Properties

Label 112.6.p.c.31.1
Level $112$
Weight $6$
Character 112.31
Analytic conductor $17.963$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 691 x^{12} - 8602 x^{11} + 416261 x^{10} - 3521447 x^{9} + 66162087 x^{8} + \cdots + 17213603549184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{6}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(7.14120 + 12.3689i\) of defining polynomial
Character \(\chi\) \(=\) 112.31
Dual form 112.6.p.c.47.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.5627 + 20.0272i) q^{3} +(-75.7872 + 43.7557i) q^{5} +(-90.8476 - 92.4863i) q^{7} +(-145.892 - 252.692i) q^{9} +(-350.920 - 202.604i) q^{11} +640.275i q^{13} -2023.74i q^{15} +(1286.81 + 742.939i) q^{17} +(699.973 + 1212.39i) q^{19} +(2902.68 - 750.029i) q^{21} +(-1039.79 + 600.322i) q^{23} +(2266.63 - 3925.92i) q^{25} +1128.15 q^{27} -1968.20 q^{29} +(406.957 - 704.870i) q^{31} +(8115.18 - 4685.30i) q^{33} +(10931.9 + 3034.17i) q^{35} +(6956.39 + 12048.8i) q^{37} +(-12822.9 - 7403.31i) q^{39} -17041.2i q^{41} -19253.7i q^{43} +(22113.5 + 12767.2i) q^{45} +(-11325.4 - 19616.1i) q^{47} +(-300.442 + 16804.3i) q^{49} +(-29757.9 + 17180.8i) q^{51} +(8009.36 - 13872.6i) q^{53} +35460.4 q^{55} -32374.3 q^{57} +(15061.0 - 26086.5i) q^{59} +(-37809.1 + 21829.1i) q^{61} +(-10116.7 + 36449.5i) q^{63} +(-28015.7 - 48524.7i) q^{65} +(-9185.38 - 5303.18i) q^{67} -27765.4i q^{69} +57405.1i q^{71} +(56304.1 + 32507.2i) q^{73} +(52416.7 + 90788.5i) q^{75} +(13142.2 + 50861.4i) q^{77} +(-15991.3 + 9232.58i) q^{79} +(22407.3 - 38810.6i) q^{81} +17093.5 q^{83} -130031. q^{85} +(22757.7 - 39417.4i) q^{87} +(-40872.2 + 23597.6i) q^{89} +(59216.7 - 58167.5i) q^{91} +(9411.04 + 16300.4i) q^{93} +(-106098. - 61255.7i) q^{95} +52847.4i q^{97} +118233. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 9 q^{3} + 33 q^{5} + 28 q^{7} - 538 q^{9} - 333 q^{11} + 801 q^{17} + 2135 q^{19} + 2017 q^{21} - 2667 q^{23} + 5434 q^{25} - 17910 q^{27} + 684 q^{29} - 3119 q^{31} + 29013 q^{33} + 2247 q^{35}+ \cdots + 124833 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.5627 + 20.0272i −0.741748 + 1.28474i 0.209951 + 0.977712i \(0.432669\pi\)
−0.951699 + 0.307033i \(0.900664\pi\)
\(4\) 0 0
\(5\) −75.7872 + 43.7557i −1.35572 + 0.782727i −0.989044 0.147621i \(-0.952838\pi\)
−0.366678 + 0.930348i \(0.619505\pi\)
\(6\) 0 0
\(7\) −90.8476 92.4863i −0.700758 0.713399i
\(8\) 0 0
\(9\) −145.892 252.692i −0.600379 1.03989i
\(10\) 0 0
\(11\) −350.920 202.604i −0.874434 0.504855i −0.00561475 0.999984i \(-0.501787\pi\)
−0.868819 + 0.495130i \(0.835121\pi\)
\(12\) 0 0
\(13\) 640.275i 1.05077i 0.850864 + 0.525386i \(0.176079\pi\)
−0.850864 + 0.525386i \(0.823921\pi\)
\(14\) 0 0
\(15\) 2023.74i 2.32234i
\(16\) 0 0
\(17\) 1286.81 + 742.939i 1.07992 + 0.623492i 0.930875 0.365339i \(-0.119047\pi\)
0.149045 + 0.988830i \(0.452380\pi\)
\(18\) 0 0
\(19\) 699.973 + 1212.39i 0.444833 + 0.770474i 0.998041 0.0625698i \(-0.0199296\pi\)
−0.553207 + 0.833044i \(0.686596\pi\)
\(20\) 0 0
\(21\) 2902.68 750.029i 1.43632 0.371133i
\(22\) 0 0
\(23\) −1039.79 + 600.322i −0.409850 + 0.236627i −0.690725 0.723117i \(-0.742709\pi\)
0.280875 + 0.959744i \(0.409375\pi\)
\(24\) 0 0
\(25\) 2266.63 3925.92i 0.725322 1.25629i
\(26\) 0 0
\(27\) 1128.15 0.297823
\(28\) 0 0
\(29\) −1968.20 −0.434584 −0.217292 0.976107i \(-0.569722\pi\)
−0.217292 + 0.976107i \(0.569722\pi\)
\(30\) 0 0
\(31\) 406.957 704.870i 0.0760579 0.131736i −0.825488 0.564420i \(-0.809100\pi\)
0.901546 + 0.432684i \(0.142433\pi\)
\(32\) 0 0
\(33\) 8115.18 4685.30i 1.29722 0.748949i
\(34\) 0 0
\(35\) 10931.9 + 3034.17i 1.50843 + 0.418669i
\(36\) 0 0
\(37\) 6956.39 + 12048.8i 0.835372 + 1.44691i 0.893728 + 0.448610i \(0.148081\pi\)
−0.0583560 + 0.998296i \(0.518586\pi\)
\(38\) 0 0
\(39\) −12822.9 7403.31i −1.34997 0.779408i
\(40\) 0 0
\(41\) 17041.2i 1.58322i −0.611026 0.791611i \(-0.709243\pi\)
0.611026 0.791611i \(-0.290757\pi\)
\(42\) 0 0
\(43\) 19253.7i 1.58797i −0.607937 0.793986i \(-0.708003\pi\)
0.607937 0.793986i \(-0.291997\pi\)
\(44\) 0 0
\(45\) 22113.5 + 12767.2i 1.62789 + 0.939865i
\(46\) 0 0
\(47\) −11325.4 19616.1i −0.747837 1.29529i −0.948857 0.315705i \(-0.897759\pi\)
0.201020 0.979587i \(-0.435574\pi\)
\(48\) 0 0
\(49\) −300.442 + 16804.3i −0.0178760 + 0.999840i
\(50\) 0 0
\(51\) −29757.9 + 17180.8i −1.60206 + 0.924947i
\(52\) 0 0
\(53\) 8009.36 13872.6i 0.391659 0.678374i −0.601009 0.799242i \(-0.705235\pi\)
0.992669 + 0.120868i \(0.0385679\pi\)
\(54\) 0 0
\(55\) 35460.4 1.58065
\(56\) 0 0
\(57\) −32374.3 −1.31982
\(58\) 0 0
\(59\) 15061.0 26086.5i 0.563281 0.975631i −0.433926 0.900948i \(-0.642872\pi\)
0.997207 0.0746831i \(-0.0237945\pi\)
\(60\) 0 0
\(61\) −37809.1 + 21829.1i −1.30098 + 0.751124i −0.980573 0.196155i \(-0.937155\pi\)
−0.320411 + 0.947278i \(0.603821\pi\)
\(62\) 0 0
\(63\) −10116.7 + 36449.5i −0.321134 + 1.15702i
\(64\) 0 0
\(65\) −28015.7 48524.7i −0.822467 1.42455i
\(66\) 0 0
\(67\) −9185.38 5303.18i −0.249983 0.144328i 0.369774 0.929122i \(-0.379435\pi\)
−0.619756 + 0.784794i \(0.712769\pi\)
\(68\) 0 0
\(69\) 27765.4i 0.702071i
\(70\) 0 0
\(71\) 57405.1i 1.35146i 0.737148 + 0.675732i \(0.236172\pi\)
−0.737148 + 0.675732i \(0.763828\pi\)
\(72\) 0 0
\(73\) 56304.1 + 32507.2i 1.23661 + 0.713957i 0.968400 0.249403i \(-0.0802345\pi\)
0.268210 + 0.963360i \(0.413568\pi\)
