Properties

Label 112.6.p.b.47.7
Level $112$
Weight $6$
Character 112.47
Analytic conductor $17.963$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 691 x^{12} - 8602 x^{11} + 416261 x^{10} - 3521447 x^{9} + 66162087 x^{8} + \cdots + 17213603549184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{6}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.7
Root \(7.14120 - 12.3689i\) of defining polynomial
Character \(\chi\) \(=\) 112.47
Dual form 112.6.p.b.31.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(11.5627 + 20.0272i) q^{3} +(-75.7872 - 43.7557i) q^{5} +(90.8476 - 92.4863i) q^{7} +(-145.892 + 252.692i) q^{9} +(350.920 - 202.604i) q^{11} -640.275i q^{13} -2023.74i q^{15} +(1286.81 - 742.939i) q^{17} +(-699.973 + 1212.39i) q^{19} +(2902.68 + 750.029i) q^{21} +(1039.79 + 600.322i) q^{23} +(2266.63 + 3925.92i) q^{25} -1128.15 q^{27} -1968.20 q^{29} +(-406.957 - 704.870i) q^{31} +(8115.18 + 4685.30i) q^{33} +(-10931.9 + 3034.17i) q^{35} +(6956.39 - 12048.8i) q^{37} +(12822.9 - 7403.31i) q^{39} +17041.2i q^{41} -19253.7i q^{43} +(22113.5 - 12767.2i) q^{45} +(11325.4 - 19616.1i) q^{47} +(-300.442 - 16804.3i) q^{49} +(29757.9 + 17180.8i) q^{51} +(8009.36 + 13872.6i) q^{53} -35460.4 q^{55} -32374.3 q^{57} +(-15061.0 - 26086.5i) q^{59} +(-37809.1 - 21829.1i) q^{61} +(10116.7 + 36449.5i) q^{63} +(-28015.7 + 48524.7i) q^{65} +(9185.38 - 5303.18i) q^{67} +27765.4i q^{69} +57405.1i q^{71} +(56304.1 - 32507.2i) q^{73} +(-52416.7 + 90788.5i) q^{75} +(13142.2 - 50861.4i) q^{77} +(15991.3 + 9232.58i) q^{79} +(22407.3 + 38810.6i) q^{81} -17093.5 q^{83} -130031. q^{85} +(-22757.7 - 39417.4i) q^{87} +(-40872.2 - 23597.6i) q^{89} +(-59216.7 - 58167.5i) q^{91} +(9411.04 - 16300.4i) q^{93} +(106098. - 61255.7i) q^{95} -52847.4i q^{97} +118233. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 9 q^{3} + 33 q^{5} - 28 q^{7} - 538 q^{9} + 333 q^{11} + 801 q^{17} - 2135 q^{19} + 2017 q^{21} + 2667 q^{23} + 5434 q^{25} + 17910 q^{27} + 684 q^{29} + 3119 q^{31} + 29013 q^{33} - 2247 q^{35}+ \cdots - 124833 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 11.5627 + 20.0272i 0.741748 + 1.28474i 0.951699 + 0.307033i \(0.0993361\pi\)
−0.209951 + 0.977712i \(0.567331\pi\)
\(4\) 0 0
\(5\) −75.7872 43.7557i −1.35572 0.782727i −0.366678 0.930348i \(-0.619505\pi\)
−0.989044 + 0.147621i \(0.952838\pi\)
\(6\) 0 0
\(7\) 90.8476 92.4863i 0.700758 0.713399i
\(8\) 0 0
\(9\) −145.892 + 252.692i −0.600379 + 1.03989i
\(10\) 0 0
\(11\) 350.920 202.604i 0.874434 0.504855i 0.00561475 0.999984i \(-0.498213\pi\)
0.868819 + 0.495130i \(0.164879\pi\)
\(12\) 0 0
\(13\) 640.275i 1.05077i −0.850864 0.525386i \(-0.823921\pi\)
0.850864 0.525386i \(-0.176079\pi\)
\(14\) 0 0
\(15\) 2023.74i 2.32234i
\(16\) 0 0
\(17\) 1286.81 742.939i 1.07992 0.623492i 0.149045 0.988830i \(-0.452380\pi\)
0.930875 + 0.365339i \(0.119047\pi\)
\(18\) 0 0
\(19\) −699.973 + 1212.39i −0.444833 + 0.770474i −0.998041 0.0625698i \(-0.980070\pi\)
0.553207 + 0.833044i \(0.313404\pi\)
\(20\) 0 0
\(21\) 2902.68 + 750.029i 1.43632 + 0.371133i
\(22\) 0 0
\(23\) 1039.79 + 600.322i 0.409850 + 0.236627i 0.690725 0.723117i \(-0.257291\pi\)
−0.280875 + 0.959744i \(0.590625\pi\)
\(24\) 0 0
\(25\) 2266.63 + 3925.92i 0.725322 + 1.25629i
\(26\) 0 0
\(27\) −1128.15 −0.297823
\(28\) 0 0
\(29\) −1968.20 −0.434584 −0.217292 0.976107i \(-0.569722\pi\)
−0.217292 + 0.976107i \(0.569722\pi\)
\(30\) 0 0
\(31\) −406.957 704.870i −0.0760579 0.131736i 0.825488 0.564420i \(-0.190900\pi\)
−0.901546 + 0.432684i \(0.857567\pi\)
\(32\) 0 0
\(33\) 8115.18 + 4685.30i 1.29722 + 0.748949i
\(34\) 0 0
\(35\) −10931.9 + 3034.17i −1.50843 + 0.418669i
\(36\) 0 0
\(37\) 6956.39 12048.8i 0.835372 1.44691i −0.0583560 0.998296i \(-0.518586\pi\)
0.893728 0.448610i \(-0.148081\pi\)
\(38\) 0 0
\(39\) 12822.9 7403.31i 1.34997 0.779408i
\(40\) 0 0
\(41\) 17041.2i 1.58322i 0.611026 + 0.791611i \(0.290757\pi\)
−0.611026 + 0.791611i \(0.709243\pi\)
\(42\) 0 0
\(43\) 19253.7i 1.58797i −0.607937 0.793986i \(-0.708003\pi\)
0.607937 0.793986i \(-0.291997\pi\)
\(44\) 0 0
\(45\) 22113.5 12767.2i 1.62789 0.939865i
\(46\) 0 0
\(47\) 11325.4 19616.1i 0.747837 1.29529i −0.201020 0.979587i \(-0.564426\pi\)
0.948857 0.315705i \(-0.102241\pi\)
\(48\) 0 0
\(49\) −300.442 16804.3i −0.0178760 0.999840i
\(50\) 0 0
\(51\) 29757.9 + 17180.8i 1.60206 + 0.924947i
\(52\) 0 0
\(53\) 8009.36 + 13872.6i 0.391659 + 0.678374i 0.992669 0.120868i \(-0.0385679\pi\)
−0.601009 + 0.799242i \(0.705235\pi\)
\(54\) 0 0
\(55\) −35460.4 −1.58065
\(56\) 0 0
\(57\) −32374.3 −1.31982
\(58\) 0 0
\(59\) −15061.0 26086.5i −0.563281 0.975631i −0.997207 0.0746831i \(-0.976205\pi\)
0.433926 0.900948i \(-0.357128\pi\)
\(60\) 0 0
\(61\) −37809.1 21829.1i −1.30098 0.751124i −0.320411 0.947278i \(-0.603821\pi\)
−0.980573 + 0.196155i \(0.937155\pi\)
\(62\) 0 0
\(63\) 10116.7 + 36449.5i 0.321134 + 1.15702i
\(64\) 0 0
\(65\) −28015.7 + 48524.7i −0.822467 + 1.42455i
\(66\) 0 0
\(67\) 9185.38 5303.18i 0.249983 0.144328i −0.369774 0.929122i \(-0.620565\pi\)
0.619756 + 0.784794i \(0.287231\pi\)
\(68\) 0 0
\(69\) 27765.4i 0.702071i
\(70\) 0 0
\(71\) 57405.1i 1.35146i 0.737148 + 0.675732i \(0.236172\pi\)
−0.737148 + 0.675732i \(0.763828\pi\)
\(72\) 0 0
\(73\) 56304.1 32507.2i 1.23661 0.713957i 0.268210 0.963360i \(-0.413568\pi\)
0.968400 + 0.249403i \(0.0802345\pi\)
