) 15.0000 + 5.19615i 0.614940 + 0.213021i
\(596\) 15.5885 9.00000i 0.638528 0.368654i
\(597\) 0 0
\(598\) 20.7846i 0.849946i
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) 25.5000 14.7224i 1.04017 0.600541i 0.120286 0.992739i \(-0.461619\pi\)
0.919881 + 0.392199i \(0.128285\pi\)
\(602\) 13.8564 + 16.0000i 0.564745 + 0.652111i
\(603\) 0 0
\(604\) 3.50000 6.06218i 0.142413 0.246667i
\(605\) −1.73205 + 3.00000i −0.0704179 + 0.121967i
\(606\) 0 0
\(607\) −19.5000 + 11.2583i −0.791481 + 0.456962i −0.840484 0.541837i \(-0.817729\pi\)
0.0490029 + 0.998799i \(0.484396\pi\)
\(608\) 1.73205 3.00000i 0.0702439 0.121666i
\(609\) 0 0
\(610\) 0 0
\(611\) 20.7846 + 12.0000i 0.840855 + 0.485468i
\(612\) 0 0
\(613\) −1.00000 1.73205i −0.0403896 0.0699569i 0.845124 0.534570i \(-0.179527\pi\)
−0.885514 + 0.464614i \(0.846193\pi\)
\(614\) 24.2487 0.978598
\(615\) 0 0
\(616\) 7.50000 + 2.59808i 0.302184 + 0.104679i
\(617\) −10.3923 6.00000i −0.418378 0.241551i 0.276005 0.961156i \(-0.410989\pi\)
−0.694383 + 0.719605i \(0.744323\pi\)
\(618\) 0 0
\(619\) −6.00000 3.46410i −0.241160 0.139234i 0.374550 0.927207i \(-0.377797\pi\)
−0.615710 + 0.787973i \(0.711131\pi\)
\(620\) 2.59808 1.50000i 0.104341 0.0602414i
\(621\) 0 0
\(622\) 13.8564i 0.555591i
\(623\) 25.9808 + 9.00000i 1.04090 + 0.360577i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) −1.73205 −0.0692267
\(627\) 0 0
\(628\) 20.7846i 0.829396i
\(629\) 6.92820 0.276246
\(630\) 0 0
\(631\) −31.0000 −1.23409 −0.617045 0.786928i \(-0.711670\pi\)
−0.617045 + 0.786928i \(0.711670\pi\)
\(632\) 1.00000i 0.0397779i
\(633\) 0 0
\(634\) 15.0000 0.595726
\(635\) −9.52628 16.5000i −0.378039 0.654783i
\(636\) 0 0
\(637\) −24.0000 3.46410i −0.950915 0.137253i
\(638\) 9.00000i 0.356313i
\(639\) 0 0
\(640\) 1.50000 0.866025i 0.0592927 0.0342327i
\(641\) 20.7846 + 12.0000i 0.820943 + 0.473972i 0.850741 0.525584i \(-0.176153\pi\)
−0.0297987 + 0.999556i \(0.509487\pi\)
\(642\) 0 0
\(643\) −15.0000 8.66025i −0.591542 0.341527i 0.174165 0.984717i \(-0.444277\pi\)
−0.765707 + 0.643189i \(0.777611\pi\)
\(644\) −10.3923 12.0000i −0.409514 0.472866i
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) 4.50000 + 2.59808i 0.176640 + 0.101983i
\(650\) −3.46410 6.00000i −0.135873 0.235339i
\(651\) 0 0
\(652\) 7.00000 12.1244i 0.274141 0.474826i
\(653\) 2.59808 1.50000i 0.101671 0.0586995i −0.448303 0.893882i \(-0.647971\pi\)
0.549973 + 0.835182i \(0.314638\pi\)
\(654\) 0 0
\(655\) 4.50000 7.79423i 0.175830 0.304546i
\(656\) 3.46410 6.00000i 0.135250 0.234261i
\(657\) 0 0
\(658\) 18.0000 3.46410i 0.701713 0.135045i
\(659\) −10.3923 + 6.00000i −0.404827 + 0.233727i −0.688565 0.725175i \(-0.741759\pi\)
0.283738 + 0.958902i \(0.408425\pi\)
\(660\) 0 0