\(74\) 0 0
\(75\) 52416.7 + 90788.5i 1.07601 + 1.86371i
\(76\) 0 0
\(77\) 13142.2 + 50861.4i 0.252604 + 0.977601i
\(78\) 0 0
\(79\) −15991.3 + 9232.58i −0.288281 + 0.166439i −0.637166 0.770726i \(-0.719894\pi\)
0.348885 + 0.937165i \(0.386560\pi\)
\(80\) 0 0
\(81\) 22407.3 38810.6i 0.379469 0.657260i
\(82\) 0 0
\(83\) 17093.5 0.272355 0.136178 0.990684i \(-0.456518\pi\)
0.136178 + 0.990684i \(0.456518\pi\)
\(84\) 0 0
\(85\) −130031. −1.95209
\(86\) 0 0
\(87\) 22757.7 39417.4i 0.322351 0.558329i
\(88\) 0 0
\(89\) −40872.2 + 23597.6i −0.546956 + 0.315785i −0.747893 0.663819i \(-0.768935\pi\)
0.200937 + 0.979604i \(0.435601\pi\)
\(90\) 0 0
\(91\) 59216.7 58167.5i 0.749620 0.736337i
\(92\) 0 0
\(93\) 9411.04 + 16300.4i 0.112832 + 0.195430i
\(94\) 0 0
\(95\) −106098. 61255.7i −1.20614 0.696366i
\(96\) 0 0
\(97\) 52847.4i 0.570288i 0.958485 + 0.285144i \(0.0920414\pi\)
−0.958485 + 0.285144i \(0.907959\pi\)
\(98\) 0 0
\(99\) 118233.i 1.21242i
\(100\) 0 0
\(101\) −155978. 90053.7i −1.52145 0.878412i −0.999679 0.0253292i \(-0.991937\pi\)
−0.521775 0.853083i \(-0.674730\pi\)
\(102\) 0 0
\(103\) 12339.7 + 21372.9i 0.114607 + 0.198505i 0.917623 0.397453i \(-0.130106\pi\)
−0.803016 + 0.595958i \(0.796773\pi\)
\(104\) 0 0
\(105\) −187168. + 183852.i −1.65676 + 1.62740i
\(106\) 0 0
\(107\) −12330.8 + 7119.17i −0.104119 + 0.0601132i −0.551155 0.834403i \(-0.685813\pi\)
0.447036 + 0.894516i \(0.352480\pi\)
\(108\) 0 0
\(109\) 90398.4 156575.i 0.728777 1.26228i −0.228624 0.973515i \(-0.573423\pi\)
0.957401 0.288763i \(-0.0932440\pi\)
\(110\) 0 0
\(111\) −321739. −2.47854
\(112\) 0 0
\(113\) −46481.6 −0.342440 −0.171220 0.985233i \(-0.554771\pi\)
−0.171220 + 0.985233i \(0.554771\pi\)
\(114\) 0 0
\(115\) 52535.1 90993.4i 0.370429 0.641602i
\(116\) 0 0
\(117\) 161793. 93411.1i 1.09268 0.630861i
\(118\) 0 0
\(119\) −48191.7 186506.i −0.311964 1.20733i
\(120\) 0 0
\(121\) 1571.28 + 2721.54i 0.00975641 + 0.0168986i
\(122\) 0 0
\(123\) 341288. + 197043.i 2.03404 + 1.17435i
\(124\) 0 0
\(125\) 123239.i 0.705462i
\(126\) 0 0
\(127\) 129698.i 0.713551i −0.934190 0.356775i \(-0.883876\pi\)
0.934190 0.356775i \(-0.116124\pi\)
\(128\) 0 0
\(129\) 385597. + 222625.i 2.04014 + 1.17787i
\(130\) 0 0
\(131\) 79543.3 + 137773.i 0.404973 + 0.701433i 0.994318 0.106448i \(-0.0339477\pi\)
−0.589346 + 0.807881i \(0.700614\pi\)
\(132\) 0 0
\(133\) 48538.6 174880.i 0.237935 0.857259i
\(134\) 0 0
\(135\) −85499.5 + 49363.2i −0.403765 + 0.233114i
\(136\) 0 0
\(137\) 65112.8 112779.i 0.296391 0.513364i −0.678916 0.734216i \(-0.737550\pi\)
0.975308 + 0.220851i \(0.0708835\pi\)
\(138\) 0 0
\(139\) 317422. 1.39348 0.696739 0.717325i \(-0.254634\pi\)
0.696739 + 0.717325i \(0.254634\pi\)
\(140\) 0 0
\(141\) 523807. 2.21883
\(142\) 0 0
\(143\) 129722. 224686.i 0.530487 0.918831i
\(144\) 0 0
\(145\) 149164. 86119.9i 0.589175 0.340160i
\(146\) 0 0
\(147\) −333069. 200320.i −1.27128 0.764595i
\(148\) 0 0
\(149\) 9923.11 + 17187.3i 0.0366169 + 0.0634224i 0.883753 0.467953i \(-0.155009\pi\)
−0.847136 + 0.531376i \(0.821675\pi\)
\(150\) 0 0
\(151\) −181950. 105049.i −0.649396 0.374929i 0.138829 0.990316i \(-0.455666\pi\)
−0.788225 + 0.615387i \(0.789000\pi\)
\(152\) 0 0
\(153\) 433556.i 1.49733i
\(154\) 0 0
\(155\) 71226.8i 0.238130i
\(156\) 0 0
\(157\) −342669. 197840.i −1.10950 0.640568i −0.170797 0.985306i \(-0.554634\pi\)
−0.938699 + 0.344739i \(0.887968\pi\)
\(158\) 0 0
\(159\) 185220. + 320810.i 0.581024 + 1.00636i
\(160\) 0 0
\(161\) 149984. + 41628.4i 0.456016 + 0.126568i
\(162\) 0 0
\(163\) −190266. + 109850.i −0.560907 + 0.323840i −0.753510 0.657437i \(-0.771641\pi\)
0.192602 + 0.981277i \(0.438307\pi\)
\(164\) 0 0
\(165\) −410018. + 710171.i −1.17245 + 2.03073i
\(166\) 0 0
\(167\) −28110.7 −0.0779974 −0.0389987 0.999239i \(-0.512417\pi\)
−0.0389987 + 0.999239i \(0.512417\pi\)
\(168\) 0 0
\(169\) −38659.7 −0.104122
\(170\) 0 0
\(171\) 204241. 353756.i 0.534137 0.925152i
\(172\) 0 0
\(173\) 372652. 215150.i 0.946646 0.546546i 0.0546086 0.998508i \(-0.482609\pi\)
0.892037 + 0.451961i \(0.149276\pi\)
\(174\) 0 0
\(175\) −569012. + 147028.i −1.40451 + 0.362915i
\(176\) 0 0
\(177\) 348293. + 603261.i 0.835625 + 1.44734i
\(178\) 0 0
\(179\) −36003.6 20786.7i −0.0839871 0.0484900i 0.457418 0.889252i \(-0.348774\pi\)
−0.541405 + 0.840762i \(0.682108\pi\)
\(180\) 0 0
\(181\) 273268.i 0.620001i 0.950736 + 0.310000i \(0.100329\pi\)
−0.950736 + 0.310000i \(0.899671\pi\)
\(182\) 0 0
\(183\) 1.00961e6i 2.22858i
\(184\) 0 0
\(185\) −1.05441e6 608764.i −2.26506 1.30774i
\(186\) 0 0
\(187\) −301045. 521425.i −0.629545 1.09040i
\(188\) 0 0
\(189\) −102490. 104339.i −0.208702 0.212467i
\(190\) 0 0
\(191\) −430294. + 248431.i −0.853458 + 0.492744i −0.861816 0.507221i \(-0.830673\pi\)
0.00835809 + 0.999965i \(0.497340\pi\)
\(192\) 0 0
\(193\) 114986. 199162.i 0.222204 0.384868i −0.733273 0.679934i \(-0.762008\pi\)
0.955477 + 0.295066i \(0.0953416\pi\)
\(194\) 0 0
\(195\) 1.29575e6 2.44025
\(196\) 0 0
\(197\) 67861.0 0.124582 0.0622909 0.998058i \(-0.480159\pi\)
0.0622909 + 0.998058i \(0.480159\pi\)
\(198\) 0 0
\(199\) −331890. + 574851.i −0.594103 + 1.02902i 0.399570 + 0.916703i \(0.369160\pi\)
−0.993673 + 0.112314i \(0.964174\pi\)
\(200\) 0 0
\(201\) 212416. 122638.i 0.370848 0.214109i
\(202\) 0 0
\(203\) 178806. + 182031.i 0.304538 + 0.310031i
\(204\) 0 0