\(74\) 0 0
\(75\) −52416.7 + 90788.5i −1.07601 + 1.86371i
\(76\) 0 0
\(77\) 13142.2 50861.4i 0.252604 0.977601i
\(78\) 0 0
\(79\) 15991.3 + 9232.58i 0.288281 + 0.166439i 0.637166 0.770726i \(-0.280106\pi\)
−0.348885 + 0.937165i \(0.613440\pi\)
\(80\) 0 0
\(81\) 22407.3 + 38810.6i 0.379469 + 0.657260i
\(82\) 0 0
\(83\) −17093.5 −0.272355 −0.136178 0.990684i \(-0.543482\pi\)
−0.136178 + 0.990684i \(0.543482\pi\)
\(84\) 0 0
\(85\) −130031. −1.95209
\(86\) 0 0
\(87\) −22757.7 39417.4i −0.322351 0.558329i
\(88\) 0 0
\(89\) −40872.2 23597.6i −0.546956 0.315785i 0.200937 0.979604i \(-0.435601\pi\)
−0.747893 + 0.663819i \(0.768935\pi\)
\(90\) 0 0
\(91\) −59216.7 58167.5i −0.749620 0.736337i
\(92\) 0 0
\(93\) 9411.04 16300.4i 0.112832 0.195430i
\(94\) 0 0
\(95\) 106098. 61255.7i 1.20614 0.696366i
\(96\) 0 0
\(97\) 52847.4i 0.570288i −0.958485 0.285144i \(-0.907959\pi\)
0.958485 0.285144i \(-0.0920414\pi\)
\(98\) 0 0
\(99\) 118233.i 1.21242i
\(100\) 0 0
\(101\) −155978. + 90053.7i −1.52145 + 0.878412i −0.521775 + 0.853083i \(0.674730\pi\)
−0.999679 + 0.0253292i \(0.991937\pi\)
\(102\) 0 0
\(103\) −12339.7 + 21372.9i −0.114607 + 0.198505i −0.917623 0.397453i \(-0.869894\pi\)
0.803016 + 0.595958i \(0.203227\pi\)
\(104\) 0 0
\(105\) −187168. 183852.i −1.65676 1.62740i
\(106\) 0 0
\(107\) 12330.8 + 7119.17i 0.104119 + 0.0601132i 0.551155 0.834403i \(-0.314187\pi\)
−0.447036 + 0.894516i \(0.647520\pi\)
\(108\) 0 0
\(109\) 90398.4 + 156575.i 0.728777 + 1.26228i 0.957401 + 0.288763i \(0.0932440\pi\)
−0.228624 + 0.973515i \(0.573423\pi\)
\(110\) 0 0
\(111\) 321739. 2.47854
\(112\) 0 0
\(113\) −46481.6 −0.342440 −0.171220 0.985233i \(-0.554771\pi\)
−0.171220 + 0.985233i \(0.554771\pi\)
\(114\) 0 0
\(115\) −52535.1 90993.4i −0.370429 0.641602i
\(116\) 0 0
\(117\) 161793. + 93411.1i 1.09268 + 0.630861i
\(118\) 0 0
\(119\) 48191.7 186506.i 0.311964 1.20733i
\(120\) 0 0
\(121\) 1571.28 2721.54i 0.00975641 0.0168986i
\(122\) 0 0
\(123\) −341288. + 197043.i −2.03404 + 1.17435i
\(124\) 0 0
\(125\) 123239.i 0.705462i
\(126\) 0 0
\(127\) 129698.i 0.713551i −0.934190 0.356775i \(-0.883876\pi\)
0.934190 0.356775i \(-0.116124\pi\)
\(128\) 0 0
\(129\) 385597. 222625.i 2.04014 1.17787i
\(130\) 0 0
\(131\) −79543.3 + 137773.i −0.404973 + 0.701433i −0.994318 0.106448i \(-0.966052\pi\)
0.589346 + 0.807881i \(0.299386\pi\)
\(132\) 0 0
\(133\) 48538.6 + 174880.i 0.237935 + 0.857259i
\(134\) 0 0
\(135\) 85499.5 + 49363.2i 0.403765 + 0.233114i
\(136\) 0 0
\(137\) 65112.8 + 112779.i 0.296391 + 0.513364i 0.975308 0.220851i \(-0.0708835\pi\)
−0.678916 + 0.734216i \(0.737550\pi\)
\(138\) 0 0
\(139\) −317422. −1.39348 −0.696739 0.717325i \(-0.745366\pi\)
−0.696739 + 0.717325i \(0.745366\pi\)
\(140\) 0 0
\(141\) 523807. 2.21883
\(142\) 0 0
\(143\) −129722. 224686.i −0.530487 0.918831i
\(144\) 0 0
\(145\) 149164. + 86119.9i 0.589175 + 0.340160i
\(146\) 0 0
\(147\) 333069. 200320.i 1.27128 0.764595i
\(148\) 0 0
\(149\) 9923.11 17187.3i 0.0366169 0.0634224i −0.847136 0.531376i \(-0.821675\pi\)
0.883753 + 0.467953i \(0.155009\pi\)
\(150\) 0 0
\(151\) 181950. 105049.i 0.649396 0.374929i −0.138829 0.990316i \(-0.544334\pi\)
0.788225 + 0.615387i \(0.211000\pi\)
\(152\) 0 0
\(153\) 433556.i 1.49733i
\(154\) 0 0
\(155\) 71226.8i 0.238130i
\(156\) 0 0
\(157\) −342669. + 197840.i −1.10950 + 0.640568i −0.938699 0.344739i \(-0.887968\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(158\) 0 0
\(159\) −185220. + 320810.i −0.581024 + 1.00636i
\(160\) 0 0
\(161\) 149984. 41628.4i 0.456016 0.126568i
\(162\) 0 0
\(163\) 190266. + 109850.i 0.560907 + 0.323840i 0.753510 0.657437i \(-0.228359\pi\)
−0.192602 + 0.981277i \(0.561693\pi\)
\(164\) 0 0
\(165\) −410018. 710171.i −1.17245 2.03073i
\(166\) 0 0
\(167\) 28110.7 0.0779974 0.0389987 0.999239i \(-0.487583\pi\)
0.0389987 + 0.999239i \(0.487583\pi\)
\(168\) 0 0
\(169\) −38659.7 −0.104122
\(170\) 0 0
\(171\) −204241. 353756.i −0.534137 0.925152i
\(172\) 0 0
\(173\) 372652. + 215150.i 0.946646 + 0.546546i 0.892037 0.451961i \(-0.149276\pi\)
0.0546086 + 0.998508i \(0.482609\pi\)
\(174\) 0 0
\(175\) 569012. + 147028.i 1.40451 + 0.362915i
\(176\) 0 0
\(177\) 348293. 603261.i 0.835625 1.44734i
\(178\) 0 0
\(179\) 36003.6 20786.7i 0.0839871 0.0484900i −0.457418 0.889252i \(-0.651226\pi\)
0.541405 + 0.840762i \(0.317892\pi\)
\(180\) 0 0
\(181\) 273268.i 0.620001i −0.950736 0.310000i \(-0.899671\pi\)
0.950736 0.310000i \(-0.100329\pi\)
\(182\) 0 0
\(183\) 1.00961e6i 2.22858i
\(184\) 0 0
\(185\) −1.05441e6 + 608764.i −2.26506 + 1.30774i
\(186\) 0 0
\(187\) 301045. 521425.i 0.629545 1.09040i
\(188\) 0 0
\(189\) −102490. + 104339.i −0.208702 + 0.212467i
\(190\) 0 0
\(191\) 430294. + 248431.i 0.853458 + 0.492744i 0.861816 0.507221i \(-0.169327\pi\)
−0.00835809 + 0.999965i \(0.502660\pi\)
\(192\) 0 0
\(193\) 114986. + 199162.i 0.222204 + 0.384868i 0.955477 0.295066i \(-0.0953416\pi\)
−0.733273 + 0.679934i \(0.762008\pi\)
\(194\) 0 0
\(195\) −1.29575e6 −2.44025
\(196\) 0 0
\(197\) 67861.0 0.124582 0.0622909 0.998058i \(-0.480159\pi\)
0.0622909 + 0.998058i \(0.480159\pi\)
\(198\) 0 0
\(199\) 331890. + 574851.i 0.594103 + 1.02902i 0.993673 + 0.112314i \(0.0358262\pi\)
−0.399570 + 0.916703i \(0.630840\pi\)
\(200\) 0 0
\(201\) 212416. + 122638.i 0.370848 + 0.214109i
\(202\) 0 0
\(203\) −178806. + 182031.i −0.304538 + 0.310031i