\(661\) 6.92820i 0.269476i −0.990881 0.134738i \(-0.956981\pi\)
0.990881 0.134738i \(-0.0430193\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 0 0
\(664\) 7.50000 4.33013i 0.291056 0.168042i
\(665\) 15.5885 3.00000i 0.604494 0.116335i
\(666\) 0 0
\(667\) −9.00000 + 15.5885i −0.348481 + 0.603587i
\(668\) 8.66025 15.0000i 0.335075 0.580367i
\(669\) 0 0
\(670\) −3.00000 + 1.73205i −0.115900 + 0.0669150i
\(671\) 0 0
\(672\) 0 0
\(673\) 20.5000 + 35.5070i 0.790217 + 1.36870i 0.925832 + 0.377934i \(0.123365\pi\)
−0.135615 + 0.990762i \(0.543301\pi\)
\(674\) 11.2583 + 6.50000i 0.433655 + 0.250371i
\(675\) 0 0
\(676\) 0.500000 + 0.866025i 0.0192308 + 0.0333087i
\(677\) −5.19615 −0.199704 −0.0998522 0.995002i \(-0.531837\pi\)
−0.0998522 + 0.995002i \(0.531837\pi\)
\(678\) 0 0
\(679\) −9.00000 10.3923i −0.345388 0.398820i
\(680\) 5.19615 + 3.00000i 0.199263 + 0.115045i
\(681\) 0 0
\(682\) 4.50000 + 2.59808i 0.172314 + 0.0994855i
\(683\) 18.1865 10.5000i 0.695888 0.401771i −0.109926 0.993940i \(-0.535061\pi\)
0.805814 + 0.592168i \(0.201728\pi\)
\(684\) 0 0
\(685\) 31.1769i 1.19121i
\(686\) −15.5885 + 10.0000i −0.595170 + 0.381802i
\(687\) 0 0
\(688\) 4.00000 + 6.92820i 0.152499 + 0.264135i
\(689\) 31.1769 1.18775
\(690\) 0 0
\(691\) 6.92820i 0.263561i 0.991279 + 0.131781i \(0.0420694\pi\)
−0.991279 + 0.131781i \(0.957931\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 30.0000i 1.13796i
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 5.19615 + 9.00000i 0.196677 + 0.340655i
\(699\) 0 0
\(700\) −5.00000 1.73205i −0.188982 0.0654654i
\(701\) 3.00000i 0.113308i 0.998394 + 0.0566542i \(0.0180433\pi\)
−0.998394 + 0.0566542i \(0.981957\pi\)
\(702\) 0 0
\(703\) 6.00000 3.46410i 0.226294 0.130651i
\(704\) 2.59808 + 1.50000i 0.0979187 + 0.0565334i
\(705\) 0 0
\(706\) −30.0000 17.3205i −1.12906 0.651866i
\(707\) 0 0
\(708\) 0 0
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) −10.3923 18.0000i −0.390016 0.675528i
\(711\) 0 0
\(712\) 9.00000 + 5.19615i 0.337289 + 0.194734i
\(713\) −5.19615 9.00000i −0.194597 0.337053i
\(714\) 0 0
\(715\) −9.00000 + 15.5885i −0.336581 + 0.582975i
\(716\) 10.3923 6.00000i 0.388379 0.224231i
\(717\) 0 0
\(718\) 3.00000 5.19615i 0.111959 0.193919i
\(719\) −22.5167 + 39.0000i −0.839730 + 1.45445i 0.0503909 + 0.998730i \(0.483953\pi\)
−0.890121 + 0.455725i \(0.849380\pi\)
\(720\) 0 0
\(721\) 6.00000 + 6.92820i 0.223452 + 0.258020i
\(722\) −6.06218 + 3.50000i −0.225611 + 0.130257i
\(723\) 0 0
\(724\) 6.92820i 0.257485i
\(725\) 6.00000i 0.222834i
\(726\) 0 0
\(727\) −25.5000 + 14.7224i −0.945743 + 0.546025i −0.891756 0.452517i \(-0.850526\pi\)
−0.0539868 + 0.998542i \(0.517193\pi\)
\(728\) −8.66025 3.00000i −0.320970 0.111187i
\(729\) 0 0
