Properties

Label 784.6.f.c.783.13
Level $784$
Weight $6$
Character 784.783
Analytic conductor $125.741$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(783,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.783"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 691 x^{12} - 8602 x^{11} + 416261 x^{10} - 3521447 x^{9} + 66162087 x^{8} + \cdots + 17213603549184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{27}\cdot 3^{6}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.13
Root \(7.14120 - 12.3689i\) of defining polynomial
Character \(\chi\) \(=\) 784.783
Dual form 784.6.f.c.783.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.1254 q^{3} -87.5115i q^{5} +291.784 q^{9} +405.208i q^{11} +640.275i q^{13} -2023.74i q^{15} -1485.88i q^{17} -1399.95 q^{19} -1200.64i q^{23} -4533.26 q^{25} +1128.15 q^{27} -1968.20 q^{29} -813.914 q^{31} +9370.60i q^{33} -13912.8 q^{37} +14806.6i q^{39} -17041.2i q^{41} -19253.7i q^{43} -25534.5i q^{45} +22650.7 q^{47} -34361.5i q^{51} -16018.7 q^{53} +35460.4 q^{55} -32374.3 q^{57} -30122.1 q^{59} -43658.2i q^{61} +56031.5 q^{65} +10606.4i q^{67} -27765.4i q^{69} +57405.1i q^{71} -65014.3i q^{73} -104833. q^{75} -18465.2i q^{79} -44814.6 q^{81} +17093.5 q^{83} -130031. q^{85} -45515.3 q^{87} -47195.1i q^{89} -18822.1 q^{93} +122511. i q^{95} +52847.4i q^{97} +118233. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 18 q^{3} + 1076 q^{9} - 4270 q^{19} - 10868 q^{25} - 17910 q^{27} + 684 q^{29} + 6238 q^{31} - 6862 q^{37} + 16818 q^{47} - 3414 q^{53} + 56622 q^{55} + 68450 q^{57} - 98610 q^{59} - 34896 q^{65}+ \cdots - 585746 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 23.1254 1.48350 0.741748 0.670679i \(-0.233997\pi\)
0.741748 + 0.670679i \(0.233997\pi\)
\(4\) 0 0
\(5\) − 87.5115i − 1.56545i −0.622366 0.782727i \(-0.713828\pi\)
0.622366 0.782727i \(-0.286172\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 291.784 1.20076
\(10\) 0 0
\(11\) 405.208i 1.00971i 0.863204 + 0.504855i \(0.168454\pi\)
−0.863204 + 0.504855i \(0.831546\pi\)
\(12\) 0 0
\(13\) 640.275i 1.05077i 0.850864 + 0.525386i \(0.176079\pi\)
−0.850864 + 0.525386i \(0.823921\pi\)
\(14\) 0 0
\(15\) − 2023.74i − 2.32234i
\(16\) 0 0
\(17\) − 1485.88i − 1.24698i −0.781830 0.623492i \(-0.785713\pi\)
0.781830 0.623492i \(-0.214287\pi\)
\(18\) 0 0
\(19\) −1399.95 −0.889667 −0.444833 0.895613i \(-0.646737\pi\)
−0.444833 + 0.895613i \(0.646737\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1200.64i − 0.473255i −0.971601 0.236627i \(-0.923958\pi\)
0.971601 0.236627i \(-0.0760420\pi\)
\(24\) 0 0
\(25\) −4533.26 −1.45064
\(26\) 0 0
\(27\) 1128.15 0.297823
\(28\) 0 0
\(29\) −1968.20 −0.434584 −0.217292 0.976107i \(-0.569722\pi\)
−0.217292 + 0.976107i \(0.569722\pi\)
\(30\) 0 0
\(31\) −813.914 −0.152116 −0.0760579 0.997103i \(-0.524233\pi\)
−0.0760579 + 0.997103i \(0.524233\pi\)
\(32\) 0 0