\(204\) 0 0
\(205\) 745652. 1.29151e6i 1.23923 2.14641i
\(206\) 0 0
\(207\) −303394. + 175164.i −0.492131 + 0.284132i
\(208\) 0 0
\(209\) 567269.i 0.898305i
\(210\) 0 0
\(211\) 129670.i 0.200509i −0.994962 0.100254i \(-0.968034\pi\)
0.994962 0.100254i \(-0.0319656\pi\)
\(212\) 0 0
\(213\) −1.14966e6 + 663757.i −1.73628 + 1.00244i
\(214\) 0 0
\(215\) −842459. + 1.45918e6i −1.24295 + 2.15285i
\(216\) 0 0
\(217\) −102162. 26397.8i −0.147279 0.0380556i
\(218\) 0 0
\(219\) 1.30205e6 + 751741.i 1.83450 + 1.05915i
\(220\) 0 0
\(221\) −475686. 823912.i −0.655148 1.13475i
\(222\) 0 0
\(223\) −1.16536e6 −1.56927 −0.784637 0.619956i \(-0.787151\pi\)
−0.784637 + 0.619956i \(0.787151\pi\)
\(224\) 0 0
\(225\) −1.32273e6 −1.74187
\(226\) 0 0
\(227\) 545332. + 944543.i 0.702420 + 1.21663i 0.967615 + 0.252432i \(0.0812303\pi\)
−0.265195 + 0.964195i \(0.585436\pi\)
\(228\) 0 0
\(229\) −37293.9 21531.7i −0.0469947 0.0271324i 0.476319 0.879273i \(-0.341971\pi\)
−0.523313 + 0.852140i \(0.675304\pi\)
\(230\) 0 0
\(231\) 1.17057e6 324895.i 1.44334 0.400602i
\(232\) 0 0
\(233\) −400725. + 694075.i −0.483567 + 0.837562i −0.999822 0.0188729i \(-0.993992\pi\)
0.516255 + 0.856435i \(0.327326\pi\)
\(234\) 0 0
\(235\) −1.71663e6 + 991099.i −2.02772 + 1.17070i
\(236\) 0 0
\(237\) 427014.i 0.493823i
\(238\) 0 0
\(239\) 841735.i 0.953193i −0.879122 0.476596i \(-0.841870\pi\)
0.879122 0.476596i \(-0.158130\pi\)
\(240\) 0 0
\(241\) 715405. 413040.i 0.793432 0.458088i −0.0477375 0.998860i \(-0.515201\pi\)
0.841169 + 0.540772i \(0.181868\pi\)
\(242\) 0 0
\(243\) −655248. + 1.13492e6i −0.711852 + 1.23296i
\(244\) 0 0
\(245\) −712516. + 1.28670e6i −0.758367 + 1.36950i
\(246\) 0 0
\(247\) 776263. + 448176.i 0.809592 + 0.467418i
\(248\) 0 0
\(249\) −197647. 342335.i −0.202019 0.349907i
\(250\) 0 0
\(251\) 1.51586e6 1.51871 0.759357 0.650674i \(-0.225513\pi\)
0.759357 + 0.650674i \(0.225513\pi\)
\(252\) 0 0
\(253\) 486511. 0.477849
\(254\) 0 0
\(255\) −1.50351e6 2.60416e6i −1.44796 2.50794i
\(256\) 0 0
\(257\) −363693. 209978.i −0.343480 0.198309i 0.318330 0.947980i \(-0.396878\pi\)
−0.661810 + 0.749672i \(0.730211\pi\)
\(258\) 0 0
\(259\) −482380. 1.73798e6i −0.446828 1.60988i
\(260\) 0 0
\(261\) 287144. 497348.i 0.260915 0.451918i
\(262\) 0 0
\(263\) 1.08817e6 628258.i 0.970083 0.560078i 0.0708218 0.997489i \(-0.477438\pi\)
0.899262 + 0.437411i \(0.144105\pi\)
\(264\) 0 0
\(265\) 1.40182e6i 1.22625i
\(266\) 0 0
\(267\) 1.09141e6i 0.936932i
\(268\) 0 0
\(269\) −236769. + 136699.i −0.199500 + 0.115182i −0.596422 0.802671i \(-0.703412\pi\)
0.396922 + 0.917852i \(0.370078\pi\)
\(270\) 0 0
\(271\) −386345. + 669169.i −0.319560 + 0.553494i −0.980396 0.197036i \(-0.936868\pi\)
0.660837 + 0.750530i \(0.270202\pi\)
\(272\) 0 0
\(273\) 480225. 1.85852e6i 0.389976 1.50925i
\(274\) 0 0
\(275\) 1.59081e6 + 918457.i 1.26849 + 0.732364i
\(276\) 0 0
\(277\) −15930.9 27593.2i −0.0124750 0.0216074i 0.859720 0.510765i \(-0.170638\pi\)
−0.872196 + 0.489157i \(0.837304\pi\)
\(278\) 0 0
\(279\) 237487. 0.182654
\(280\) 0 0
\(281\) 510770. 0.385887 0.192943 0.981210i \(-0.438197\pi\)
0.192943 + 0.981210i \(0.438197\pi\)
\(282\) 0 0
\(283\) −973793. 1.68666e6i −0.722771 1.25188i −0.959885 0.280394i \(-0.909535\pi\)
0.237114 0.971482i \(-0.423798\pi\)
\(284\) 0 0
\(285\) 2.45356e6 + 1.41656e6i 1.78930 + 1.03306i
\(286\) 0 0
\(287\) 1.57608e6 + 1.54816e6i 1.12947 + 1.10946i
\(288\) 0 0
\(289\) 393988. 682407.i 0.277484 0.480617i
\(290\) 0 0
\(291\) 1.05838e6 611059.i 0.732675 0.423010i
\(292\) 0 0
\(293\) 1.59231e6i 1.08357i 0.840516 + 0.541787i \(0.182252\pi\)
−0.840516 + 0.541787i \(0.817748\pi\)
\(294\) 0 0
\(295\) 2.63603e6i 1.76358i
\(296\) 0 0
\(297\) −395892. + 228568.i −0.260427 + 0.150357i
\(298\) 0 0
\(299\) 384372. 665751.i 0.248641 0.430659i
\(300\) 0 0
\(301\) −1.78070e6 1.74915e6i −1.13286 1.11278i
\(302\) 0 0
\(303\) −3.60705e6 2.08253e6i −2.25707 1.30312i
\(304\) 0 0
\(305\) 1.91030e6 + 3.30873e6i 1.17585 + 2.03663i
\(306\) 0 0
\(307\) 148691. 0.0900404 0.0450202 0.998986i \(-0.485665\pi\)
0.0450202 + 0.998986i \(0.485665\pi\)
\(308\) 0 0
\(309\) −570720. −0.340037
\(310\) 0 0
\(311\) −364641. 631576.i −0.213779 0.370275i 0.739115 0.673579i \(-0.235244\pi\)
−0.952894 + 0.303303i \(0.901910\pi\)
\(312\) 0 0
\(313\) 1.57730e6 + 910655.i 0.910026 + 0.525404i 0.880439 0.474159i \(-0.157248\pi\)
0.0295862 + 0.999562i \(0.490581\pi\)
\(314\) 0 0
\(315\) 828163. 3.20507e6i 0.470261 1.81996i
\(316\) 0 0
\(317\) −790103. + 1.36850e6i −0.441607 + 0.764885i −0.997809 0.0661618i \(-0.978925\pi\)
0.556202 + 0.831047i \(0.312258\pi\)
\(318\) 0 0
\(319\) −690680. + 398764.i −0.380015 + 0.219402i
\(320\) 0 0
\(321\) 329268.i 0.178355i
\(322\) 0 0
\(323\) 2.08015e6i 1.10940i
\(324\) 0 0
\(325\) 2.51367e6 1.45127e6i 1.32008 0.762148i
\(326\) 0 0
\(327\) −2.09050e6 + 3.62085e6i −1.08114 + 1.87258i
\(328\) 0 0
\(329\) −785339. 2.82951e6i −0.400007 1.44119i
\(330\) 0 0
\(331\) 2.71356e6 + 1.56667e6i 1.36135 + 0.785974i 0.989803 0.142442i \(-0.0454954\pi\)
0.371543 + 0.928416i \(0.378829\pi\)
\(332\) 0 0
\(333\) 2.02976e6 + 3.51566e6i 1.00308 + 1.73738i
\(334\) 0 0
\(335\) −928178. −0.451876
\(336\) 0 0
\(337\) 3.16854e6 1.51979 0.759897 0.650043i \(-0.225249\pi\)
0.759897 + 0.650043i \(0.225249\pi\)
\(338\) 0 0
\(339\) −537452. 930895.i −0.254004 0.439948i
\(340\) 0 0