\(730\) −6.00000 + 10.3923i −0.222070 + 0.384636i
\(731\) −13.8564 + 24.0000i −0.512498 + 0.887672i
\(732\) 0 0
\(733\) −30.0000 + 17.3205i −1.10808 + 0.639748i −0.938330 0.345740i \(-0.887628\pi\)
−0.169745 + 0.985488i \(0.554294\pi\)
\(734\) 11.2583 19.5000i 0.415553 0.719758i
\(735\) 0 0
\(736\) −3.00000 5.19615i −0.110581 0.191533i
\(737\) −5.19615 3.00000i −0.191403 0.110506i
\(738\) 0 0
\(739\) 5.00000 + 8.66025i 0.183928 + 0.318573i 0.943215 0.332184i \(-0.107785\pi\)
−0.759287 + 0.650756i \(0.774452\pi\)
\(740\) 3.46410 0.127343
\(741\) 0 0
\(742\) 18.0000 15.5885i 0.660801 0.572270i
\(743\) −15.5885 9.00000i −0.571885 0.330178i 0.186017 0.982547i \(-0.440442\pi\)
−0.757902 + 0.652369i \(0.773775\pi\)
\(744\) 0 0
\(745\) 27.0000 + 15.5885i 0.989203 + 0.571117i
\(746\) −27.7128 + 16.0000i −1.01464 + 0.585802i
\(747\) 0 0
\(748\) 10.3923i 0.379980i
\(749\) 2.59808 7.50000i 0.0949316 0.274044i
\(750\) 0 0
\(751\) 5.50000 + 9.52628i 0.200698 + 0.347619i 0.948753 0.316017i \(-0.102346\pi\)
−0.748056 + 0.663636i \(0.769012\pi\)
\(752\) 6.92820 0.252646
\(753\) 0 0
\(754\) 10.3923i 0.378465i
\(755\) 12.1244 0.441250
\(756\) 0 0
\(757\) 4.00000 0.145382 0.0726912 0.997354i \(-0.476841\pi\)
0.0726912 + 0.997354i \(0.476841\pi\)
\(758\) 16.0000i 0.581146i
\(759\) 0 0
\(760\) 6.00000 0.217643
\(761\) 8.66025 + 15.0000i 0.313934 + 0.543750i 0.979210 0.202848i \(-0.0650196\pi\)
−0.665276 + 0.746597i \(0.731686\pi\)
\(762\) 0 0
\(763\) −4.00000 + 3.46410i −0.144810 + 0.125409i
\(764\) 0 0
\(765\) 0 0
\(766\) −3.00000 + 1.73205i −0.108394 + 0.0625815i
\(767\) −5.19615 3.00000i −0.187622 0.108324i
\(768\) 0 0
\(769\) 16.5000 + 9.52628i 0.595005 + 0.343526i 0.767074 0.641558i \(-0.221712\pi\)
−0.172069 + 0.985085i \(0.555045\pi\)
\(770\) 2.59808 + 13.5000i 0.0936282 + 0.486506i
\(771\) 0 0
\(772\) 23.0000 0.827788
\(773\) −13.8564 24.0000i −0.498380 0.863220i 0.501618 0.865089i \(-0.332738\pi\)
−0.999998 + 0.00186926i \(0.999405\pi\)
\(774\) 0 0
\(775\) −3.00000 1.73205i −0.107763 0.0622171i
\(776\) −2.59808 4.50000i −0.0932655 0.161541i
\(777\) 0 0
\(778\) −9.00000 + 15.5885i −0.322666 + 0.558873i
\(779\) 20.7846 12.0000i 0.744686 0.429945i
\(780\) 0 0
\(781\) 18.0000 31.1769i 0.644091 1.11560i
\(782\) 10.3923 18.0000i 0.371628 0.643679i
\(783\) 0 0
\(784\) −6.50000 + 2.59808i −0.232143 + 0.0927884i
\(785\) −31.1769 + 18.0000i −1.11275 + 0.642448i
\(786\) 0 0
\(787\) 41.5692i 1.48178i 0.671625 + 0.740891i \(0.265597\pi\)
−0.671625 + 0.740891i \(0.734403\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 0 0
\(790\) 1.50000 0.866025i 0.0533676 0.0308118i
\(791\) −10.3923 + 30.0000i −0.369508 + 1.06668i
\(792\) 0 0
\(793\) 0 0
\(794\) −13.8564 + 24.0000i −0.491745 + 0.851728i