\(205\) 745652. + 1.29151e6i 1.23923 + 2.14641i
\(206\) 0 0
\(207\) 303394. + 175164.i 0.492131 + 0.284132i
\(208\) 0 0
\(209\) 567269.i 0.898305i
\(210\) 0 0
\(211\) 129670.i 0.200509i −0.994962 0.100254i \(-0.968034\pi\)
0.994962 0.100254i \(-0.0319656\pi\)
\(212\) 0 0
\(213\) −1.14966e6 663757.i −1.73628 1.00244i
\(214\) 0 0
\(215\) 842459. + 1.45918e6i 1.24295 + 2.15285i
\(216\) 0 0
\(217\) −102162. + 26397.8i −0.147279 + 0.0380556i
\(218\) 0 0
\(219\) −1.30205e6 + 751741.i −1.83450 + 1.05915i
\(220\) 0 0
\(221\) −475686. + 823912.i −0.655148 + 1.13475i
\(222\) 0 0
\(223\) 1.16536e6 1.56927 0.784637 0.619956i \(-0.212849\pi\)
0.784637 + 0.619956i \(0.212849\pi\)
\(224\) 0 0
\(225\) −1.32273e6 −1.74187
\(226\) 0 0
\(227\) −545332. + 944543.i −0.702420 + 1.21663i 0.265195 + 0.964195i \(0.414564\pi\)
−0.967615 + 0.252432i \(0.918770\pi\)
\(228\) 0 0
\(229\) −37293.9 + 21531.7i −0.0469947 + 0.0271324i −0.523313 0.852140i \(-0.675304\pi\)
0.476319 + 0.879273i \(0.341971\pi\)
\(230\) 0 0
\(231\) −1.17057e6 324895.i −1.44334 0.400602i
\(232\) 0 0
\(233\) −400725. 694075.i −0.483567 0.837562i 0.516255 0.856435i \(-0.327326\pi\)
−0.999822 + 0.0188729i \(0.993992\pi\)
\(234\) 0 0
\(235\) 1.71663e6 + 991099.i 2.02772 + 1.17070i
\(236\) 0 0
\(237\) 427014.i 0.493823i
\(238\) 0 0
\(239\) 841735.i 0.953193i −0.879122 0.476596i \(-0.841870\pi\)
0.879122 0.476596i \(-0.158130\pi\)
\(240\) 0 0
\(241\) 715405. + 413040.i 0.793432 + 0.458088i 0.841169 0.540772i \(-0.181868\pi\)
−0.0477375 + 0.998860i \(0.515201\pi\)
\(242\) 0 0
\(243\) 655248. + 1.13492e6i 0.711852 + 1.23296i
\(244\) 0 0
\(245\) −712516. 1.28670e6i −0.758367 1.36950i
\(246\) 0 0
\(247\) −776263. + 448176.i −0.809592 + 0.467418i
\(248\) 0 0
\(249\) −197647. + 342335.i −0.202019 + 0.349907i
\(250\) 0 0
\(251\) −1.51586e6 −1.51871 −0.759357 0.650674i \(-0.774487\pi\)
−0.759357 + 0.650674i \(0.774487\pi\)
\(252\) 0 0
\(253\) 486511. 0.477849
\(254\) 0 0
\(255\) 1.50351e6 2.60416e6i 1.44796 2.50794i
\(256\) 0 0
\(257\) −363693. + 209978.i −0.343480 + 0.198309i −0.661810 0.749672i \(-0.730211\pi\)
0.318330 + 0.947980i \(0.396878\pi\)
\(258\) 0 0
\(259\) 482380. 1.73798e6i 0.446828 1.60988i
\(260\) 0 0
\(261\) 287144. + 497348.i 0.260915 + 0.451918i
\(262\) 0 0
\(263\) −1.08817e6 628258.i −0.970083 0.560078i −0.0708218 0.997489i \(-0.522562\pi\)
−0.899262 + 0.437411i \(0.855895\pi\)
\(264\) 0 0
\(265\) 1.40182e6i 1.22625i
\(266\) 0 0
\(267\) 1.09141e6i 0.936932i
\(268\) 0 0
\(269\) −236769. 136699.i −0.199500 0.115182i 0.396922 0.917852i \(-0.370078\pi\)
−0.596422 + 0.802671i \(0.703412\pi\)
\(270\) 0 0
\(271\) 386345. + 669169.i 0.319560 + 0.553494i 0.980396 0.197036i \(-0.0631317\pi\)
−0.660837 + 0.750530i \(0.729798\pi\)
\(272\) 0 0
\(273\) 480225. + 1.85852e6i 0.389976 + 1.50925i
\(274\) 0 0
\(275\) −1.59081e6 + 918457.i −1.26849 + 0.732364i
\(276\) 0 0
\(277\) −15930.9 + 27593.2i −0.0124750 + 0.0216074i −0.872196 0.489157i \(-0.837304\pi\)
0.859720 + 0.510765i \(0.170638\pi\)
\(278\) 0 0
\(279\) −237487. −0.182654
\(280\) 0 0
\(281\) 510770. 0.385887 0.192943 0.981210i \(-0.438197\pi\)
0.192943 + 0.981210i \(0.438197\pi\)
\(282\) 0 0
\(283\) 973793. 1.68666e6i 0.722771 1.25188i −0.237114 0.971482i \(-0.576202\pi\)
0.959885 0.280394i \(-0.0904651\pi\)
\(284\) 0 0
\(285\) 2.45356e6 1.41656e6i 1.78930 1.03306i
\(286\) 0 0
\(287\) −1.57608e6 + 1.54816e6i −1.12947 + 1.10946i
\(288\) 0 0
\(289\) 393988. + 682407.i 0.277484 + 0.480617i
\(290\) 0 0
\(291\) −1.05838e6 611059.i −0.732675 0.423010i
\(292\) 0 0
\(293\) 1.59231e6i 1.08357i −0.840516 0.541787i \(-0.817748\pi\)
0.840516 0.541787i \(-0.182252\pi\)
\(294\) 0 0
\(295\) 2.63603e6i 1.76358i
\(296\) 0 0
\(297\) −395892. 228568.i −0.260427 0.150357i
\(298\) 0 0
\(299\) −384372. 665751.i −0.248641 0.430659i
\(300\) 0 0
\(301\) −1.78070e6 + 1.74915e6i −1.13286 + 1.11278i
\(302\) 0 0
\(303\) 3.60705e6 2.08253e6i 2.25707 1.30312i
\(304\) 0 0
\(305\) 1.91030e6 3.30873e6i 1.17585 2.03663i
\(306\) 0 0
\(307\) −148691. −0.0900404 −0.0450202 0.998986i \(-0.514335\pi\)
−0.0450202 + 0.998986i \(0.514335\pi\)
\(308\) 0 0
\(309\) −570720. −0.340037
\(310\) 0 0
\(311\) 364641. 631576.i 0.213779 0.370275i −0.739115 0.673579i \(-0.764756\pi\)
0.952894 + 0.303303i \(0.0980896\pi\)
\(312\) 0 0
\(313\) 1.57730e6 910655.i 0.910026 0.525404i 0.0295862 0.999562i \(-0.490581\pi\)
0.880439 + 0.474159i \(0.157248\pi\)
\(314\) 0 0
\(315\) −828163. 3.20507e6i −0.470261 1.81996i
\(316\) 0 0
\(317\) −790103. 1.36850e6i −0.441607 0.764885i 0.556202 0.831047i \(-0.312258\pi\)
−0.997809 + 0.0661618i \(0.978925\pi\)
\(318\) 0 0
\(319\) 690680. + 398764.i 0.380015 + 0.219402i
\(320\) 0 0
\(321\) 329268.i 0.178355i
\(322\) 0 0
\(323\) 2.08015e6i 1.10940i
\(324\) 0 0
\(325\) 2.51367e6 + 1.45127e6i 1.32008 + 0.762148i
\(326\) 0 0
\(327\) 2.09050e6 + 3.62085e6i 1.08114 + 1.87258i
\(328\) 0 0
\(329\) −785339. + 2.82951e6i −0.400007 + 1.44119i
\(330\) 0 0
\(331\) −2.71356e6 + 1.56667e6i −1.36135 + 0.785974i −0.989803 0.142442i \(-0.954505\pi\)
−0.371543 + 0.928416i \(0.621171\pi\)
\(332\) 0 0
\(333\) 2.02976e6 3.51566e6i 1.00308 1.73738i
\(334\) 0 0
\(335\) 928178. 0.451876
\(336\) 0 0
\(337\) 3.16854e6 1.51979 0.759897 0.650043i \(-0.225249\pi\)
0.759897 + 0.650043i \(0.225249\pi\)
\(338\) 0 0
\(339\) 537452. 930895.i 0.254004 0.439948i
\(340\) 0 0