\(341\) −285619. 164902.i −0.133015 0.0767964i
\(342\) 0 0
\(343\) −1.58146e6 1.49884e6i −0.725812 0.687893i
\(344\) 0 0
\(345\) 1.21489e6 2.10426e6i 0.549529 0.951813i
\(346\) 0 0
\(347\) −237589. + 137172.i −0.105926 + 0.0611565i −0.552027 0.833826i \(-0.686146\pi\)
0.446101 + 0.894983i \(0.352812\pi\)
\(348\) 0 0
\(349\) 528446.i 0.232240i −0.993235 0.116120i \(-0.962954\pi\)
0.993235 0.116120i \(-0.0370457\pi\)
\(350\) 0 0
\(351\) 722328.i 0.312944i
\(352\) 0 0
\(353\) −135096. + 77998.0i −0.0577042 + 0.0333155i −0.528575 0.848887i \(-0.677273\pi\)
0.470870 + 0.882202i \(0.343940\pi\)
\(354\) 0 0
\(355\) 2.51180e6 4.35057e6i 1.05783 1.83221i
\(356\) 0 0
\(357\) 4.29242e6 1.19137e6i 1.78251 0.494740i
\(358\) 0 0
\(359\) −258854. 149449.i −0.106003 0.0612009i 0.446061 0.895002i \(-0.352826\pi\)
−0.552064 + 0.833802i \(0.686160\pi\)
\(360\) 0 0
\(361\) 258125. + 447086.i 0.104247 + 0.180561i
\(362\) 0 0
\(363\) 72672.9 0.0289472
\(364\) 0 0
\(365\) −5.68950e6 −2.23533
\(366\) 0 0
\(367\) −1.36459e6 2.36354e6i −0.528855 0.916004i −0.999434 0.0336463i \(-0.989288\pi\)
0.470578 0.882358i \(-0.344045\pi\)
\(368\) 0 0
\(369\) −4.30619e6 2.48618e6i −1.64637 0.950533i
\(370\) 0 0
\(371\) 2.01066e6 + 519537.i 0.758409 + 0.195967i
\(372\) 0 0
\(373\) −976118. + 1.69069e6i −0.363270 + 0.629203i −0.988497 0.151240i \(-0.951673\pi\)
0.625227 + 0.780443i \(0.285007\pi\)
\(374\) 0 0
\(375\) 2.46813e6 1.42498e6i 0.906338 0.523274i
\(376\) 0 0
\(377\) 1.26019e6i 0.456648i
\(378\) 0 0
\(379\) 223755.i 0.0800157i −0.999199 0.0400079i \(-0.987262\pi\)
0.999199 0.0400079i \(-0.0127383\pi\)
\(380\) 0 0
\(381\) 2.59749e6 1.49966e6i 0.916730 0.529274i
\(382\) 0 0
\(383\) −2.04849e6 + 3.54809e6i −0.713572 + 1.23594i 0.249936 + 0.968262i \(0.419590\pi\)
−0.963508 + 0.267680i \(0.913743\pi\)
\(384\) 0 0
\(385\) −3.22149e6 + 3.27960e6i −1.10766 + 1.12764i
\(386\) 0 0
\(387\) 4.86526e6 + 2.80896e6i 1.65131 + 0.953384i
\(388\) 0 0
\(389\) −688529. 1.19257e6i −0.230700 0.399584i 0.727314 0.686305i \(-0.240768\pi\)
−0.958014 + 0.286720i \(0.907435\pi\)
\(390\) 0 0
\(391\) 1.78401e6 0.590141
\(392\) 0 0
\(393\) −3.67894e6 −1.20155
\(394\) 0 0
\(395\) −807957. 1.39942e6i −0.260553 0.451290i
\(396\) 0 0
\(397\) −3.87505e6 2.23726e6i −1.23396 0.712427i −0.266106 0.963944i \(-0.585737\pi\)
−0.967853 + 0.251517i \(0.919071\pi\)
\(398\) 0 0
\(399\) −2.94113e6 + 2.99418e6i −0.924872 + 0.941555i
\(400\) 0 0
\(401\) −2.98261e6 + 5.16604e6i −0.926266 + 1.60434i −0.136755 + 0.990605i \(0.543667\pi\)
−0.789512 + 0.613735i \(0.789666\pi\)
\(402\) 0 0
\(403\) −451311. + 260565.i −0.138425 + 0.0799195i
\(404\) 0 0
\(405\) 3.92179e6i 1.18808i
\(406\) 0 0
\(407\) 5.63757e6i 1.68696i
\(408\) 0 0
\(409\) −1.05768e6 + 610654.i −0.312642 + 0.180504i −0.648108 0.761548i \(-0.724440\pi\)
0.335466 + 0.942052i \(0.391106\pi\)
\(410\) 0 0
\(411\) −1.50576e6 + 2.60805e6i −0.439695 + 0.761573i
\(412\) 0 0
\(413\) −3.78090e6 976954.i −1.09074 0.281838i
\(414\) 0 0
\(415\) 1.29547e6 + 747939.i 0.369238 + 0.213180i
\(416\) 0 0
\(417\) −3.67026e6 6.35707e6i −1.03361 1.79026i
\(418\) 0 0
\(419\) −3.12252e6 −0.868901 −0.434450 0.900696i \(-0.643057\pi\)
−0.434450 + 0.900696i \(0.643057\pi\)
\(420\) 0 0
\(421\) −937555. −0.257805 −0.128903 0.991657i \(-0.541145\pi\)
−0.128903 + 0.991657i \(0.541145\pi\)
\(422\) 0 0
\(423\) 3.30456e6 + 5.72366e6i 0.897971 + 1.55533i
\(424\) 0 0
\(425\) 5.83344e6 + 3.36794e6i 1.56658 + 0.904464i
\(426\) 0 0
\(427\) −5.45376e6 + 1.51371e6i −1.44753 + 0.401765i
\(428\) 0 0
\(429\) 2.99988e6 5.19595e6i 0.786975 1.36308i
\(430\) 0 0
\(431\) 235746. 136108.i 0.0611296 0.0352932i −0.469124 0.883132i \(-0.655430\pi\)
0.530253 + 0.847839i \(0.322097\pi\)
\(432\) 0 0
\(433\) 6.33614e6i 1.62407i 0.583608 + 0.812035i \(0.301640\pi\)
−0.583608 + 0.812035i \(0.698360\pi\)
\(434\) 0 0
\(435\) 3.98311e6i 1.00925i
\(436\) 0 0
\(437\) −1.45565e6 + 840419.i −0.364630 + 0.210519i
\(438\) 0 0
\(439\) 59115.3 102391.i 0.0146399 0.0253571i −0.858613 0.512625i \(-0.828673\pi\)
0.873253 + 0.487268i \(0.162006\pi\)
\(440\) 0 0
\(441\) 4.29016e6 + 2.37570e6i 1.05045 + 0.581694i
\(442\) 0 0
\(443\) −3.87402e6 2.23667e6i −0.937891 0.541492i −0.0485926 0.998819i \(-0.515474\pi\)
−0.889299 + 0.457327i \(0.848807\pi\)
\(444\) 0 0
\(445\) 2.06506e6 + 3.57678e6i 0.494347 + 0.856234i
\(446\) 0 0
\(447\) 458952. 0.108642
\(448\) 0 0
\(449\) 1.27906e6 0.299416 0.149708 0.988730i \(-0.452167\pi\)
0.149708 + 0.988730i \(0.452167\pi\)
\(450\) 0 0
\(451\) 3.45262e6 + 5.98012e6i 0.799297 + 1.38442i
\(452\) 0 0
\(453\) 4.20767e6 + 2.42930e6i 0.963376 + 0.556206i
\(454\) 0 0
\(455\) 1.94271e6 + 6.99942e6i 0.439925 + 1.58502i
\(456\) 0 0
\(457\) 2.26066e6 3.91558e6i 0.506343 0.877012i −0.493630 0.869672i \(-0.664330\pi\)
0.999973 0.00734012i \(-0.00233645\pi\)
\(458\) 0 0
\(459\) −1.45172e6 + 838148.i −0.321625 + 0.185690i
\(460\) 0 0
\(461\) 1.58045e6i 0.346360i −0.984890 0.173180i \(-0.944596\pi\)
0.984890 0.173180i \(-0.0554043\pi\)
\(462\) 0 0
\(463\) 7.54852e6i 1.63648i −0.574880 0.818238i \(-0.694951\pi\)
0.574880 0.818238i \(-0.305049\pi\)
\(464\) 0 0
\(465\) −1.42647e6 + 823574.i −0.305936 + 0.176632i
\(466\) 0 0
\(467\) 3.27541e6 5.67317e6i 0.694982 1.20374i −0.275205 0.961385i \(-0.588746\pi\)
0.970187 0.242358i \(-0.0779208\pi\)
\(468\) 0 0
\(469\) 343997. 1.33130e6i 0.0722143 0.279476i
