Properties

Label 1134.2.l.c
Level $1134$
Weight $2$
Character orbit 1134.l
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,2,Mod(215,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.215"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.l (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,2,0,0,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12}^{3} q^{2} - q^{4} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{5} + (3 \zeta_{12}^{2} - 1) q^{7} + \zeta_{12}^{3} q^{8} + (\zeta_{12}^{2} - 2) q^{10} - 3 \zeta_{12} q^{11} + (2 \zeta_{12}^{2} + 2) q^{13} + \cdots + (5 \zeta_{12}^{3} + 3 \zeta_{12}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 2 q^{7} - 6 q^{10} + 12 q^{13} + 4 q^{16} + 12 q^{19} - 6 q^{22} + 4 q^{25} - 2 q^{28} + 12 q^{34} + 4 q^{37} + 6 q^{40} + 16 q^{43} - 12 q^{46} - 26 q^{49} - 12 q^{52} + 6 q^{58} - 4 q^{64}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(1 - \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
215.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
1.00000i 0 −1.00000 −0.866025 1.50000i 0 0.500000 + 2.59808i 1.00000i 0 −1.50000 + 0.866025i
215.2 1.00000i 0 −1.00000 0.866025 + 1.50000i 0 0.500000 + 2.59808i 1.00000i 0 −1.50000 + 0.866025i
269.1 1.00000i 0 −1.00000 0.866025 1.50000i 0 0.500000 2.59808i 1.00000i 0 −1.50000 0.866025i
269.2 1.00000i 0 −1.00000 −0.866025 + 1.50000i 0 0.500000 2.59808i 1.00000i 0 −1.50000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
63.i even 6 1 inner
63.t odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.l.c 4
3.b odd 2 1 inner 1134.2.l.c 4
7.d odd 6 1 1134.2.t.d 4
9.c even 3 1 42.2.f.a 4
9.c even 3 1 1134.2.t.d 4
9.d odd 6 1 42.2.f.a 4
9.d odd 6 1 1134.2.t.d 4
21.g even 6 1 1134.2.t.d 4
36.f odd 6 1 336.2.bc.e 4
36.h even 6 1 336.2.bc.e 4
45.h odd 6 1 1050.2.s.b 4
45.j even 6 1 1050.2.s.b 4
45.k odd 12 1 1050.2.u.a 4
45.k odd 12 1 1050.2.u.d 4
45.l even 12 1 1050.2.u.a 4
45.l even 12 1 1050.2.u.d 4
63.g even 3 1 294.2.f.a 4
63.h even 3 1 294.2.d.a 4
63.i even 6 1 294.2.d.a 4
63.i even 6 1 inner 1134.2.l.c 4
63.j odd 6 1 294.2.d.a 4
63.k odd 6 1 42.2.f.a 4
63.l odd 6 1 294.2.f.a 4
63.n odd 6 1 294.2.f.a 4
63.o even 6 1 294.2.f.a 4
63.s even 6 1 42.2.f.a 4
63.t odd 6 1 294.2.d.a 4
63.t odd 6 1 inner 1134.2.l.c 4
252.n even 6 1 336.2.bc.e 4
252.r odd 6 1 2352.2.k.e 4
252.u odd 6 1 2352.2.k.e 4
252.bb even 6 1 2352.2.k.e 4
252.bj even 6 1 2352.2.k.e 4
252.bn odd 6 1 336.2.bc.e 4
315.u even 6 1 1050.2.s.b 4
315.bn odd 6 1 1050.2.s.b 4
315.bw odd 12 1 1050.2.u.a 4
315.bw odd 12 1 1050.2.u.d 4
315.cg even 12 1 1050.2.u.a 4
315.cg even 12 1 1050.2.u.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.f.a 4 9.c even 3 1
42.2.f.a 4 9.d odd 6 1
42.2.f.a 4 63.k odd 6 1
42.2.f.a 4 63.s even 6 1
294.2.d.a 4 63.h even 3 1
294.2.d.a 4 63.i even 6 1
294.2.d.a 4 63.j odd 6 1
294.2.d.a 4 63.t odd 6 1
294.2.f.a 4 63.g even 3 1
294.2.f.a 4 63.l odd 6 1
294.2.f.a 4 63.n odd 6 1
294.2.f.a 4 63.o even 6 1
336.2.bc.e 4 36.f odd 6 1
336.2.bc.e 4 36.h even 6 1
336.2.bc.e 4 252.n even 6 1
336.2.bc.e 4 252.bn odd 6 1
1050.2.s.b 4 45.h odd 6 1
1050.2.s.b 4 45.j even 6 1
1050.2.s.b 4 315.u even 6 1
1050.2.s.b 4 315.bn odd 6 1
1050.2.u.a 4 45.k odd 12 1
1050.2.u.a 4 45.l even 12 1
1050.2.u.a 4 315.bw odd 12 1
1050.2.u.a 4 315.cg even 12 1
1050.2.u.d 4 45.k odd 12 1
1050.2.u.d 4 45.l even 12 1
1050.2.u.d 4 315.bw odd 12 1
1050.2.u.d 4 315.cg even 12 1
1134.2.l.c 4 1.a even 1 1 trivial
1134.2.l.c 4 3.b odd 2 1 inner
1134.2.l.c 4 63.i even 6 1 inner
1134.2.l.c 4 63.t odd 6 1 inner
1134.2.t.d 4 7.d odd 6 1
1134.2.t.d 4 9.c even 3 1
1134.2.t.d 4 9.d odd 6 1
1134.2.t.d 4 21.g even 6 1
2352.2.k.e 4 252.r odd 6 1
2352.2.k.e 4 252.u odd 6 1
2352.2.k.e 4 252.bb even 6 1
2352.2.k.e 4 252.bj even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5}^{4} + 3T_{5}^{2} + 9 \) Copy content Toggle raw display
\( T_{11}^{4} - 9T_{11}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T + 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$19$ \( (T^{2} - 6 T + 12)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$29$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$31$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 48T^{2} + 2304 \) Copy content Toggle raw display
$43$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$59$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T - 2)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 12 T + 48)^{2} \) Copy content Toggle raw display
$79$ \( (T + 1)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 75T^{2} + 5625 \) Copy content Toggle raw display
$89$ \( T^{4} + 108 T^{2} + 11664 \) Copy content Toggle raw display
$97$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
show more
show less