\(341\) −285619. + 164902.i −0.133015 + 0.0767964i
\(342\) 0 0
\(343\) 1.58146e6 1.49884e6i 0.725812 0.687893i
\(344\) 0 0
\(345\) 1.21489e6 + 2.10426e6i 0.549529 + 0.951813i
\(346\) 0 0
\(347\) 237589. + 137172.i 0.105926 + 0.0611565i 0.552027 0.833826i \(-0.313854\pi\)
−0.446101 + 0.894983i \(0.647188\pi\)
\(348\) 0 0
\(349\) 528446.i 0.232240i 0.993235 + 0.116120i \(0.0370457\pi\)
−0.993235 + 0.116120i \(0.962954\pi\)
\(350\) 0 0
\(351\) 722328.i 0.312944i
\(352\) 0 0
\(353\) −135096. 77998.0i −0.0577042 0.0333155i 0.470870 0.882202i \(-0.343940\pi\)
−0.528575 + 0.848887i \(0.677273\pi\)
\(354\) 0 0
\(355\) −2.51180e6 4.35057e6i −1.05783 1.83221i
\(356\) 0 0
\(357\) 4.29242e6 + 1.19137e6i 1.78251 + 0.494740i
\(358\) 0 0
\(359\) 258854. 149449.i 0.106003 0.0612009i −0.446061 0.895002i \(-0.647174\pi\)
0.552064 + 0.833802i \(0.313840\pi\)
\(360\) 0 0
\(361\) 258125. 447086.i 0.104247 0.180561i
\(362\) 0 0
\(363\) −72672.9 −0.0289472
\(364\) 0 0
\(365\) −5.68950e6 −2.23533
\(366\) 0 0
\(367\) 1.36459e6 2.36354e6i 0.528855 0.916004i −0.470578 0.882358i \(-0.655955\pi\)
0.999434 0.0336463i \(-0.0107120\pi\)
\(368\) 0 0
\(369\) −4.30619e6 + 2.48618e6i −1.64637 + 0.950533i
\(370\) 0 0
\(371\) −2.01066e6 + 519537.i −0.758409 + 0.195967i
\(372\) 0 0
\(373\) −976118. 1.69069e6i −0.363270 0.629203i 0.625227 0.780443i \(-0.285007\pi\)
−0.988497 + 0.151240i \(0.951673\pi\)
\(374\) 0 0
\(375\) −2.46813e6 1.42498e6i −0.906338 0.523274i
\(376\) 0 0
\(377\) 1.26019e6i 0.456648i
\(378\) 0 0
\(379\) 223755.i 0.0800157i −0.999199 0.0400079i \(-0.987262\pi\)
0.999199 0.0400079i \(-0.0127383\pi\)
\(380\) 0 0
\(381\) 2.59749e6 + 1.49966e6i 0.916730 + 0.529274i
\(382\) 0 0
\(383\) 2.04849e6 + 3.54809e6i 0.713572 + 1.23594i 0.963508 + 0.267680i \(0.0862570\pi\)
−0.249936 + 0.968262i \(0.580410\pi\)
\(384\) 0 0
\(385\) −3.22149e6 3.27960e6i −1.10766 1.12764i
\(386\) 0 0
\(387\) −4.86526e6 + 2.80896e6i −1.65131 + 0.953384i
\(388\) 0 0
\(389\) −688529. + 1.19257e6i −0.230700 + 0.399584i −0.958014 0.286720i \(-0.907435\pi\)
0.727314 + 0.686305i \(0.240768\pi\)
\(390\) 0 0
\(391\) −1.78401e6 −0.590141
\(392\) 0 0
\(393\) −3.67894e6 −1.20155
\(394\) 0 0
\(395\) 807957. 1.39942e6i 0.260553 0.451290i
\(396\) 0 0
\(397\) −3.87505e6 + 2.23726e6i −1.23396 + 0.712427i −0.967853 0.251517i \(-0.919071\pi\)
−0.266106 + 0.963944i \(0.585737\pi\)
\(398\) 0 0
\(399\) 2.94113e6 + 2.99418e6i 0.924872 + 0.941555i
\(400\) 0 0
\(401\) −2.98261e6 5.16604e6i −0.926266 1.60434i −0.789512 0.613735i \(-0.789666\pi\)
−0.136755 0.990605i \(-0.543667\pi\)
\(402\) 0 0
\(403\) 451311. + 260565.i 0.138425 + 0.0799195i
\(404\) 0 0
\(405\) 3.92179e6i 1.18808i
\(406\) 0 0
\(407\) 5.63757e6i 1.68696i
\(408\) 0 0
\(409\) −1.05768e6 610654.i −0.312642 0.180504i 0.335466 0.942052i \(-0.391106\pi\)
−0.648108 + 0.761548i \(0.724440\pi\)
\(410\) 0 0
\(411\) 1.50576e6 + 2.60805e6i 0.439695 + 0.761573i
\(412\) 0 0
\(413\) −3.78090e6 + 976954.i −1.09074 + 0.281838i
\(414\) 0 0
\(415\) −1.29547e6 + 747939.i −0.369238 + 0.213180i
\(416\) 0 0
\(417\) −3.67026e6 + 6.35707e6i −1.03361 + 1.79026i
\(418\) 0 0
\(419\) 3.12252e6 0.868901 0.434450 0.900696i \(-0.356943\pi\)
0.434450 + 0.900696i \(0.356943\pi\)
\(420\) 0 0
\(421\) −937555. −0.257805 −0.128903 0.991657i \(-0.541145\pi\)
−0.128903 + 0.991657i \(0.541145\pi\)
\(422\) 0 0
\(423\) −3.30456e6 + 5.72366e6i −0.897971 + 1.55533i
\(424\) 0 0
\(425\) 5.83344e6 3.36794e6i 1.56658 0.904464i
\(426\) 0 0
\(427\) 5.45376e6 + 1.51371e6i 1.44753 + 0.401765i
\(428\) 0 0
\(429\) 2.99988e6 + 5.19595e6i 0.786975 + 1.36308i
\(430\) 0 0
\(431\) −235746. 136108.i −0.0611296 0.0352932i 0.469124 0.883132i \(-0.344570\pi\)
−0.530253 + 0.847839i \(0.677903\pi\)
\(432\) 0 0
\(433\) 6.33614e6i 1.62407i −0.583608 0.812035i \(-0.698360\pi\)
0.583608 0.812035i \(-0.301640\pi\)
\(434\) 0 0
\(435\) 3.98311e6i 1.00925i
\(436\) 0 0
\(437\) −1.45565e6 840419.i −0.364630 0.210519i
\(438\) 0 0
\(439\) −59115.3 102391.i −0.0146399 0.0253571i 0.858613 0.512625i \(-0.171327\pi\)
−0.873253 + 0.487268i \(0.837994\pi\)
\(440\) 0 0
\(441\) 4.29016e6 2.37570e6i 1.05045 0.581694i
\(442\) 0 0
\(443\) 3.87402e6 2.23667e6i 0.937891 0.541492i 0.0485926 0.998819i \(-0.484526\pi\)
0.889299 + 0.457327i \(0.151193\pi\)
\(444\) 0 0
\(445\) 2.06506e6 3.57678e6i 0.494347 0.856234i
\(446\) 0 0
\(447\) −458952. −0.108642
\(448\) 0 0
\(449\) 1.27906e6 0.299416 0.149708 0.988730i \(-0.452167\pi\)
0.149708 + 0.988730i \(0.452167\pi\)
\(450\) 0 0
\(451\) −3.45262e6 + 5.98012e6i −0.799297 + 1.38442i
\(452\) 0 0
\(453\) 4.20767e6 2.42930e6i 0.963376 0.556206i
\(454\) 0 0
\(455\) −1.94271e6 + 6.99942e6i −0.439925 + 1.58502i
\(456\) 0 0
\(457\) 2.26066e6 + 3.91558e6i 0.506343 + 0.877012i 0.999973 + 0.00734012i \(0.00233645\pi\)
−0.493630 + 0.869672i \(0.664330\pi\)
\(458\) 0 0
\(459\) 1.45172e6 + 838148.i 0.321625 + 0.185690i
\(460\) 0 0
\(461\) 1.58045e6i 0.346360i 0.984890 + 0.173180i \(0.0554043\pi\)
−0.984890 + 0.173180i \(0.944596\pi\)
\(462\) 0 0
\(463\) 7.54852e6i 1.63648i −0.574880 0.818238i \(-0.694951\pi\)
0.574880 0.818238i \(-0.305049\pi\)
\(464\) 0 0
\(465\) −1.42647e6 823574.i −0.305936 0.176632i
\(466\) 0 0
\(467\) −3.27541e6 5.67317e6i −0.694982 1.20374i −0.970187 0.242358i \(-0.922079\pi\)
0.275205 0.961385i \(-0.411254\pi\)
\(468\) 0 0
\(469\) 343997. + 1.33130e6i 0.0722143 + 0.279476i