\(795\) 0 0
\(796\) −9.00000 + 5.19615i −0.318997 + 0.184173i
\(797\) −12.9904 + 22.5000i −0.460143 + 0.796991i −0.998968 0.0454270i \(-0.985535\pi\)
0.538825 + 0.842418i \(0.318868\pi\)
\(798\) 0 0
\(799\) 12.0000 + 20.7846i 0.424529 + 0.735307i
\(800\) −1.73205 1.00000i −0.0612372 0.0353553i
\(801\) 0 0
\(802\) −6.00000 10.3923i −0.211867 0.366965i
\(803\) −20.7846 −0.733473
\(804\) 0 0
\(805\) 9.00000 25.9808i 0.317208 0.915702i
\(806\) −5.19615 3.00000i −0.183027 0.105670i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 31.1769i 1.09477i −0.836881 0.547385i \(-0.815623\pi\)
0.836881 0.547385i \(-0.184377\pi\)
\(812\) 5.19615 + 6.00000i 0.182349 + 0.210559i
\(813\) 0 0
\(814\) 3.00000 + 5.19615i 0.105150 + 0.182125i
\(815\) 24.2487 0.849395
\(816\) 0 0
\(817\) 27.7128i 0.969549i
\(818\) 8.66025 0.302799
\(819\) 0 0
\(820\) 12.0000 0.419058
\(821\) 3.00000i 0.104701i −0.998629 0.0523504i \(-0.983329\pi\)
0.998629 0.0523504i \(-0.0166713\pi\)
\(822\) 0 0
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 1.73205 + 3.00000i 0.0603388 + 0.104510i
\(825\) 0 0
\(826\) −4.50000 + 0.866025i −0.156575 + 0.0301329i
\(827\) 9.00000i 0.312961i 0.987681 + 0.156480i \(0.0500148\pi\)
−0.987681 + 0.156480i \(0.949985\pi\)
\(828\) 0 0
\(829\) −15.0000 + 8.66025i −0.520972 + 0.300783i −0.737332 0.675530i \(-0.763915\pi\)
0.216361 + 0.976314i \(0.430581\pi\)
\(830\) 12.9904 + 7.50000i 0.450903 + 0.260329i
\(831\) 0 0
\(832\) −3.00000 1.73205i −0.104006 0.0600481i
\(833\) −19.0526 15.0000i −0.660132 0.519719i
\(834\) 0 0
\(835\) 30.0000 1.03819
\(836\) 5.19615 + 9.00000i 0.179713 + 0.311272i
\(837\) 0 0
\(838\) −21.0000 12.1244i −0.725433 0.418829i
\(839\) 1.73205 + 3.00000i 0.0597970 + 0.103572i 0.894374 0.447320i \(-0.147621\pi\)
−0.834577 + 0.550891i \(0.814288\pi\)
\(840\) 0 0
\(841\) −10.0000 + 17.3205i −0.344828 + 0.597259i
\(842\) −27.7128 + 16.0000i −0.955047 + 0.551396i
\(843\) 0 0
\(844\) 2.00000 3.46410i 0.0688428 0.119239i
\(845\) −0.866025 + 1.50000i −0.0297922 + 0.0516016i
\(846\) 0 0
\(847\) 4.00000 3.46410i 0.137442 0.119028i
\(848\) 7.79423 4.50000i 0.267655 0.154531i
\(849\) 0 0
\(850\) 6.92820i 0.237635i
\(851\) 12.0000i 0.411355i
\(852\) 0 0
\(853\) 21.0000 12.1244i 0.719026 0.415130i −0.0953679 0.995442i \(-0.530403\pi\)
0.814394 + 0.580312i \(0.197069\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.50000 2.59808i 0.0512689 0.0888004i
\(857\) 6.92820 12.0000i 0.236663 0.409912i −0.723092 0.690752i \(-0.757280\pi\)
0.959755 + 0.280840i \(0.0906130\pi\)
\(858\) 0 0
\(859\) 18.0000 10.3923i 0.614152 0.354581i −0.160437 0.987046i \(-0.551290\pi\)
0.774589 + 0.632465i \(0.217957\pi\)
\(860\) −6.92820 + 12.0000i −0.236250 + 0.409197i
\(861\) 0 0
