Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 172 | 40 | 132 |
Cusp forms | 148 | 40 | 108 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
112.6.p.a | $12$ | $17.963$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(-66\) | \(0\) | \(q+\beta _{3}q^{3}+(-7+4\beta _{2}+\beta _{9})q^{5}+(-2\beta _{3}+\cdots)q^{7}+\cdots\) |
112.6.p.b | $14$ | $17.963$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-9\) | \(33\) | \(-28\) | \(q+(-1-\beta _{1}-\beta _{5})q^{3}+(3+2\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
112.6.p.c | $14$ | $17.963$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(9\) | \(33\) | \(28\) | \(q+(1+\beta _{1}+\beta _{5})q^{3}+(3+2\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(112, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)