\(470\) 0 0
\(471\) 7.92436e6 4.57513e6i 1.64593 0.950279i
\(472\) 0 0
\(473\) −3.90087e6 + 6.75651e6i −0.801695 + 1.38858i
\(474\) 0 0
\(475\) 6.34632e6 1.29059
\(476\) 0 0
\(477\) −4.67401e6 −0.940576
\(478\) 0 0
\(479\) −2.09770e6 + 3.63332e6i −0.417739 + 0.723545i −0.995712 0.0925112i \(-0.970511\pi\)
0.577973 + 0.816056i \(0.303844\pi\)
\(480\) 0 0
\(481\) −7.71457e6 + 4.45401e6i −1.52037 + 0.877785i
\(482\) 0 0
\(483\) −2.56792e6 + 2.52242e6i −0.500857 + 0.491982i
\(484\) 0 0
\(485\) −2.31238e6 4.00516e6i −0.446380 0.773152i
\(486\) 0 0
\(487\) 2.42013e6 + 1.39726e6i 0.462399 + 0.266966i 0.713052 0.701111i \(-0.247312\pi\)
−0.250653 + 0.968077i \(0.580645\pi\)
\(488\) 0 0
\(489\) 5.08064e6i 0.960830i
\(490\) 0 0
\(491\) 3.03606e6i 0.568338i −0.958774 0.284169i \(-0.908282\pi\)
0.958774 0.284169i \(-0.0917177\pi\)
\(492\) 0 0
\(493\) −2.53269e6 1.46225e6i −0.469315 0.270959i
\(494\) 0 0
\(495\) −5.17339e6 8.96057e6i −0.948990 1.64370i
\(496\) 0 0
\(497\) 5.30918e6 5.21511e6i 0.964132 0.947049i
\(498\) 0 0
\(499\) −3.90725e6 + 2.25585e6i −0.702458 + 0.405564i −0.808262 0.588823i \(-0.799592\pi\)
0.105804 + 0.994387i \(0.466258\pi\)
\(500\) 0 0
\(501\) 325035. 562977.i 0.0578544 0.100207i
\(502\) 0 0
\(503\) −5.19848e6 −0.916129 −0.458065 0.888919i \(-0.651457\pi\)
−0.458065 + 0.888919i \(0.651457\pi\)
\(504\) 0 0
\(505\) 1.57615e7 2.75023
\(506\) 0 0
\(507\) 447011. 774245.i 0.0772321 0.133770i
\(508\) 0 0
\(509\) −3.58777e6 + 2.07140e6i −0.613805 + 0.354380i −0.774453 0.632631i \(-0.781975\pi\)
0.160648 + 0.987012i \(0.448642\pi\)
\(510\) 0 0
\(511\) −2.10862e6 8.16055e6i −0.357228 1.38251i
\(512\) 0 0
\(513\) 789676. + 1.36776e6i 0.132482 + 0.229465i
\(514\) 0 0
\(515\) −1.87038e6 1.07986e6i −0.310750 0.179412i
\(516\) 0 0
\(517\) 9.17825e6i 1.51020i
\(518\) 0 0
\(519\) 9.95088e6i 1.62160i
\(520\) 0 0
\(521\) −4.24991e6 2.45369e6i −0.685940 0.396027i 0.116150 0.993232i \(-0.462945\pi\)
−0.802089 + 0.597204i \(0.796278\pi\)
\(522\) 0 0
\(523\) −4.49822e6 7.79114e6i −0.719095 1.24551i −0.961359 0.275299i \(-0.911223\pi\)
0.242263 0.970211i \(-0.422110\pi\)
\(524\) 0 0
\(525\) 3.63476e6 1.30957e7i 0.575542 2.07363i
\(526\) 0 0
\(527\) 1.04735e6 604688.i 0.164273 0.0948429i
\(528\) 0 0
\(529\) −2.49740e6 + 4.32562e6i −0.388015 + 0.672062i
\(530\) 0 0
\(531\) −8.78915e6 −1.35273
\(532\) 0 0
\(533\) 1.09111e7 1.66360
\(534\) 0 0
\(535\) 623010. 1.07908e6i 0.0941045 0.162994i
\(536\) 0 0
\(537\) 832597. 480700.i 0.124595 0.0719347i
\(538\) 0 0
\(539\) 3.51005e6 5.83611e6i 0.520405 0.865269i
\(540\) 0 0
\(541\) −557536. 965681.i −0.0818993 0.141854i 0.822166 0.569247i \(-0.192765\pi\)
−0.904066 + 0.427393i \(0.859432\pi\)
\(542\) 0 0
\(543\) −5.47279e6 3.15971e6i −0.796543 0.459884i
\(544\) 0 0
\(545\) 1.58218e7i 2.28173i
\(546\) 0 0
\(547\) 164832.i 0.0235545i 0.999931 + 0.0117772i \(0.00374889\pi\)
−0.999931 + 0.0117772i \(0.996251\pi\)
\(548\) 0 0
\(549\) 1.10321e7 + 6.36939e6i 1.56217 + 0.901918i
\(550\) 0 0
\(551\) −1.37768e6 2.38622e6i −0.193317 0.334835i
\(552\) 0 0
\(553\) 2.30666e6 + 640219.i 0.320753 + 0.0890258i
\(554\) 0 0
\(555\) 2.43837e7 1.40779e7i 3.36021 1.94002i
\(556\) 0 0
\(557\) 4.56783e6 7.91171e6i 0.623838 1.08052i −0.364927 0.931036i \(-0.618906\pi\)
0.988764 0.149482i \(-0.0477607\pi\)
\(558\) 0 0
\(559\) 1.23277e7 1.66860
\(560\) 0 0
\(561\) 1.39236e7 1.86786
\(562\) 0 0
\(563\) −3.84849e6 + 6.66579e6i −0.511705 + 0.886300i 0.488203 + 0.872730i \(0.337653\pi\)
−0.999908 + 0.0135693i \(0.995681\pi\)
\(564\) 0 0
\(565\) 3.52271e6 2.03384e6i 0.464254 0.268037i
\(566\) 0 0
\(567\) −5.62509e6 + 1.45348e6i −0.734805 + 0.189867i
\(568\) 0 0
\(569\) −2.96198e6 5.13030e6i −0.383532 0.664297i 0.608032 0.793912i \(-0.291959\pi\)
−0.991564 + 0.129615i \(0.958626\pi\)
\(570\) 0 0
\(571\) 7.44621e6 + 4.29907e6i 0.955752 + 0.551804i 0.894863 0.446341i \(-0.147273\pi\)
0.0608891 + 0.998145i \(0.480606\pi\)
\(572\) 0 0
\(573\) 1.14901e7i 1.46197i
\(574\) 0 0
\(575\) 5.44283e6i 0.686524i
\(576\) 0 0
\(577\) −5.98064e6 3.45293e6i −0.747839 0.431765i 0.0770732 0.997025i \(-0.475442\pi\)
−0.824913 + 0.565260i \(0.808776\pi\)
\(578\) 0 0
\(579\) 2.65910e6 + 4.60569e6i 0.329638 + 0.570950i
\(580\) 0 0
\(581\) −1.55290e6 1.58091e6i −0.190855 0.194298i
\(582\) 0 0
\(583\) −5.62130e6 + 3.24546e6i −0.684960 + 0.395462i
\(584\) 0 0
\(585\) −8.17455e6 + 1.41587e7i −0.987584 + 1.71055i
\(586\) 0 0
\(587\) −9.16568e6 −1.09792 −0.548958 0.835850i \(-0.684975\pi\)
−0.548958 + 0.835850i \(0.684975\pi\)
\(588\) 0 0
\(589\) 1.13944e6 0.135332
\(590\) 0 0
\(591\) −784657. + 1.35907e6i −0.0924083 + 0.160056i
\(592\) 0 0
\(593\) 3.29964e6 1.90505e6i 0.385328 0.222469i −0.294806 0.955557i \(-0.595255\pi\)
0.680134 + 0.733088i \(0.261922\pi\)
\(594\) 0 0
\(595\) 1.18130e7 + 1.20261e7i 1.36795 + 1.39262i
\(596\) 0 0
\(597\) −7.67510e6 1.32937e7i −0.881349 1.52654i
\(598\) 0 0
\(599\) 3.17064e6 + 1.83057e6i 0.361061 + 0.208459i 0.669546 0.742771i \(-0.266489\pi\)
−0.308485 + 0.951229i \(0.599822\pi\)
\(600\) 0 0
\(601\) 1.35098e6i 0.152568i −0.997086 0.0762840i \(-0.975694\pi\)
0.997086 0.0762840i \(-0.0243056\pi\)
\(602\) 0 0
\(603\) 3.09477e6i 0.346605i
\(604\) 0 0
\(605\) −238166. 137505.i −0.0264540 0.0152732i
\(606\) 0 0
\(607\) −6.08662e6 1.05423e7i −0.670509 1.16136i −0.977760 0.209727i \(-0.932742\pi\)