\(470\) 0 0
\(471\) −7.92436e6 4.57513e6i −1.64593 0.950279i
\(472\) 0 0
\(473\) −3.90087e6 6.75651e6i −0.801695 1.38858i
\(474\) 0 0
\(475\) −6.34632e6 −1.29059
\(476\) 0 0
\(477\) −4.67401e6 −0.940576
\(478\) 0 0
\(479\) 2.09770e6 + 3.63332e6i 0.417739 + 0.723545i 0.995712 0.0925112i \(-0.0294894\pi\)
−0.577973 + 0.816056i \(0.696156\pi\)
\(480\) 0 0
\(481\) −7.71457e6 4.45401e6i −1.52037 0.877785i
\(482\) 0 0
\(483\) 2.56792e6 + 2.52242e6i 0.500857 + 0.491982i
\(484\) 0 0
\(485\) −2.31238e6 + 4.00516e6i −0.446380 + 0.773152i
\(486\) 0 0
\(487\) −2.42013e6 + 1.39726e6i −0.462399 + 0.266966i −0.713052 0.701111i \(-0.752688\pi\)
0.250653 + 0.968077i \(0.419355\pi\)
\(488\) 0 0
\(489\) 5.08064e6i 0.960830i
\(490\) 0 0
\(491\) 3.03606e6i 0.568338i −0.958774 0.284169i \(-0.908282\pi\)
0.958774 0.284169i \(-0.0917177\pi\)
\(492\) 0 0
\(493\) −2.53269e6 + 1.46225e6i −0.469315 + 0.270959i
\(494\) 0 0
\(495\) 5.17339e6 8.96057e6i 0.948990 1.64370i
\(496\) 0 0
\(497\) 5.30918e6 + 5.21511e6i 0.964132 + 0.947049i
\(498\) 0 0
\(499\) 3.90725e6 + 2.25585e6i 0.702458 + 0.405564i 0.808262 0.588823i \(-0.200408\pi\)
−0.105804 + 0.994387i \(0.533742\pi\)
\(500\) 0 0
\(501\) 325035. + 562977.i 0.0578544 + 0.100207i
\(502\) 0 0
\(503\) 5.19848e6 0.916129 0.458065 0.888919i \(-0.348543\pi\)
0.458065 + 0.888919i \(0.348543\pi\)
\(504\) 0 0
\(505\) 1.57615e7 2.75023
\(506\) 0 0
\(507\) −447011. 774245.i −0.0772321 0.133770i
\(508\) 0 0
\(509\) −3.58777e6 2.07140e6i −0.613805 0.354380i 0.160648 0.987012i \(-0.448642\pi\)
−0.774453 + 0.632631i \(0.781975\pi\)
\(510\) 0 0
\(511\) 2.10862e6 8.16055e6i 0.357228 1.38251i
\(512\) 0 0
\(513\) 789676. 1.36776e6i 0.132482 0.229465i
\(514\) 0 0
\(515\) 1.87038e6 1.07986e6i 0.310750 0.179412i
\(516\) 0 0
\(517\) 9.17825e6i 1.51020i
\(518\) 0 0
\(519\) 9.95088e6i 1.62160i
\(520\) 0 0
\(521\) −4.24991e6 + 2.45369e6i −0.685940 + 0.396027i −0.802089 0.597204i \(-0.796278\pi\)
0.116150 + 0.993232i \(0.462945\pi\)
\(522\) 0 0
\(523\) 4.49822e6 7.79114e6i 0.719095 1.24551i −0.242263 0.970211i \(-0.577890\pi\)
0.961359 0.275299i \(-0.0887769\pi\)
\(524\) 0 0
\(525\) 3.63476e6 + 1.30957e7i 0.575542 + 2.07363i
\(526\) 0 0
\(527\) −1.04735e6 604688.i −0.164273 0.0948429i
\(528\) 0 0
\(529\) −2.49740e6 4.32562e6i −0.388015 0.672062i
\(530\) 0 0
\(531\) 8.78915e6 1.35273
\(532\) 0 0
\(533\) 1.09111e7 1.66360
\(534\) 0 0
\(535\) −623010. 1.07908e6i −0.0941045 0.162994i
\(536\) 0 0
\(537\) 832597. + 480700.i 0.124595 + 0.0719347i
\(538\) 0 0
\(539\) −3.51005e6 5.83611e6i −0.520405 0.865269i
\(540\) 0 0
\(541\) −557536. + 965681.i −0.0818993 + 0.141854i −0.904066 0.427393i \(-0.859432\pi\)
0.822166 + 0.569247i \(0.192765\pi\)
\(542\) 0 0
\(543\) 5.47279e6 3.15971e6i 0.796543 0.459884i
\(544\) 0 0
\(545\) 1.58218e7i 2.28173i
\(546\) 0 0
\(547\) 164832.i 0.0235545i 0.999931 + 0.0117772i \(0.00374889\pi\)
−0.999931 + 0.0117772i \(0.996251\pi\)
\(548\) 0 0
\(549\) 1.10321e7 6.36939e6i 1.56217 0.901918i
\(550\) 0 0
\(551\) 1.37768e6 2.38622e6i 0.193317 0.334835i
\(552\) 0 0
\(553\) 2.30666e6 640219.i 0.320753 0.0890258i
\(554\) 0 0
\(555\) −2.43837e7 1.40779e7i −3.36021 1.94002i
\(556\) 0 0
\(557\) 4.56783e6 + 7.91171e6i 0.623838 + 1.08052i 0.988764 + 0.149482i \(0.0477607\pi\)
−0.364927 + 0.931036i \(0.618906\pi\)
\(558\) 0 0
\(559\) −1.23277e7 −1.66860
\(560\) 0 0
\(561\) 1.39236e7 1.86786
\(562\) 0 0
\(563\) 3.84849e6 + 6.66579e6i 0.511705 + 0.886300i 0.999908 + 0.0135693i \(0.00431937\pi\)
−0.488203 + 0.872730i \(0.662347\pi\)
\(564\) 0 0
\(565\) 3.52271e6 + 2.03384e6i 0.464254 + 0.268037i
\(566\) 0 0
\(567\) 5.62509e6 + 1.45348e6i 0.734805 + 0.189867i
\(568\) 0 0
\(569\) −2.96198e6 + 5.13030e6i −0.383532 + 0.664297i −0.991564 0.129615i \(-0.958626\pi\)
0.608032 + 0.793912i \(0.291959\pi\)
\(570\) 0 0
\(571\) −7.44621e6 + 4.29907e6i −0.955752 + 0.551804i −0.894863 0.446341i \(-0.852727\pi\)
−0.0608891 + 0.998145i \(0.519394\pi\)
\(572\) 0 0
\(573\) 1.14901e7i 1.46197i
\(574\) 0 0
\(575\) 5.44283e6i 0.686524i
\(576\) 0 0
\(577\) −5.98064e6 + 3.45293e6i −0.747839 + 0.431765i −0.824913 0.565260i \(-0.808776\pi\)
0.0770732 + 0.997025i \(0.475442\pi\)
\(578\) 0 0
\(579\) −2.65910e6 + 4.60569e6i −0.329638 + 0.570950i
\(580\) 0 0
\(581\) −1.55290e6 + 1.58091e6i −0.190855 + 0.194298i
\(582\) 0 0
\(583\) 5.62130e6 + 3.24546e6i 0.684960 + 0.395462i
\(584\) 0 0
\(585\) −8.17455e6 1.41587e7i −0.987584 1.71055i
\(586\) 0 0
\(587\) 9.16568e6 1.09792 0.548958 0.835850i \(-0.315025\pi\)
0.548958 + 0.835850i \(0.315025\pi\)
\(588\) 0 0
\(589\) 1.13944e6 0.135332
\(590\) 0 0
\(591\) 784657. + 1.35907e6i 0.0924083 + 0.160056i
\(592\) 0 0
\(593\) 3.29964e6 + 1.90505e6i 0.385328 + 0.222469i 0.680134 0.733088i \(-0.261922\pi\)
−0.294806 + 0.955557i \(0.595255\pi\)
\(594\) 0 0
\(595\) −1.18130e7 + 1.20261e7i −1.36795 + 1.39262i
\(596\) 0 0
\(597\) −7.67510e6 + 1.32937e7i −0.881349 + 1.52654i
\(598\) 0 0
\(599\) −3.17064e6 + 1.83057e6i −0.361061 + 0.208459i −0.669546 0.742771i \(-0.733511\pi\)
0.308485 + 0.951229i \(0.400178\pi\)
\(600\) 0 0
\(601\) 1.35098e6i 0.152568i 0.997086 + 0.0762840i \(0.0243056\pi\)
−0.997086 + 0.0762840i \(0.975694\pi\)
\(602\) 0 0
\(603\) 3.09477e6i 0.346605i
\(604\) 0 0
\(605\) −238166. + 137505.i −0.0264540 + 0.0152732i
\(606\) 0 0
