Properties

Label 112.6.p
Level $112$
Weight $6$
Character orbit 112.p
Rep. character $\chi_{112}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $40$
Newform subspaces $3$
Sturm bound $96$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(96\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(112, [\chi])\).

Total New Old
Modular forms 172 40 132
Cusp forms 148 40 108
Eisenstein series 24 0 24

Trace form

\( 40 q - 1620 q^{9} + 6708 q^{21} + 8408 q^{25} + 23880 q^{29} + 42444 q^{33} - 1076 q^{37} - 53100 q^{45} - 73184 q^{49} + 26268 q^{53} + 111000 q^{57} - 56556 q^{61} - 27324 q^{65} + 78852 q^{73} + 198672 q^{77}+ \cdots + 312564 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
112.6.p.a 112.p 28.f $12$ $17.963$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 112.6.p.a \(0\) \(0\) \(-66\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{3}+(-7+4\beta _{2}+\beta _{9})q^{5}+(-2\beta _{3}+\cdots)q^{7}+\cdots\)
112.6.p.b 112.p 28.f $14$ $17.963$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 112.6.p.b \(0\) \(-9\) \(33\) \(-28\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\beta _{1}-\beta _{5})q^{3}+(3+2\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
112.6.p.c 112.p 28.f $14$ $17.963$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 112.6.p.b \(0\) \(9\) \(33\) \(28\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{1}+\beta _{5})q^{3}+(3+2\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)