0.307251 0.951629i \(-0.400591\pi\)
\(608\) 0 0
\(609\) −5.71305e6 + 1.47620e6i −0.624201 + 0.161288i
\(610\) 0 0
\(611\) 1.25597e7 7.25135e6i 1.36106 0.785806i
\(612\) 0 0
\(613\) 1.38851e6 2.40497e6i 0.149245 0.258499i −0.781704 0.623650i \(-0.785649\pi\)
0.930948 + 0.365151i \(0.118983\pi\)
\(614\) 0 0
\(615\) −3.44870e7 −3.67678
\(616\) 0 0
\(617\) −3.36595e6 −0.355955 −0.177978 0.984035i \(-0.556955\pi\)
−0.177978 + 0.984035i \(0.556955\pi\)
\(618\) 0 0
\(619\) −8.38142e6 + 1.45171e7i −0.879207 + 1.52283i −0.0269947 + 0.999636i \(0.508594\pi\)
−0.852212 + 0.523196i \(0.824740\pi\)
\(620\) 0 0
\(621\) −1.17304e6 + 677255.i −0.122063 + 0.0704731i
\(622\) 0 0
\(623\) 5.89559e6 + 1.63634e6i 0.608565 + 0.168909i
\(624\) 0 0
\(625\) 1.69080e6 + 2.92856e6i 0.173138 + 0.299884i
\(626\) 0 0
\(627\) 1.13608e7 + 6.55917e6i 1.15409 + 0.666315i
\(628\) 0 0
\(629\) 2.06727e7i 2.08339i
\(630\) 0 0
\(631\) 7.07244e6i 0.707124i 0.935411 + 0.353562i \(0.115030\pi\)
−0.935411 + 0.353562i \(0.884970\pi\)
\(632\) 0 0
\(633\) 2.59692e6 + 1.49933e6i 0.257602 + 0.148727i
\(634\) 0 0
\(635\) 5.67504e6 + 9.82946e6i 0.558515 + 0.967376i
\(636\) 0 0
\(637\) −1.07594e7 192366.i −1.05060 0.0187836i
\(638\) 0 0
\(639\) 1.45058e7 8.37494e6i 1.40537 0.811390i
\(640\) 0 0
\(641\) 8.79135e6 1.52271e7i 0.845105 1.46376i −0.0404249 0.999183i \(-0.512871\pi\)
0.885530 0.464582i \(-0.153796\pi\)
\(642\) 0 0
\(643\) −1.07973e7 −1.02988 −0.514940 0.857226i \(-0.672186\pi\)
−0.514940 + 0.857226i \(0.672186\pi\)
\(644\) 0 0
\(645\) −3.89644e7 −3.68781
\(646\) 0 0
\(647\) 1.76538e6 3.05773e6i 0.165797 0.287169i −0.771141 0.636665i \(-0.780314\pi\)
0.936938 + 0.349495i \(0.113647\pi\)
\(648\) 0 0
\(649\) −1.05705e7 + 6.10286e6i −0.985104 + 0.568750i
\(650\) 0 0
\(651\) 652594. 2.35124e6i 0.0603519 0.217443i
\(652\) 0 0
\(653\) 7.06624e6 + 1.22391e7i 0.648493 + 1.12322i 0.983483 + 0.181001i \(0.0579338\pi\)
−0.334990 + 0.942222i \(0.608733\pi\)
\(654\) 0 0
\(655\) −1.20567e7 6.96096e6i −1.09806 0.633966i
\(656\) 0 0
\(657\) 1.89702e7i 1.71458i
\(658\) 0 0
\(659\) 8.40793e6i 0.754181i −0.926176 0.377090i \(-0.876925\pi\)
0.926176 0.377090i \(-0.123075\pi\)
\(660\) 0 0
\(661\) 5.66468e6 + 3.27051e6i 0.504280 + 0.291146i 0.730479 0.682935i \(-0.239297\pi\)
−0.226199 + 0.974081i \(0.572630\pi\)
\(662\) 0 0
\(663\) −1.10004e7 1.90533e7i −0.971909 1.68339i
\(664\) 0 0
\(665\) 3.97343e6 + 1.53775e7i 0.348426 + 1.34844i
\(666\) 0 0
\(667\) 2.04651e6 1.18155e6i 0.178114 0.102834i
\(668\) 0 0
\(669\) −1.34747e7 + 2.33389e7i −1.16401 + 2.01612i
\(670\) 0 0
\(671\) 1.76907e7 1.51683
\(672\) 0 0
\(673\) −1.09027e6 −0.0927890 −0.0463945 0.998923i \(-0.514773\pi\)
−0.0463945 + 0.998923i \(0.514773\pi\)
\(674\) 0 0
\(675\) 2.55711e6 4.42904e6i 0.216018 0.374153i
\(676\) 0 0
\(677\) −1.40358e6 + 810359.i −0.117697 + 0.0679525i −0.557693 0.830047i \(-0.688313\pi\)
0.439996 + 0.898000i \(0.354980\pi\)
\(678\) 0 0
\(679\) 4.88766e6 4.80106e6i 0.406843 0.399634i
\(680\) 0 0
\(681\) −1.26110e7 2.18429e7i −1.04204 1.80486i
\(682\) 0 0
\(683\) −1.83458e7 1.05919e7i −1.50482 0.868807i −0.999984 0.00559114i \(-0.998220\pi\)
−0.504834 0.863216i \(-0.668446\pi\)
\(684\) 0 0
\(685\) 1.13962e7i 0.927973i
\(686\) 0 0
\(687\) 995856.i 0.0805017i
\(688\) 0 0
\(689\) 8.88230e6 + 5.12820e6i 0.712816 + 0.411545i
\(690\) 0 0
\(691\) 4.73880e6 + 8.20784e6i 0.377549 + 0.653934i 0.990705 0.136028i \(-0.0434337\pi\)
−0.613156 + 0.789962i \(0.710100\pi\)
\(692\) 0 0
\(693\) 1.09350e7 1.07412e7i 0.864936 0.849611i
\(694\) 0 0
\(695\) −2.40565e7 + 1.38890e7i −1.88917 + 1.09071i
\(696\) 0 0
\(697\) 1.26606e7 2.19288e7i 0.987126 1.70975i
\(698\) 0 0
\(699\) 1.85338e7 1.43474
\(700\) 0 0
\(701\) 1.44960e7 1.11417 0.557087 0.830454i \(-0.311919\pi\)
0.557087 + 0.830454i \(0.311919\pi\)
\(702\) 0 0
\(703\) −9.73857e6 + 1.68677e7i −0.743202 + 1.28726i
\(704\) 0 0
\(705\) −3.96978e7 + 2.29196e7i −3.00811 + 1.73673i
\(706\) 0 0
\(707\) 5.84145e6 + 2.26070e7i 0.439513 + 1.70096i
\(708\) 0 0
\(709\) −1.16308e7 2.01451e7i −0.868945 1.50506i −0.863076 0.505075i \(-0.831465\pi\)
−0.00586960 0.999983i \(-0.501868\pi\)
\(710\) 0 0
\(711\) 4.66601e6 + 2.69392e6i 0.346156 + 0.199853i
\(712\) 0 0
\(713\) 977221.i 0.0719895i
\(714\) 0 0
\(715\) 2.27044e7i 1.66091i
\(716\) 0 0
\(717\) 1.68576e7 + 9.73273e6i 1.22461 + 0.707028i
\(718\) 0 0
\(719\) 1.89565e6 + 3.28337e6i 0.136753 + 0.236863i 0.926266 0.376871i \(-0.123000\pi\)
−0.789513 + 0.613734i \(0.789667\pi\)
\(720\) 0 0
\(721\) 855675. 3.08293e6i 0.0613015 0.220864i
\(722\) 0 0
\(723\) −1.65440e7 + 9.55170e6i −1.17705 + 0.679571i
\(724\) 0 0
\(725\) −4.46117e6 + 7.72698e6i −0.315213 + 0.545965i
\(726\) 0 0
\(727\) 1.04927e7 0.736294 0.368147 0.929768i \(-0.379992\pi\)
0.368147 + 0.929768i \(0.379992\pi\)
\(728\) 0 0
\(729\) −1.94158e7 −1.35312
\(730\) 0 0
\(731\) 1.43043e7 2.47758e7i 0.990087 1.71488i
\(732\) 0 0
\(733\) 7.94841e6 4.58902e6i 0.546412 0.315471i −0.201262 0.979538i \(-0.564504\pi\)
0.747674 + 0.664066i \(0.231171\pi\)
\(734\) 0 0
\(735\) 3.40075e7 + 608016.i 2.32197 + 0.0415142i
\(736\) 0 0
\(737\) 2.14889e6 + 3.72199e6i 0.145729 + 0.252410i
\(738\) 0 0
\(739\) −1.98212e7 1.14437e7i −1.33511 0.770827i −0.349034 0.937110i \(-0.613490\pi\)
−0.986078 + 0.166283i \(0.946824\pi\)
\(740\) 0 0
\(741\) 2.07285e7i 1.38683i