\(862\) −12.0000 20.7846i −0.408722 0.707927i
\(863\) −46.7654 27.0000i −1.59191 0.919091i −0.992979 0.118291i \(-0.962258\pi\)
−0.598933 0.800799i \(-0.704408\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −34.6410 −1.17715
\(867\) 0 0
\(868\) −4.50000 + 0.866025i −0.152740 + 0.0293948i
\(869\) 2.59808 + 1.50000i 0.0881337 + 0.0508840i
\(870\) 0 0
\(871\) 6.00000 + 3.46410i 0.203302 + 0.117377i
\(872\) −1.73205 + 1.00000i −0.0586546 + 0.0338643i
\(873\) 0 0
\(874\) 20.7846i 0.703050i
\(875\) −6.06218 31.5000i −0.204939 1.06489i
\(876\) 0 0
\(877\) −22.0000 38.1051i −0.742887 1.28672i −0.951175 0.308651i \(-0.900123\pi\)
0.208288 0.978068i \(-0.433211\pi\)
\(878\) −36.3731 −1.22753
\(879\) 0 0
\(880\) 5.19615i 0.175162i
\(881\) −10.3923 −0.350126 −0.175063 0.984557i \(-0.556013\pi\)
−0.175063 + 0.984557i \(0.556013\pi\)
\(882\) 0 0
\(883\) 52.0000 1.74994 0.874970 0.484178i \(-0.160881\pi\)
0.874970 + 0.484178i \(0.160881\pi\)
\(884\) 12.0000i 0.403604i
\(885\) 0 0
\(886\) −9.00000 −0.302361
\(887\) 12.1244 + 21.0000i 0.407096 + 0.705111i 0.994563 0.104137i \(-0.0332081\pi\)
−0.587467 + 0.809248i \(0.699875\pi\)
\(888\) 0 0
\(889\) 5.50000 + 28.5788i 0.184464 + 0.958503i
\(890\) 18.0000i 0.603361i
\(891\) 0 0
\(892\) −22.5000 + 12.9904i −0.753356 + 0.434950i
\(893\) 20.7846 + 12.0000i 0.695530 + 0.401565i
\(894\) 0 0
\(895\) 18.0000 + 10.3923i 0.601674 + 0.347376i
\(896\) −2.59808 + 0.500000i −0.0867956 + 0.0167038i
\(897\) 0 0
\(898\) 30.0000 1.00111
\(899\) 2.59808 + 4.50000i 0.0866507 + 0.150083i
\(900\) 0 0
\(901\) 27.0000 + 15.5885i 0.899500 + 0.519327i
\(902\) 10.3923 + 18.0000i 0.346026 + 0.599334i
\(903\) 0 0
\(904\) −6.00000 + 10.3923i −0.199557 + 0.345643i
\(905\) −10.3923 + 6.00000i −0.345452 + 0.199447i
\(906\) 0 0
\(907\) 13.0000 22.5167i 0.431658 0.747653i −0.565358 0.824845i \(-0.691262\pi\)
0.997016 + 0.0771920i \(0.0245954\pi\)
\(908\) 2.59808 4.50000i 0.0862202 0.149338i
\(909\) 0 0
\(910\) −3.00000 15.5885i −0.0994490 0.516752i
\(911\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(912\) 0 0
\(913\) 25.9808i 0.859838i
\(914\) 5.00000i 0.165385i
\(915\) 0 0
\(916\) −12.0000 + 6.92820i −0.396491 + 0.228914i
\(917\) −10.3923 + 9.00000i −0.343184 + 0.297206i
\(918\) 0 0
\(919\) 10.0000 17.3205i 0.329870 0.571351i −0.652616 0.757689i \(-0.726329\pi\)
0.982486 + 0.186338i \(0.0596619\pi\)
\(920\) 5.19615 9.00000i 0.171312 0.296721i
\(921\) 0 0
\(922\) −12.0000 + 6.92820i −0.395199 + 0.228168i
\(923\) −20.7846 + 36.0000i −0.684134 + 1.18495i
\(924\) 0 0
\(925\) −2.00000 3.46410i −0.0657596 0.113899i
\(926\) −3.46410 2.00000i −0.113837 0.0657241i
\(927\) 0 0
\(928\) 1.50000 + 2.59808i 0.0492399 + 0.0852860i
\(929\) 48.4974 1.59115 0.795574 0.605856i \(-0.207169\pi\)