\(607\) 6.08662e6 1.05423e7i 0.670509 1.16136i −0.307251 0.951629i \(-0.599409\pi\)
0.977760 0.209727i \(-0.0672576\pi\)
\(608\) 0 0
\(609\) −5.71305e6 1.47620e6i −0.624201 0.161288i
\(610\) 0 0
\(611\) −1.25597e7 7.25135e6i −1.36106 0.785806i
\(612\) 0 0
\(613\) 1.38851e6 + 2.40497e6i 0.149245 + 0.258499i 0.930948 0.365151i \(-0.118983\pi\)
−0.781704 + 0.623650i \(0.785649\pi\)
\(614\) 0 0
\(615\) 3.44870e7 3.67678
\(616\) 0 0
\(617\) −3.36595e6 −0.355955 −0.177978 0.984035i \(-0.556955\pi\)
−0.177978 + 0.984035i \(0.556955\pi\)
\(618\) 0 0
\(619\) 8.38142e6 + 1.45171e7i 0.879207 + 1.52283i 0.852212 + 0.523196i \(0.175260\pi\)
0.0269947 + 0.999636i \(0.491406\pi\)
\(620\) 0 0
\(621\) −1.17304e6 677255.i −0.122063 0.0704731i
\(622\) 0 0
\(623\) −5.89559e6 + 1.63634e6i −0.608565 + 0.168909i
\(624\) 0 0
\(625\) 1.69080e6 2.92856e6i 0.173138 0.299884i
\(626\) 0 0
\(627\) −1.13608e7 + 6.55917e6i −1.15409 + 0.666315i
\(628\) 0 0
\(629\) 2.06727e7i 2.08339i
\(630\) 0 0
\(631\) 7.07244e6i 0.707124i 0.935411 + 0.353562i \(0.115030\pi\)
−0.935411 + 0.353562i \(0.884970\pi\)
\(632\) 0 0
\(633\) 2.59692e6 1.49933e6i 0.257602 0.148727i
\(634\) 0 0
\(635\) −5.67504e6 + 9.82946e6i −0.558515 + 0.967376i
\(636\) 0 0
\(637\) −1.07594e7 + 192366.i −1.05060 + 0.0187836i
\(638\) 0 0
\(639\) −1.45058e7 8.37494e6i −1.40537 0.811390i
\(640\) 0 0
\(641\) 8.79135e6 + 1.52271e7i 0.845105 + 1.46376i 0.885530 + 0.464582i \(0.153796\pi\)
−0.0404249 + 0.999183i \(0.512871\pi\)
\(642\) 0 0
\(643\) 1.07973e7 1.02988 0.514940 0.857226i \(-0.327814\pi\)
0.514940 + 0.857226i \(0.327814\pi\)
\(644\) 0 0
\(645\) −3.89644e7 −3.68781
\(646\) 0 0
\(647\) −1.76538e6 3.05773e6i −0.165797 0.287169i 0.771141 0.636665i \(-0.219686\pi\)
−0.936938 + 0.349495i \(0.886353\pi\)
\(648\) 0 0
\(649\) −1.05705e7 6.10286e6i −0.985104 0.568750i
\(650\) 0 0
\(651\) −652594. 2.35124e6i −0.0603519 0.217443i
\(652\) 0 0
\(653\) 7.06624e6 1.22391e7i 0.648493 1.12322i −0.334990 0.942222i \(-0.608733\pi\)
0.983483 0.181001i \(-0.0579338\pi\)
\(654\) 0 0
\(655\) 1.20567e7 6.96096e6i 1.09806 0.633966i
\(656\) 0 0
\(657\) 1.89702e7i 1.71458i
\(658\) 0 0
\(659\) 8.40793e6i 0.754181i −0.926176 0.377090i \(-0.876925\pi\)
0.926176 0.377090i \(-0.123075\pi\)
\(660\) 0 0
\(661\) 5.66468e6 3.27051e6i 0.504280 0.291146i −0.226199 0.974081i \(-0.572630\pi\)
0.730479 + 0.682935i \(0.239297\pi\)
\(662\) 0 0
\(663\) 1.10004e7 1.90533e7i 0.971909 1.68339i
\(664\) 0 0
\(665\) 3.97343e6 1.53775e7i 0.348426 1.34844i
\(666\) 0 0
\(667\) −2.04651e6 1.18155e6i −0.178114 0.102834i
\(668\) 0 0
\(669\) −1.34747e7 2.33389e7i −1.16401 2.01612i
\(670\) 0 0
\(671\) −1.76907e7 −1.51683
\(672\) 0 0
\(673\) −1.09027e6 −0.0927890 −0.0463945 0.998923i \(-0.514773\pi\)
−0.0463945 + 0.998923i \(0.514773\pi\)
\(674\) 0 0
\(675\) −2.55711e6 4.42904e6i −0.216018 0.374153i
\(676\) 0 0
\(677\) −1.40358e6 810359.i −0.117697 0.0679525i 0.439996 0.898000i \(-0.354980\pi\)
−0.557693 + 0.830047i \(0.688313\pi\)
\(678\) 0 0
\(679\) −4.88766e6 4.80106e6i −0.406843 0.399634i
\(680\) 0 0
\(681\) −1.26110e7 + 2.18429e7i −1.04204 + 1.80486i
\(682\) 0 0
\(683\) 1.83458e7 1.05919e7i 1.50482 0.868807i 0.504834 0.863216i \(-0.331554\pi\)
0.999984 0.00559114i \(-0.00177972\pi\)
\(684\) 0 0
\(685\) 1.13962e7i 0.927973i
\(686\) 0 0
\(687\) 995856.i 0.0805017i
\(688\) 0 0
\(689\) 8.88230e6 5.12820e6i 0.712816 0.411545i
\(690\) 0 0
\(691\) −4.73880e6 + 8.20784e6i −0.377549 + 0.653934i −0.990705 0.136028i \(-0.956566\pi\)
0.613156 + 0.789962i \(0.289900\pi\)
\(692\) 0 0
\(693\) 1.09350e7 + 1.07412e7i 0.864936 + 0.849611i
\(694\) 0 0
\(695\) 2.40565e7 + 1.38890e7i 1.88917 + 1.09071i
\(696\) 0 0
\(697\) 1.26606e7 + 2.19288e7i 0.987126 + 1.70975i
\(698\) 0 0
\(699\) −1.85338e7 −1.43474
\(700\) 0 0
\(701\) 1.44960e7 1.11417 0.557087 0.830454i \(-0.311919\pi\)
0.557087 + 0.830454i \(0.311919\pi\)
\(702\) 0 0
\(703\) 9.73857e6 + 1.68677e7i 0.743202 + 1.28726i
\(704\) 0 0
\(705\) −3.96978e7 2.29196e7i −3.00811 1.73673i
\(706\) 0 0
\(707\) −5.84145e6 + 2.26070e7i −0.439513 + 1.70096i
\(708\) 0 0
\(709\) −1.16308e7 + 2.01451e7i −0.868945 + 1.50506i −0.00586960 + 0.999983i \(0.501868\pi\)
−0.863076 + 0.505075i \(0.831465\pi\)
\(710\) 0 0
\(711\) −4.66601e6 + 2.69392e6i −0.346156 + 0.199853i
\(712\) 0 0
\(713\) 977221.i 0.0719895i
\(714\) 0 0
\(715\) 2.27044e7i 1.66091i
\(716\) 0 0
\(717\) 1.68576e7 9.73273e6i 1.22461 0.707028i
\(718\) 0 0
\(719\) −1.89565e6 + 3.28337e6i −0.136753 + 0.236863i −0.926266 0.376871i \(-0.877000\pi\)
0.789513 + 0.613734i \(0.210333\pi\)
\(720\) 0 0
\(721\) 855675. + 3.08293e6i 0.0613015 + 0.220864i
\(722\) 0 0
\(723\) 1.65440e7 + 9.55170e6i 1.17705 + 0.679571i
\(724\) 0 0
\(725\) −4.46117e6 7.72698e6i −0.315213 0.545965i
\(726\) 0 0
\(727\) −1.04927e7 −0.736294 −0.368147 0.929768i \(-0.620008\pi\)
−0.368147 + 0.929768i \(0.620008\pi\)
\(728\) 0 0
\(729\) −1.94158e7 −1.35312
\(730\) 0 0
\(731\) −1.43043e7 2.47758e7i −0.990087 1.71488i
\(732\) 0 0
\(733\) 7.94841e6 + 4.58902e6i 0.546412 + 0.315471i 0.747674 0.664066i \(-0.231171\pi\)
−0.201262 + 0.979538i \(0.564504\pi\)
\(734\) 0 0
\(735\) −3.40075e7 + 608016.i −2.32197 + 0.0415142i
\(736\) 0 0
\(737\) 2.14889e6 3.72199e6i 0.145729 0.252410i
\(738\) 0 0
\(739\) 1.98212e7 1.14437e7i 1.33511 0.770827i 0.349034 0.937110i \(-0.386510\pi\)
0.986078 + 0.166283i \(0.0531764\pi\)
\(740\) 0 0