\(742\) 0 0
\(743\) 8.13890e6i 0.540871i 0.962738 + 0.270435i \(0.0871676\pi\)
−0.962738 + 0.270435i \(0.912832\pi\)
\(744\) 0 0
\(745\) −1.50409e6 868386.i −0.0992848 0.0573221i
\(746\) 0 0
\(747\) −2.49381e6 4.31940e6i −0.163516 0.283219i
\(748\) 0 0
\(749\) 1.77865e6 + 493668.i 0.115847 + 0.0321537i
\(750\) 0 0
\(751\) −6.93489e6 + 4.00386e6i −0.448683 + 0.259048i −0.707274 0.706940i \(-0.750075\pi\)
0.258591 + 0.965987i \(0.416742\pi\)
\(752\) 0 0
\(753\) 1.75275e7 3.03585e7i 1.12650 1.95116i
\(754\) 0 0
\(755\) 1.83860e7 1.17387
\(756\) 0 0
\(757\) −1.42534e7 −0.904020 −0.452010 0.892013i \(-0.649293\pi\)
−0.452010 + 0.892013i \(0.649293\pi\)
\(758\) 0 0
\(759\) −5.62538e6 + 9.74344e6i −0.354444 + 0.613914i
\(760\) 0 0
\(761\) −6.94692e6 + 4.01081e6i −0.434841 + 0.251056i −0.701407 0.712761i \(-0.747444\pi\)
0.266566 + 0.963817i \(0.414111\pi\)
\(762\) 0 0
\(763\) −2.26935e7 + 5.86380e6i −1.41120 + 0.364643i
\(764\) 0 0
\(765\) 1.89705e7 + 3.28579e7i 1.17200 + 2.02996i
\(766\) 0 0
\(767\) 1.67025e7 + 9.64322e6i 1.02517 + 0.591880i
\(768\) 0 0
\(769\) 6.02804e6i 0.367587i −0.982965 0.183794i \(-0.941162\pi\)
0.982965 0.183794i \(-0.0588378\pi\)
\(770\) 0 0
\(771\) 9.71166e6i 0.588380i
\(772\) 0 0
\(773\) 5.18009e6 + 2.99073e6i 0.311809 + 0.180023i 0.647736 0.761865i \(-0.275716\pi\)
−0.335927 + 0.941888i \(0.609049\pi\)
\(774\) 0 0
\(775\) −1.84484e6 3.19536e6i −0.110333 0.191102i
\(776\) 0 0
\(777\) 2.92292e7 + 2.97564e7i 1.73686 + 1.76819i
\(778\) 0 0
\(779\) 2.06606e7 1.19284e7i 1.21983 0.704270i
\(780\) 0 0
\(781\) 1.16305e7 2.01446e7i 0.682293 1.18177i
\(782\) 0 0
\(783\) −2.22043e6 −0.129429
\(784\) 0 0
\(785\) 3.46265e7 2.00556
\(786\) 0 0
\(787\) 5.44997e6 9.43963e6i 0.313659 0.543273i −0.665493 0.746404i \(-0.731779\pi\)
0.979151 + 0.203132i \(0.0651119\pi\)
\(788\) 0 0
\(789\) 2.51645e7 1.45287e7i 1.43911 0.830873i
\(790\) 0 0
\(791\) 4.22274e6 + 4.29891e6i 0.239968 + 0.244296i
\(792\) 0 0
\(793\) −1.39766e7 2.42083e7i −0.789260 1.36704i
\(794\) 0 0
\(795\) −2.80746e7 1.62089e7i −1.57542 0.909567i
\(796\) 0 0
\(797\) 9.04729e6i 0.504514i 0.967660 + 0.252257i \(0.0811728\pi\)
−0.967660 + 0.252257i \(0.918827\pi\)
\(798\) 0 0
\(799\) 3.36562e7i 1.86508i
\(800\) 0 0
\(801\) 1.19258e7 + 6.88539e6i 0.656762 + 0.379182i
\(802\) 0 0
\(803\) −1.31722e7 2.28149e7i −0.720889 1.24862i
\(804\) 0 0
\(805\) −1.31883e7 + 3.40775e6i −0.717299 + 0.185344i
\(806\) 0 0
\(807\) 5.47537e6 3.16121e6i 0.295958 0.170871i
\(808\) 0 0
\(809\) −1.33927e7 + 2.31969e7i −0.719445 + 1.24612i 0.241775 + 0.970332i \(0.422270\pi\)
−0.961220 + 0.275783i \(0.911063\pi\)
\(810\) 0 0
\(811\) −1.53751e7 −0.820853 −0.410427 0.911894i \(-0.634620\pi\)
−0.410427 + 0.911894i \(0.634620\pi\)
\(812\) 0 0
\(813\) −1.78688e7 −0.948130
\(814\) 0 0
\(815\) 9.61312e6 1.66504e7i 0.506956 0.878074i
\(816\) 0 0
\(817\) 2.33429e7 1.34771e7i 1.22349 0.706382i
\(818\) 0 0
\(819\) −2.33377e7 6.47745e6i −1.21576 0.337438i
\(820\) 0 0
\(821\) 1.10075e7 + 1.90655e7i 0.569940 + 0.987166i 0.996571 + 0.0827399i \(0.0263671\pi\)
−0.426631 + 0.904426i \(0.640300\pi\)
\(822\) 0 0
\(823\) 3.81561e6 + 2.20294e6i 0.196365 + 0.113371i 0.594959 0.803756i \(-0.297168\pi\)
−0.398594 + 0.917128i \(0.630502\pi\)
\(824\) 0 0
\(825\) 4.24794e7i 2.17292i
\(826\) 0 0
\(827\) 1.96164e7i 0.997369i −0.866783 0.498685i \(-0.833817\pi\)
0.866783 0.498685i \(-0.166183\pi\)
\(828\) 0 0
\(829\) 4.99433e6 + 2.88348e6i 0.252401 + 0.145724i 0.620863 0.783919i \(-0.286782\pi\)
−0.368462 + 0.929643i \(0.620116\pi\)
\(830\) 0 0
\(831\) −368409. 638104.i −0.0185067 0.0320545i
\(832\) 0 0
\(833\) −1.28712e7 + 2.14007e7i −0.642697 + 1.06860i
\(834\) 0 0
\(835\) 2.13043e6 1.23000e6i 0.105743 0.0610506i
\(836\) 0 0
\(837\) 459110. 795201.i 0.0226518 0.0392341i
\(838\) 0 0
\(839\) −1.04959e6 −0.0514774 −0.0257387 0.999669i \(-0.508194\pi\)
−0.0257387 + 0.999669i \(0.508194\pi\)
\(840\) 0 0
\(841\) −1.66374e7 −0.811137
\(842\) 0 0
\(843\) −5.90588e6 + 1.02293e7i −0.286231 + 0.495766i
\(844\) 0 0
\(845\) 2.92991e6 1.69158e6i 0.141160 0.0814989i
\(846\) 0 0
\(847\) 108958. 392567.i 0.00521856 0.0188020i
\(848\) 0 0
\(849\) 2.25194e7 + 3.90047e7i 1.07223 + 1.85715i
\(850\) 0 0
\(851\) −1.44664e7 8.35215e6i −0.684755 0.395343i
\(852\) 0 0
\(853\) 2.19938e7i 1.03497i 0.855692 + 0.517485i \(0.173132\pi\)
−0.855692 + 0.517485i \(0.826868\pi\)
\(854\) 0 0
\(855\) 3.57469e7i 1.67233i
\(856\) 0 0
\(857\) 1.41287e7 + 8.15723e6i 0.657130 + 0.379394i 0.791183 0.611580i \(-0.209466\pi\)
−0.134052 + 0.990974i \(0.542799\pi\)
\(858\) 0 0
\(859\) 1.57232e7 + 2.72333e7i 0.727038 + 1.25927i 0.958130 + 0.286335i \(0.0924369\pi\)
−0.231092 + 0.972932i \(0.574230\pi\)
\(860\) 0 0
\(861\) −1.27814e7 4.94653e7i −0.587586 2.27401i
\(862\) 0 0
\(863\) −1.68377e7 + 9.72127e6i −0.769585 + 0.444320i −0.832727 0.553684i \(-0.813221\pi\)
0.0631415 + 0.998005i \(0.479888\pi\)
\(864\) 0 0
\(865\) −1.88281e7 + 3.26113e7i −0.855593 + 1.48193i
\(866\) 0 0
\(867\) −1.82222e7 −0.823293
\(868\) 0 0
\(869\) 7.48223e6 0.336110
\(870\) 0 0
\(871\) 3.39550e6 5.88117e6i 0.151655 0.262675i
\(872\) 0 0
\(873\) 1.33541e7 7.71002e6i 0.593035 0.342389i
\(874\) 0 0
\(875\) 1.13979e7 1.11960e7i 0.503276 0.494358i
\(876\) 0 0
\(877\) −2.07888e7 3.60072e7i −0.912704 1.58085i −0.810228 0.586115i \(-0.800657\pi\)
−0.102476 0.994735i \(-0.532677\pi\)