\(33\) 9370.60i 1.49790i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −13912.8 −1.67074 −0.835372 0.549686i \(-0.814747\pi\)
−0.835372 + 0.549686i \(0.814747\pi\)
\(38\) 0 0
\(39\) 14806.6i 1.55882i
\(40\) 0 0
\(41\) − 17041.2i − 1.58322i −0.611026 0.791611i \(-0.709243\pi\)
0.611026 0.791611i \(-0.290757\pi\)
\(42\) 0 0
\(43\) − 19253.7i − 1.58797i −0.607937 0.793986i \(-0.708003\pi\)
0.607937 0.793986i \(-0.291997\pi\)
\(44\) 0 0
\(45\) − 25534.5i − 1.87973i
\(46\) 0 0
\(47\) 22650.7 1.49567 0.747837 0.663882i \(-0.231092\pi\)
0.747837 + 0.663882i \(0.231092\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 34361.5i − 1.84989i
\(52\) 0 0
\(53\) −16018.7 −0.783318 −0.391659 0.920110i \(-0.628099\pi\)
−0.391659 + 0.920110i \(0.628099\pi\)
\(54\) 0 0
\(55\) 35460.4 1.58065
\(56\) 0 0
\(57\) −32374.3 −1.31982
\(58\) 0 0
\(59\) −30122.1 −1.12656 −0.563281 0.826265i \(-0.690461\pi\)
−0.563281 + 0.826265i \(0.690461\pi\)
\(60\) 0 0
\(61\) − 43658.2i − 1.50225i −0.660161 0.751124i \(-0.729512\pi\)
0.660161 0.751124i \(-0.270488\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 56031.5 1.64493
\(66\) 0 0
\(67\) 10606.4i 0.288655i 0.989530 + 0.144328i \(0.0461019\pi\)
−0.989530 + 0.144328i \(0.953898\pi\)
\(68\) 0 0
\(69\) − 27765.4i − 0.702071i
\(70\) 0 0
\(71\) 57405.1i 1.35146i 0.737148 + 0.675732i \(0.236172\pi\)
−0.737148 + 0.675732i \(0.763828\pi\)
\(72\) 0 0
\(73\) − 65014.3i − 1.42791i −0.700190 0.713957i \(-0.746901\pi\)
0.700190 0.713957i \(-0.253099\pi\)
\(74\) 0 0
\(75\) −104833. −2.15202
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 18465.2i − 0.332878i −0.986052 0.166439i \(-0.946773\pi\)
0.986052 0.166439i \(-0.0532269\pi\)
\(80\) 0 0
\(81\) −44814.6 −0.758939
\(82\) 0 0
\(83\) 17093.5 0.272355 0.136178 0.990684i \(-0.456518\pi\)
0.136178 + 0.990684i \(0.456518\pi\)
\(84\) 0 0
\(85\) −130031. −1.95209
\(86\) 0 0
\(87\) −45515.3 −0.644703
\(88\) 0 0
\(89\) − 47195.1i − 0.631571i −0.948831 0.315785i \(-0.897732\pi\)
0.948831 0.315785i \(-0.102268\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −18822.1 −0.225663
\(94\) 0 0
\(95\) 122511.i 1.39273i
\(96\) 0 0
\(97\) 52847.4i 0.570288i 0.958485 + 0.285144i \(0.0920414\pi\)
−0.958485 + 0.285144i \(0.907959\pi\)
\(98\) 0 0
\(99\) 118233.i 1.21242i
\(100\) 0 0
\(101\) 180107.i 1.75682i 0.477904 + 0.878412i \(0.341397\pi\)
−0.477904 + 0.878412i \(0.658603\pi\)
\(102\) 0 0
\(103\) −24679.3 −0.229214 −0.114607 0.993411i \(-0.536561\pi\)
−0.114607 + 0.993411i \(0.536561\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 14238.3i − 0.120226i −0.998192 0.0601132i \(-0.980854\pi\)
0.998192 0.0601132i \(-0.0191462\pi\)
\(108\) 0 0
\(109\) −180797. −1.45755 −0.728777 0.684752i \(-0.759911\pi\)
−0.728777 + 0.684752i \(0.759911\pi\)
\(110\) 0 0
\(111\) −321739. −2.47854
\(112\) 0 0
\(113\) −46481.6 −0.342440 −0.171220 0.985233i \(-0.554771\pi\)
