Defining parameters
Level: | \( N \) | = | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(4608\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(112))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2004 | 1057 | 947 |
Cusp forms | 1836 | 1013 | 823 |
Eisenstein series | 168 | 44 | 124 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(112))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
112.6.a | \(\chi_{112}(1, \cdot)\) | 112.6.a.a | 1 | 1 |
112.6.a.b | 1 | |||
112.6.a.c | 1 | |||
112.6.a.d | 1 | |||
112.6.a.e | 1 | |||
112.6.a.f | 1 | |||
112.6.a.g | 1 | |||
112.6.a.h | 2 | |||
112.6.a.i | 2 | |||
112.6.a.j | 2 | |||
112.6.a.k | 2 | |||
112.6.b | \(\chi_{112}(57, \cdot)\) | None | 0 | 1 |
112.6.e | \(\chi_{112}(55, \cdot)\) | None | 0 | 1 |
112.6.f | \(\chi_{112}(111, \cdot)\) | 112.6.f.a | 8 | 1 |
112.6.f.b | 12 | |||
112.6.i | \(\chi_{112}(65, \cdot)\) | 112.6.i.a | 2 | 2 |
112.6.i.b | 4 | |||
112.6.i.c | 4 | |||
112.6.i.d | 4 | |||
112.6.i.e | 4 | |||
112.6.i.f | 10 | |||
112.6.i.g | 10 | |||
112.6.j | \(\chi_{112}(27, \cdot)\) | n/a | 156 | 2 |
112.6.m | \(\chi_{112}(29, \cdot)\) | n/a | 120 | 2 |
112.6.p | \(\chi_{112}(31, \cdot)\) | 112.6.p.a | 12 | 2 |
112.6.p.b | 14 | |||
112.6.p.c | 14 | |||
112.6.q | \(\chi_{112}(87, \cdot)\) | None | 0 | 2 |
112.6.t | \(\chi_{112}(9, \cdot)\) | None | 0 | 2 |
112.6.v | \(\chi_{112}(3, \cdot)\) | n/a | 312 | 4 |
112.6.w | \(\chi_{112}(37, \cdot)\) | n/a | 312 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(112))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(112)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)