0.795574 + 0.605856i \(0.207169\pi\)
\(930\) 0 0
\(931\) −24.0000 3.46410i −0.786568 0.113531i
\(932\) 15.5885 + 9.00000i 0.510617 + 0.294805i
\(933\) 0 0
\(934\) −27.0000 15.5885i −0.883467 0.510070i
\(935\) −15.5885 + 9.00000i −0.509797 + 0.294331i
\(936\) 0 0
\(937\) 22.5167i 0.735587i −0.929907 0.367794i \(-0.880113\pi\)
0.929907 0.367794i \(-0.119887\pi\)
\(938\) 5.19615 1.00000i 0.169660 0.0326512i
\(939\) 0 0
\(940\) 6.00000 + 10.3923i 0.195698 + 0.338960i
\(941\) −32.9090 −1.07280 −0.536401 0.843963i \(-0.680216\pi\)
−0.536401 + 0.843963i \(0.680216\pi\)
\(942\) 0 0
\(943\) 41.5692i 1.35368i
\(944\) −1.73205 −0.0563735
\(945\) 0 0
\(946\) −24.0000 −0.780307
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) −3.46410 6.00000i −0.112390 0.194666i
\(951\) 0 0
\(952\) −6.00000 6.92820i −0.194461 0.224544i
\(953\) 24.0000i 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −5.19615 3.00000i −0.168056 0.0970269i
\(957\) 0 0
\(958\) −6.00000 3.46410i −0.193851 0.111920i
\(959\) −15.5885 + 45.0000i −0.503378 + 1.45313i
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) −3.46410 6.00000i −0.111687 0.193448i
\(963\) 0 0
\(964\) −22.5000 12.9904i −0.724676 0.418392i
\(965\) 19.9186 + 34.5000i 0.641202 + 1.11059i
\(966\) 0 0
\(967\) 3.50000 6.06218i 0.112552 0.194946i −0.804246 0.594296i \(-0.797431\pi\)
0.916799 + 0.399350i \(0.130764\pi\)
\(968\) 1.73205 1.00000i 0.0556702 0.0321412i
\(969\) 0 0
\(970\) 4.50000 7.79423i 0.144486 0.250258i
\(971\) −4.33013 + 7.50000i −0.138960 + 0.240686i −0.927103 0.374806i \(-0.877709\pi\)
0.788143 + 0.615492i \(0.211043\pi\)
\(972\) 0 0
\(973\) −15.0000 + 43.3013i −0.480878 + 1.38817i
\(974\) −0.866025 + 0.500000i −0.0277492 + 0.0160210i
\(975\) 0 0
\(976\) 0 0
\(977\) 24.0000i 0.767828i 0.923369 + 0.383914i \(0.125424\pi\)
−0.923369 + 0.383914i \(0.874576\pi\)
\(978\) 0 0
\(979\) −27.0000 + 15.5885i −0.862924 + 0.498209i
\(980\) −9.52628 7.50000i −0.304306 0.239579i
\(981\) 0 0
\(982\) 16.5000 28.5788i 0.526536 0.911987i
\(983\) −6.92820 + 12.0000i −0.220975 + 0.382741i −0.955104 0.296269i \(-0.904257\pi\)
0.734129 + 0.679010i \(0.237591\pi\)
\(984\) 0 0
\(985\) 27.0000 15.5885i 0.860292 0.496690i
\(986\) −5.19615 + 9.00000i −0.165479 + 0.286618i
\(987\) 0 0
\(988\) −6.00000 10.3923i −0.190885 0.330623i
\(989\) 41.5692 + 24.0000i 1.32182 + 0.763156i
\(990\) 0 0
\(991\) 23.5000 + 40.7032i 0.746502 + 1.29298i 0.949490 + 0.313798i \(0.101602\pi\)
−0.202988 + 0.979181i \(0.565065\pi\)
\(992\) −1.73205 −0.0549927
\(993\) 0 0
\(994\) 6.00000 + 31.1769i 0.190308 + 0.988872i
\(995\) −15.5885 9.00000i −0.494187 0.285319i
\(996\) 0 0
\(997\) −15.0000 8.66025i −0.475055 0.274273i 0.243299 0.969951i \(-0.421771\pi\)