\(878\) 0 0
\(879\) 3.18895e7 + 1.84114e7i 1.39212 + 0.803739i
\(880\) 0 0
\(881\) 7.22354e6i 0.313553i −0.987634 0.156776i \(-0.949890\pi\)
0.987634 0.156776i \(-0.0501102\pi\)
\(882\) 0 0
\(883\) 2.73652e7i 1.18113i −0.806992 0.590563i \(-0.798906\pi\)
0.806992 0.590563i \(-0.201094\pi\)
\(884\) 0 0
\(885\) −5.27923e7 3.04796e7i −2.26575 1.30813i
\(886\) 0 0
\(887\) −1.05430e6 1.82610e6i −0.0449939 0.0779317i 0.842651 0.538460i \(-0.180994\pi\)
−0.887645 + 0.460528i \(0.847660\pi\)
\(888\) 0 0
\(889\) −1.19953e7 + 1.17828e7i −0.509046 + 0.500026i
\(890\) 0 0
\(891\) −1.57263e7 + 9.07961e6i −0.663642 + 0.383154i
\(892\) 0 0
\(893\) 1.58549e7 2.74615e7i 0.665326 1.15238i
\(894\) 0 0
\(895\) 3.63814e6 0.151818
\(896\) 0 0
\(897\) 1.77775e7 0.737716
\(898\) 0 0
\(899\) −800971. + 1.38732e6i −0.0330535 + 0.0572504i
\(900\) 0 0
\(901\) 2.06130e7 1.19009e7i 0.845921 0.488393i
\(902\) 0 0
\(903\) −1.44408e7 5.58873e7i −0.589349 2.28084i
\(904\) 0 0
\(905\) −1.19570e7 2.07102e7i −0.485291 0.840549i
\(906\) 0 0
\(907\) 3.21121e7 + 1.85399e7i 1.29614 + 0.748324i 0.979734 0.200301i \(-0.0641921\pi\)
0.316401 + 0.948625i \(0.397525\pi\)
\(908\) 0 0
\(909\) 5.25525e7i 2.10952i
\(910\) 0 0
\(911\) 8.94944e6i 0.357273i −0.983915 0.178636i \(-0.942831\pi\)
0.983915 0.178636i \(-0.0571686\pi\)
\(912\) 0 0
\(913\) −5.99846e6 3.46321e6i −0.238157 0.137500i
\(914\) 0 0
\(915\) 4.41764e7 + 7.65158e7i 1.74437 + 3.02133i
\(916\) 0 0
\(917\) 5.51581e6 1.98730e7i 0.216614 0.780442i
\(918\) 0 0
\(919\) 2.38735e7 1.37834e7i 0.932455 0.538353i 0.0448676 0.998993i \(-0.485713\pi\)
0.887587 + 0.460640i \(0.152380\pi\)
\(920\) 0 0
\(921\) 1.71926e6 2.97785e6i 0.0667873 0.115679i
\(922\) 0 0
\(923\) −3.67550e7 −1.42008
\(924\) 0 0
\(925\) 6.30703e7 2.42365
\(926\) 0 0
\(927\) 3.60052e6 6.23628e6i 0.137615 0.238356i
\(928\) 0 0
\(929\) −2.99496e7 + 1.72914e7i −1.13855 + 0.657341i −0.946071 0.323960i \(-0.894986\pi\)
−0.192477 + 0.981301i \(0.561652\pi\)
\(930\) 0 0
\(931\) −2.05837e7 + 1.13983e7i −0.778303 + 0.430989i
\(932\) 0 0
\(933\) 8.43246e6 + 1.46055e7i 0.317140 + 0.549302i
\(934\) 0 0
\(935\) 4.56307e7 + 2.63449e7i 1.70698 + 0.985524i
\(936\) 0 0
\(937\) 2.64955e7i 0.985877i 0.870064 + 0.492938i \(0.164077\pi\)
−0.870064 + 0.492938i \(0.835923\pi\)
\(938\) 0 0
\(939\) 4.21185e7i 1.55887i
\(940\) 0 0
\(941\) −2.08986e7 1.20658e7i −0.769386 0.444205i 0.0632697 0.997996i \(-0.479847\pi\)
−0.832655 + 0.553791i \(0.813181\pi\)
\(942\) 0 0
\(943\) 1.02302e7 + 1.77193e7i 0.374633 + 0.648884i
\(944\) 0 0
\(945\) 1.23328e7 + 3.42301e6i 0.449245 + 0.124689i
\(946\) 0 0
\(947\) −2.82110e7 + 1.62876e7i −1.02222 + 0.590178i −0.914746 0.404030i \(-0.867609\pi\)
−0.107472 + 0.994208i \(0.534276\pi\)
\(948\) 0 0
\(949\) −2.08135e7 + 3.60501e7i −0.750206 + 1.29939i
\(950\) 0 0
\(951\) 3.65429e7 1.31024
\(952\) 0 0
\(953\) 2.20095e7 0.785016 0.392508 0.919749i \(-0.371608\pi\)
0.392508 + 0.919749i \(0.371608\pi\)
\(954\) 0 0
\(955\) 2.17405e7 3.76557e7i 0.771368 1.33605i
\(956\) 0 0
\(957\) −1.59723e7 + 9.22159e6i −0.563750 + 0.325481i
\(958\) 0 0
\(959\) −1.63458e7 + 4.22362e6i −0.573932 + 0.148299i
\(960\) 0 0
\(961\) 1.39833e7 + 2.42199e7i 0.488430 + 0.845986i
\(962\) 0 0
\(963\) 3.59792e6 + 2.07726e6i 0.125022 + 0.0721814i
\(964\) 0 0
\(965\) 2.01252e7i 0.695699i
\(966\) 0 0
\(967\) 4.35658e7i 1.49823i 0.662439 + 0.749116i \(0.269522\pi\)
−0.662439 + 0.749116i \(0.730478\pi\)
\(968\) 0 0
\(969\) −4.16595e7 2.40521e7i −1.42530 0.822895i
\(970\) 0 0
\(971\) −1.75209e7 3.03471e7i −0.596360 1.03293i −0.993353 0.115104i \(-0.963280\pi\)
0.396994 0.917821i \(-0.370053\pi\)
\(972\) 0 0
\(973\) −2.88370e7 2.93572e7i −0.976491 0.994105i
\(974\) 0 0
\(975\) −5.81296e7 + 3.35612e7i −1.95833 + 1.13064i
\(976\) 0 0
\(977\) −4.14260e6 + 7.17519e6i −0.138847 + 0.240490i −0.927060 0.374912i \(-0.877673\pi\)
0.788214 + 0.615402i \(0.211006\pi\)
\(978\) 0 0
\(979\) 1.91238e7 0.637703
\(980\) 0 0
\(981\) −5.27536e7 −1.75017
\(982\) 0 0
\(983\) −3.83932e6 + 6.64989e6i −0.126727 + 0.219498i −0.922407 0.386220i \(-0.873781\pi\)
0.795680 + 0.605718i \(0.207114\pi\)
\(984\) 0 0
\(985\) −5.14299e6 + 2.96931e6i −0.168898 + 0.0975135i
\(986\) 0 0
\(987\) −4.75866e7 4.84450e7i −1.55486 1.58291i
\(988\) 0 0
\(989\) 1.15584e7 + 2.00198e7i 0.375757 + 0.650831i
\(990\) 0 0
\(991\) −3.93535e7 2.27207e7i −1.27291 0.734917i −0.297379 0.954760i \(-0.596112\pi\)
−0.975535 + 0.219842i \(0.929446\pi\)
\(992\) 0 0
\(993\) 7.24598e7i 2.33198i
\(994\) 0 0
\(995\) 5.80884e7i 1.86008i
\(996\) 0 0
\(997\) −4.58960e7 2.64981e7i −1.46230 0.844261i −0.463185 0.886262i \(-0.653293\pi\)
−0.999118 + 0.0420007i \(0.986627\pi\)
\(998\) 0 0
\(999\) 7.84787e6 + 1.35929e7i 0.248793 + 0.430922i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.p.c.31.1 yes 14
4.3 odd 2 112.6.p.b.31.7 14
7.3 odd 6 784.6.f.d.783.2 14
7.4 even 3 784.6.f.c.783.13 14
7.5 odd 6 112.6.p.b.47.7 yes 14
28.3 even 6 784.6.f.c.783.14 14
28.11 odd 6 784.6.f.d.783.1 14
28.19 even 6 inner 112.6.p.c.47.1 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.b.31.7 14 4.3 odd 2
112.6.p.b.47.7 yes 14 7.5 odd 6
112.6.p.c.31.1 yes 14 1.1 even 1 trivial
112.6.p.c.47.1 yes 14 28.19 even 6 inner
784.6.f.c.783.13 14 7.4 even 3
784.6.f.c.783.14 14 28.3 even 6
784.6.f.d.783.1 14 28.11 odd 6
784.6.f.d.783.2 14 7.3 odd 6