\(741\) 2.07285e7i 1.38683i
\(742\) 0 0
\(743\) 8.13890e6i 0.540871i 0.962738 + 0.270435i \(0.0871676\pi\)
−0.962738 + 0.270435i \(0.912832\pi\)
\(744\) 0 0
\(745\) −1.50409e6 + 868386.i −0.0992848 + 0.0573221i
\(746\) 0 0
\(747\) 2.49381e6 4.31940e6i 0.163516 0.283219i
\(748\) 0 0
\(749\) 1.77865e6 493668.i 0.115847 0.0321537i
\(750\) 0 0
\(751\) 6.93489e6 + 4.00386e6i 0.448683 + 0.259048i 0.707274 0.706940i \(-0.249925\pi\)
−0.258591 + 0.965987i \(0.583258\pi\)
\(752\) 0 0
\(753\) 1.75275e7 + 3.03585e7i 1.12650 + 1.95116i
\(754\) 0 0
\(755\) −1.83860e7 −1.17387
\(756\) 0 0
\(757\) −1.42534e7 −0.904020 −0.452010 0.892013i \(-0.649293\pi\)
−0.452010 + 0.892013i \(0.649293\pi\)
\(758\) 0 0
\(759\) 5.62538e6 + 9.74344e6i 0.354444 + 0.613914i
\(760\) 0 0
\(761\) −6.94692e6 4.01081e6i −0.434841 0.251056i 0.266566 0.963817i \(-0.414111\pi\)
−0.701407 + 0.712761i \(0.747444\pi\)
\(762\) 0 0
\(763\) 2.26935e7 + 5.86380e6i 1.41120 + 0.364643i
\(764\) 0 0
\(765\) 1.89705e7 3.28579e7i 1.17200 2.02996i
\(766\) 0 0
\(767\) −1.67025e7 + 9.64322e6i −1.02517 + 0.591880i
\(768\) 0 0
\(769\) 6.02804e6i 0.367587i 0.982965 + 0.183794i \(0.0588378\pi\)
−0.982965 + 0.183794i \(0.941162\pi\)
\(770\) 0 0
\(771\) 9.71166e6i 0.588380i
\(772\) 0 0
\(773\) 5.18009e6 2.99073e6i 0.311809 0.180023i −0.335927 0.941888i \(-0.609049\pi\)
0.647736 + 0.761865i \(0.275716\pi\)
\(774\) 0 0
\(775\) 1.84484e6 3.19536e6i 0.110333 0.191102i
\(776\) 0 0
\(777\) 2.92292e7 2.97564e7i 1.73686 1.76819i
\(778\) 0 0
\(779\) −2.06606e7 1.19284e7i −1.21983 0.704270i
\(780\) 0 0
\(781\) 1.16305e7 + 2.01446e7i 0.682293 + 1.18177i
\(782\) 0 0
\(783\) 2.22043e6 0.129429
\(784\) 0 0
\(785\) 3.46265e7 2.00556
\(786\) 0 0
\(787\) −5.44997e6 9.43963e6i −0.313659 0.543273i 0.665493 0.746404i \(-0.268221\pi\)
−0.979151 + 0.203132i \(0.934888\pi\)
\(788\) 0 0
\(789\) 2.51645e7 + 1.45287e7i 1.43911 + 0.830873i
\(790\) 0 0
\(791\) −4.22274e6 + 4.29891e6i −0.239968 + 0.244296i
\(792\) 0 0
\(793\) −1.39766e7 + 2.42083e7i −0.789260 + 1.36704i
\(794\) 0 0
\(795\) 2.80746e7 1.62089e7i 1.57542 0.909567i
\(796\) 0 0
\(797\) 9.04729e6i 0.504514i −0.967660 0.252257i \(-0.918827\pi\)
0.967660 0.252257i \(-0.0811728\pi\)
\(798\) 0 0
\(799\) 3.36562e7i 1.86508i
\(800\) 0 0
\(801\) 1.19258e7 6.88539e6i 0.656762 0.379182i
\(802\) 0 0
\(803\) 1.31722e7 2.28149e7i 0.720889 1.24862i
\(804\) 0 0
\(805\) −1.31883e7 3.40775e6i −0.717299 0.185344i
\(806\) 0 0
\(807\) −5.47537e6 3.16121e6i −0.295958 0.170871i
\(808\) 0 0
\(809\) −1.33927e7 2.31969e7i −0.719445 1.24612i −0.961220 0.275783i \(-0.911063\pi\)
0.241775 0.970332i \(-0.422270\pi\)
\(810\) 0 0
\(811\) 1.53751e7 0.820853 0.410427 0.911894i \(-0.365380\pi\)
0.410427 + 0.911894i \(0.365380\pi\)
\(812\) 0 0
\(813\) −1.78688e7 −0.948130
\(814\) 0 0
\(815\) −9.61312e6 1.66504e7i −0.506956 0.878074i
\(816\) 0 0
\(817\) 2.33429e7 + 1.34771e7i 1.22349 + 0.706382i
\(818\) 0 0
\(819\) 2.33377e7 6.47745e6i 1.21576 0.337438i
\(820\) 0 0
\(821\) 1.10075e7 1.90655e7i 0.569940 0.987166i −0.426631 0.904426i \(-0.640300\pi\)
0.996571 0.0827399i \(-0.0263671\pi\)
\(822\) 0 0
\(823\) −3.81561e6 + 2.20294e6i −0.196365 + 0.113371i −0.594959 0.803756i \(-0.702832\pi\)
0.398594 + 0.917128i \(0.369498\pi\)
\(824\) 0 0
\(825\) 4.24794e7i 2.17292i
\(826\) 0 0
\(827\) 1.96164e7i 0.997369i −0.866783 0.498685i \(-0.833817\pi\)
0.866783 0.498685i \(-0.166183\pi\)
\(828\) 0 0
\(829\) 4.99433e6 2.88348e6i 0.252401 0.145724i −0.368462 0.929643i \(-0.620116\pi\)
0.620863 + 0.783919i \(0.286782\pi\)
\(830\) 0 0
\(831\) 368409. 638104.i 0.0185067 0.0320545i
\(832\) 0 0
\(833\) −1.28712e7 2.14007e7i −0.642697 1.06860i
\(834\) 0 0
\(835\) −2.13043e6 1.23000e6i −0.105743 0.0610506i
\(836\) 0 0
\(837\) 459110. + 795201.i 0.0226518 + 0.0392341i
\(838\) 0 0
\(839\) 1.04959e6 0.0514774 0.0257387 0.999669i \(-0.491806\pi\)
0.0257387 + 0.999669i \(0.491806\pi\)
\(840\) 0 0
\(841\) −1.66374e7 −0.811137
\(842\) 0 0
\(843\) 5.90588e6 + 1.02293e7i 0.286231 + 0.495766i
\(844\) 0 0
\(845\) 2.92991e6 + 1.69158e6i 0.141160 + 0.0814989i
\(846\) 0 0
\(847\) −108958. 392567.i −0.00521856 0.0188020i
\(848\) 0 0
\(849\) 2.25194e7 3.90047e7i 1.07223 1.85715i
\(850\) 0 0
\(851\) 1.44664e7 8.35215e6i 0.684755 0.395343i
\(852\) 0 0
\(853\) 2.19938e7i 1.03497i −0.855692 0.517485i \(-0.826868\pi\)
0.855692 0.517485i \(-0.173132\pi\)
\(854\) 0 0
\(855\) 3.57469e7i 1.67233i
\(856\) 0 0
\(857\) 1.41287e7 8.15723e6i 0.657130 0.379394i −0.134052 0.990974i \(-0.542799\pi\)
0.791183 + 0.611580i \(0.209466\pi\)
\(858\) 0 0
\(859\) −1.57232e7 + 2.72333e7i −0.727038 + 1.25927i 0.231092 + 0.972932i \(0.425770\pi\)
−0.958130 + 0.286335i \(0.907563\pi\)
\(860\) 0 0
\(861\) −1.27814e7 + 4.94653e7i −0.587586 + 2.27401i
\(862\) 0 0
\(863\) 1.68377e7 + 9.72127e6i 0.769585 + 0.444320i 0.832727 0.553684i \(-0.186779\pi\)
−0.0631415 + 0.998005i \(0.520112\pi\)
\(864\) 0 0
\(865\) −1.88281e7 3.26113e7i −0.855593 1.48193i
\(866\) 0 0
\(867\) 1.82222e7 0.823293
\(868\) 0 0
\(869\) 7.48223e6 0.336110
\(870\) 0 0
\(871\) −3.39550e6 5.88117e6i −0.151655 0.262675i
\(872\) 0 0
\(873\) 1.33541e7 + 7.71002e6i 0.593035 + 0.342389i
\(874\) 0 0
\(875\) −1.13979e7 1.11960e7i −0.503276 0.494358i
\(876\) 0 0
\(877\) −2.07888e7 + 3.60072e7i −0.912704 + 1.58085i −0.102476 + 0.994735i \(0.532677\pi\)
−0.810228 + 0.586115i \(0.800657\pi\)