−0.718353 + 0.695678i \(0.755104\pi\)
\(998\) −19.0526 + 11.0000i −0.603098 + 0.348199i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.l.c.215.1 4
3.2 odd 2 inner 1134.2.l.c.215.2 4
7.3 odd 6 1134.2.t.d.1025.2 4
9.2 odd 6 1134.2.t.d.593.2 4
9.4 even 3 42.2.f.a.5.2 yes 4
9.5 odd 6 42.2.f.a.5.1 4
9.7 even 3 1134.2.t.d.593.1 4
21.17 even 6 1134.2.t.d.1025.1 4
36.23 even 6 336.2.bc.e.257.1 4
36.31 odd 6 336.2.bc.e.257.2 4
45.4 even 6 1050.2.s.b.551.1 4
45.13 odd 12 1050.2.u.d.299.1 4
45.14 odd 6 1050.2.s.b.551.2 4
45.22 odd 12 1050.2.u.a.299.2 4
45.23 even 12 1050.2.u.a.299.1 4
45.32 even 12 1050.2.u.d.299.2 4
63.4 even 3 294.2.f.a.227.1 4
63.5 even 6 294.2.d.a.293.4 4
63.13 odd 6 294.2.f.a.215.2 4
63.23 odd 6 294.2.d.a.293.3 4
63.31 odd 6 42.2.f.a.17.1 yes 4
63.32 odd 6 294.2.f.a.227.2 4
63.38 even 6 inner 1134.2.l.c.269.2 4
63.40 odd 6 294.2.d.a.293.1 4
63.41 even 6 294.2.f.a.215.1 4
63.52 odd 6 inner 1134.2.l.c.269.1 4
63.58 even 3 294.2.d.a.293.2 4
63.59 even 6 42.2.f.a.17.2 yes 4
252.23 even 6 2352.2.k.e.881.4 4
252.31 even 6 336.2.bc.e.17.1 4
252.59 odd 6 336.2.bc.e.17.2 4
252.103 even 6 2352.2.k.e.881.3 4
252.131 odd 6 2352.2.k.e.881.2 4
252.247 odd 6 2352.2.k.e.881.1 4
315.59 even 6 1050.2.s.b.101.1 4
315.94 odd 6 1050.2.s.b.101.2 4
315.122 odd 12 1050.2.u.d.899.1 4
315.157 even 12 1050.2.u.a.899.1 4
315.248 odd 12 1050.2.u.a.899.2 4
315.283 even 12 1050.2.u.d.899.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.f.a.5.1 4 9.5 odd 6
42.2.f.a.5.2 yes 4 9.4 even 3
42.2.f.a.17.1 yes 4 63.31 odd 6
42.2.f.a.17.2 yes 4 63.59 even 6
294.2.d.a.293.1 4 63.40 odd 6
294.2.d.a.293.2 4 63.58 even 3
294.2.d.a.293.3 4 63.23 odd 6
294.2.d.a.293.4 4 63.5 even 6
294.2.f.a.215.1 4 63.41 even 6
294.2.f.a.215.2 4 63.13 odd 6
294.2.f.a.227.1 4 63.4 even 3
294.2.f.a.227.2 4 63.32 odd 6
336.2.bc.e.17.1 4 252.31 even 6
336.2.bc.e.17.2 4 252.59 odd 6
336.2.bc.e.257.1 4 36.23 even 6
336.2.bc.e.257.2 4 36.31 odd 6
1050.2.s.b.101.1 4 315.59 even 6
1050.2.s.b.101.2 4 315.94 odd 6
1050.2.s.b.551.1 4 45.4 even 6
1050.2.s.b.551.2 4 45.14 odd 6
1050.2.u.a.299.1 4 45.23 even 12
1050.2.u.a.299.2 4 45.22 odd 12
1050.2.u.a.899.1 4 315.157 even 12
1050.2.u.a.899.2 4 315.248 odd 12
1050.2.u.d.299.1 4 45.13 odd 12
1050.2.u.d.299.2 4 45.32 even 12
1050.2.u.d.899.1 4 315.122 odd 12
1050.2.u.d.899.2 4 315.283 even 12
1134.2.l.c.215.1 4 1.1 even 1 trivial
1134.2.l.c.215.2 4 3.2 odd 2 inner
1134.2.l.c.269.1 4 63.52 odd 6 inner
1134.2.l.c.269.2 4 63.38 even 6 inner
1134.2.t.d.593.1 4 9.7 even 3
1134.2.t.d.593.2 4 9.2 odd 6
1134.2.t.d.1025.1 4 21.17 even 6
1134.2.t.d.1025.2 4 7.3 odd 6
2352.2.k.e.881.1 4 252.247 odd 6
2352.2.k.e.881.2 4 252.131 odd 6
2352.2.k.e.881.3 4 252.103 even 6
2352.2.k.e.881.4 4 252.23 even 6