Properties

Label 1134.2
Level 1134
Weight 2
Dimension 8832
Nonzero newspaces 22
Sturm bound 139968
Trace bound 23

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 22 \)
Sturm bound: \(139968\)
Trace bound: \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1134))\).

Total New Old
Modular forms 36288 8832 27456
Cusp forms 33697 8832 24865
Eisenstein series 2591 0 2591

Trace form

\( 8832 q - 12 q^{5} - 6 q^{7} - 6 q^{8} - 12 q^{10} - 30 q^{11} - 24 q^{13} - 6 q^{14} - 24 q^{17} + 18 q^{18} + 36 q^{19} + 60 q^{20} + 54 q^{21} + 42 q^{22} + 156 q^{23} + 72 q^{25} + 180 q^{26} + 108 q^{27}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1134))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1134.2.a \(\chi_{1134}(1, \cdot)\) 1134.2.a.a 1 1
1134.2.a.b 1
1134.2.a.c 1
1134.2.a.d 1
1134.2.a.e 1
1134.2.a.f 1
1134.2.a.g 1
1134.2.a.h 1
1134.2.a.i 2
1134.2.a.j 2
1134.2.a.k 2
1134.2.a.l 2
1134.2.a.m 2
1134.2.a.n 2
1134.2.a.o 2
1134.2.a.p 2
1134.2.d \(\chi_{1134}(1133, \cdot)\) 1134.2.d.a 16 1
1134.2.d.b 16
1134.2.e \(\chi_{1134}(865, \cdot)\) 1134.2.e.a 2 2
1134.2.e.b 2
1134.2.e.c 2
1134.2.e.d 2
1134.2.e.e 2
1134.2.e.f 2
1134.2.e.g 2
1134.2.e.h 2
1134.2.e.i 2
1134.2.e.j 2
1134.2.e.k 2
1134.2.e.l 2
1134.2.e.m 2
1134.2.e.n 2
1134.2.e.o 2
1134.2.e.p 2
1134.2.e.q 4
1134.2.e.r 4
1134.2.e.s 4
1134.2.e.t 4
1134.2.e.u 8
1134.2.e.v 8
1134.2.f \(\chi_{1134}(379, \cdot)\) 1134.2.f.a 2 2
1134.2.f.b 2
1134.2.f.c 2
1134.2.f.d 2
1134.2.f.e 2
1134.2.f.f 2
1134.2.f.g 2
1134.2.f.h 2
1134.2.f.i 2
1134.2.f.j 2
1134.2.f.k 2
1134.2.f.l 2
1134.2.f.m 2
1134.2.f.n 2
1134.2.f.o 2
1134.2.f.p 2
1134.2.f.q 4
1134.2.f.r 4
1134.2.f.s 4
1134.2.f.t 4
1134.2.g \(\chi_{1134}(163, \cdot)\) 1134.2.g.a 2 2
1134.2.g.b 2
1134.2.g.c 2
1134.2.g.d 2
1134.2.g.e 2
1134.2.g.f 2
1134.2.g.g 2
1134.2.g.h 2
1134.2.g.i 4
1134.2.g.j 4
1134.2.g.k 6
1134.2.g.l 6
1134.2.g.m 6
1134.2.g.n 6
1134.2.g.o 8
1134.2.g.p 8
1134.2.h \(\chi_{1134}(109, \cdot)\) 1134.2.h.a 2 2
1134.2.h.b 2
1134.2.h.c 2
1134.2.h.d 2
1134.2.h.e 2
1134.2.h.f 2
1134.2.h.g 2
1134.2.h.h 2
1134.2.h.i 2
1134.2.h.j 2
1134.2.h.k 2
1134.2.h.l 2
1134.2.h.m 2
1134.2.h.n 2
1134.2.h.o 2
1134.2.h.p 2
1134.2.h.q 4
1134.2.h.r 4
1134.2.h.s 4
1134.2.h.t 4
1134.2.h.u 8
1134.2.h.v 8
1134.2.k \(\chi_{1134}(647, \cdot)\) 1134.2.k.a 16 2
1134.2.k.b 16
1134.2.k.c 16
1134.2.k.d 16
1134.2.l \(\chi_{1134}(215, \cdot)\) 1134.2.l.a 4 2
1134.2.l.b 4
1134.2.l.c 4
1134.2.l.d 4
1134.2.l.e 8
1134.2.l.f 8
1134.2.l.g 16
1134.2.l.h 16
1134.2.m \(\chi_{1134}(377, \cdot)\) 1134.2.m.a 4 2
1134.2.m.b 4
1134.2.m.c 4
1134.2.m.d 4
1134.2.m.e 4
1134.2.m.f 4
1134.2.m.g 8
1134.2.m.h 16
1134.2.m.i 16
1134.2.t \(\chi_{1134}(593, \cdot)\) 1134.2.t.a 4 2
1134.2.t.b 4
1134.2.t.c 4
1134.2.t.d 4
1134.2.t.e 8
1134.2.t.f 8
1134.2.t.g 16
1134.2.t.h 16
1134.2.u \(\chi_{1134}(127, \cdot)\) n/a 108 6
1134.2.v \(\chi_{1134}(289, \cdot)\) n/a 144 6
1134.2.w \(\chi_{1134}(37, \cdot)\) n/a 144 6
1134.2.z \(\chi_{1134}(125, \cdot)\) n/a 144 6
1134.2.ba \(\chi_{1134}(17, \cdot)\) n/a 144 6
1134.2.bf \(\chi_{1134}(143, \cdot)\) n/a 144 6
1134.2.bg \(\chi_{1134}(67, \cdot)\) n/a 1296 18
1134.2.bh \(\chi_{1134}(43, \cdot)\) n/a 972 18
1134.2.bi \(\chi_{1134}(25, \cdot)\) n/a 1296 18
1134.2.bk \(\chi_{1134}(5, \cdot)\) n/a 1296 18
1134.2.bp \(\chi_{1134}(47, \cdot)\) n/a 1296 18
1134.2.bq \(\chi_{1134}(41, \cdot)\) n/a 1296 18

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1134))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1134)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(378))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(567))\)\(^{\oplus 2}\)