\(878\) 0 0
\(879\) −3.18895e7 + 1.84114e7i −1.39212 + 0.803739i
\(880\) 0 0
\(881\) 7.22354e6i 0.313553i 0.987634 + 0.156776i \(0.0501102\pi\)
−0.987634 + 0.156776i \(0.949890\pi\)
\(882\) 0 0
\(883\) 2.73652e7i 1.18113i −0.806992 0.590563i \(-0.798906\pi\)
0.806992 0.590563i \(-0.201094\pi\)
\(884\) 0 0
\(885\) −5.27923e7 + 3.04796e7i −2.26575 + 1.30813i
\(886\) 0 0
\(887\) 1.05430e6 1.82610e6i 0.0449939 0.0779317i −0.842651 0.538460i \(-0.819006\pi\)
0.887645 + 0.460528i \(0.152340\pi\)
\(888\) 0 0
\(889\) −1.19953e7 1.17828e7i −0.509046 0.500026i
\(890\) 0 0
\(891\) 1.57263e7 + 9.07961e6i 0.663642 + 0.383154i
\(892\) 0 0
\(893\) 1.58549e7 + 2.74615e7i 0.665326 + 1.15238i
\(894\) 0 0
\(895\) −3.63814e6 −0.151818
\(896\) 0 0
\(897\) 1.77775e7 0.737716
\(898\) 0 0
\(899\) 800971. + 1.38732e6i 0.0330535 + 0.0572504i
\(900\) 0 0
\(901\) 2.06130e7 + 1.19009e7i 0.845921 + 0.488393i
\(902\) 0 0
\(903\) 1.44408e7 5.58873e7i 0.589349 2.28084i
\(904\) 0 0
\(905\) −1.19570e7 + 2.07102e7i −0.485291 + 0.840549i
\(906\) 0 0
\(907\) −3.21121e7 + 1.85399e7i −1.29614 + 0.748324i −0.979734 0.200301i \(-0.935808\pi\)
−0.316401 + 0.948625i \(0.602475\pi\)
\(908\) 0 0
\(909\) 5.25525e7i 2.10952i
\(910\) 0 0
\(911\) 8.94944e6i 0.357273i −0.983915 0.178636i \(-0.942831\pi\)
0.983915 0.178636i \(-0.0571686\pi\)
\(912\) 0 0
\(913\) −5.99846e6 + 3.46321e6i −0.238157 + 0.137500i
\(914\) 0 0
\(915\) −4.41764e7 + 7.65158e7i −1.74437 + 3.02133i
\(916\) 0 0
\(917\) 5.51581e6 + 1.98730e7i 0.216614 + 0.780442i
\(918\) 0 0
\(919\) −2.38735e7 1.37834e7i −0.932455 0.538353i −0.0448676 0.998993i \(-0.514287\pi\)
−0.887587 + 0.460640i \(0.847620\pi\)
\(920\) 0 0
\(921\) 1.71926e6 + 2.97785e6i 0.0667873 + 0.115679i
\(922\) 0 0
\(923\) 3.67550e7 1.42008
\(924\) 0 0
\(925\) 6.30703e7 2.42365
\(926\) 0 0
\(927\) −3.60052e6 6.23628e6i −0.137615 0.238356i
\(928\) 0 0
\(929\) −2.99496e7 1.72914e7i −1.13855 0.657341i −0.192477 0.981301i \(-0.561652\pi\)
−0.946071 + 0.323960i \(0.894986\pi\)
\(930\) 0 0
\(931\) 2.05837e7 + 1.13983e7i 0.778303 + 0.430989i
\(932\) 0 0
\(933\) 8.43246e6 1.46055e7i 0.317140 0.549302i
\(934\) 0 0
\(935\) −4.56307e7 + 2.63449e7i −1.70698 + 0.985524i
\(936\) 0 0
\(937\) 2.64955e7i 0.985877i −0.870064 0.492938i \(-0.835923\pi\)
0.870064 0.492938i \(-0.164077\pi\)
\(938\) 0 0
\(939\) 4.21185e7i 1.55887i
\(940\) 0 0
\(941\) −2.08986e7 + 1.20658e7i −0.769386 + 0.444205i −0.832655 0.553791i \(-0.813181\pi\)
0.0632697 + 0.997996i \(0.479847\pi\)
\(942\) 0 0
\(943\) −1.02302e7 + 1.77193e7i −0.374633 + 0.648884i
\(944\) 0 0
\(945\) 1.23328e7 3.42301e6i 0.449245 0.124689i
\(946\) 0 0
\(947\) 2.82110e7 + 1.62876e7i 1.02222 + 0.590178i 0.914746 0.404030i \(-0.132391\pi\)
0.107472 + 0.994208i \(0.465724\pi\)
\(948\) 0 0
\(949\) −2.08135e7 3.60501e7i −0.750206 1.29939i
\(950\) 0 0
\(951\) −3.65429e7 −1.31024
\(952\) 0 0
\(953\) 2.20095e7 0.785016 0.392508 0.919749i \(-0.371608\pi\)
0.392508 + 0.919749i \(0.371608\pi\)
\(954\) 0 0
\(955\) −2.17405e7 3.76557e7i −0.771368 1.33605i
\(956\) 0 0
\(957\) −1.59723e7 9.22159e6i −0.563750 0.325481i
\(958\) 0 0
\(959\) 1.63458e7 + 4.22362e6i 0.573932 + 0.148299i
\(960\) 0 0
\(961\) 1.39833e7 2.42199e7i 0.488430 0.845986i
\(962\) 0 0
\(963\) −3.59792e6 + 2.07726e6i −0.125022 + 0.0721814i
\(964\) 0 0
\(965\) 2.01252e7i 0.695699i
\(966\) 0 0
\(967\) 4.35658e7i 1.49823i 0.662439 + 0.749116i \(0.269522\pi\)
−0.662439 + 0.749116i \(0.730478\pi\)
\(968\) 0 0
\(969\) −4.16595e7 + 2.40521e7i −1.42530 + 0.822895i
\(970\) 0 0
\(971\) 1.75209e7 3.03471e7i 0.596360 1.03293i −0.396994 0.917821i \(-0.629947\pi\)
0.993353 0.115104i \(-0.0367201\pi\)
\(972\) 0 0
\(973\) −2.88370e7 + 2.93572e7i −0.976491 + 0.994105i
\(974\) 0 0
\(975\) 5.81296e7 + 3.35612e7i 1.95833 + 1.13064i
\(976\) 0 0
\(977\) −4.14260e6 7.17519e6i −0.138847 0.240490i 0.788214 0.615402i \(-0.211006\pi\)
−0.927060 + 0.374912i \(0.877673\pi\)
\(978\) 0 0
\(979\) −1.91238e7 −0.637703
\(980\) 0 0
\(981\) −5.27536e7 −1.75017
\(982\) 0 0
\(983\) 3.83932e6 + 6.64989e6i 0.126727 + 0.219498i 0.922407 0.386220i \(-0.126219\pi\)
−0.795680 + 0.605718i \(0.792886\pi\)
\(984\) 0 0
\(985\) −5.14299e6 2.96931e6i −0.168898 0.0975135i
\(986\) 0 0
\(987\) 4.75866e7 4.84450e7i 1.55486 1.58291i
\(988\) 0 0
\(989\) 1.15584e7 2.00198e7i 0.375757 0.650831i
\(990\) 0 0
\(991\) 3.93535e7 2.27207e7i 1.27291 0.734917i 0.297379 0.954760i \(-0.403888\pi\)
0.975535 + 0.219842i \(0.0705543\pi\)
\(992\) 0 0
\(993\) 7.24598e7i 2.33198i
\(994\) 0 0
\(995\) 5.80884e7i 1.86008i
\(996\) 0 0
\(997\) −4.58960e7 + 2.64981e7i −1.46230 + 0.844261i −0.999118 0.0420007i \(-0.986627\pi\)
−0.463185 + 0.886262i \(0.653293\pi\)
\(998\) 0 0
\(999\) −7.84787e6 + 1.35929e7i −0.248793 + 0.430922i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.p.b.47.7 yes 14
4.3 odd 2 112.6.p.c.47.1 yes 14
7.2 even 3 784.6.f.d.783.2 14
7.3 odd 6 112.6.p.c.31.1 yes 14
7.5 odd 6 784.6.f.c.783.13 14
28.3 even 6 inner 112.6.p.b.31.7 14
28.19 even 6 784.6.f.d.783.1 14
28.23 odd 6 784.6.f.c.783.14 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.b.31.7 14 28.3 even 6 inner
112.6.p.b.47.7 yes 14 1.1 even 1 trivial
112.6.p.c.31.1 yes 14 7.3 odd 6
112.6.p.c.47.1 yes 14 4.3 odd 2
784.6.f.c.783.13 14 7.5 odd 6
784.6.f.c.783.14 14 28.23 odd 6
784.6.f.d.783.1 14 28.19 even 6
784.6.f.d.783.2 14 7.2 even 3