−0.171220 + 0.985233i \(0.554771\pi\)
\(114\) 0 0
\(115\) −105070. −0.740858
\(116\) 0 0
\(117\) 186822.i 1.26172i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3142.56 −0.0195128
\(122\) 0 0
\(123\) − 394086.i − 2.34870i
\(124\) 0 0
\(125\) 123239.i 0.705462i
\(126\) 0 0
\(127\) − 129698.i − 0.713551i −0.934190 0.356775i \(-0.883876\pi\)
0.934190 0.356775i \(-0.116124\pi\)
\(128\) 0 0
\(129\) − 445249.i − 2.35575i
\(130\) 0 0
\(131\) −159087. −0.809945 −0.404973 0.914329i \(-0.632719\pi\)
−0.404973 + 0.914329i \(0.632719\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 98726.3i − 0.466228i
\(136\) 0 0
\(137\) −130226. −0.592782 −0.296391 0.955067i \(-0.595783\pi\)
−0.296391 + 0.955067i \(0.595783\pi\)
\(138\) 0 0
\(139\) 317422. 1.39348 0.696739 0.717325i \(-0.254634\pi\)
0.696739 + 0.717325i \(0.254634\pi\)
\(140\) 0 0
\(141\) 523807. 2.21883
\(142\) 0 0
\(143\) −259445. −1.06097
\(144\) 0 0
\(145\) 172240.i 0.680320i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19846.2 −0.0732339 −0.0366169 0.999329i \(-0.511658\pi\)
−0.0366169 + 0.999329i \(0.511658\pi\)
\(150\) 0 0
\(151\) 210098.i 0.749858i 0.927053 + 0.374929i \(0.122333\pi\)
−0.927053 + 0.374929i \(0.877667\pi\)
\(152\) 0 0
\(153\) − 433556.i − 1.49733i
\(154\) 0 0
\(155\) 71226.8i 0.238130i
\(156\) 0 0
\(157\) 395680.i 1.28114i 0.767902 + 0.640568i \(0.221301\pi\)
−0.767902 + 0.640568i \(0.778699\pi\)
\(158\) 0 0
\(159\) −370439. −1.16205
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 219700.i − 0.647680i −0.946112 0.323840i \(-0.895026\pi\)
0.946112 0.323840i \(-0.104974\pi\)
\(164\) 0 0
\(165\) 820035. 2.34489
\(166\) 0 0
\(167\) −28110.7 −0.0779974 −0.0389987 0.999239i \(-0.512417\pi\)
−0.0389987 + 0.999239i \(0.512417\pi\)
\(168\) 0 0
\(169\) −38659.7 −0.104122
\(170\) 0 0
\(171\) −408482. −1.06827
\(172\) 0 0
\(173\) 430301.i 1.09309i 0.837429 + 0.546546i \(0.184058\pi\)
−0.837429 + 0.546546i \(0.815942\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −696586. −1.67125
\(178\) 0 0
\(179\) 41573.3i 0.0969800i 0.998824 + 0.0484900i \(0.0154409\pi\)
−0.998824 + 0.0484900i \(0.984559\pi\)
\(180\) 0 0
\(181\) 273268.i 0.620001i 0.950736 + 0.310000i \(0.100329\pi\)
−0.950736 + 0.310000i \(0.899671\pi\)
\(182\) 0 0
\(183\) − 1.00961e6i − 2.22858i
\(184\) 0 0
\(185\) 1.21753e6i 2.61547i
\(186\) 0 0
\(187\) 602090. 1.25909
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 496861.i − 0.985488i −0.870174 0.492744i \(-0.835994\pi\)
0.870174 0.492744i \(-0.164006\pi\)
\(192\) 0 0
\(193\) −229972. −0.444408 −0.222204 0.975000i \(-0.571325\pi\)
−0.222204 + 0.975000i \(0.571325\pi\)
\(194\) 0 0
\(195\) 1.29575e6 2.44025
\(196\) 0 0
\(197\) 67861.0 0.124582 0.0622909 0.998058i \(-0.480159\pi\)
0.0622909 + 0.998058i \(0.480159\pi\)
\(198\) 0 0
\(199\) 663781. 1.18821 0.594103 0.804389i \(-0.297507\pi\)
0.594103 + 0.804389i \(0.297507\pi\)
\(200\) 0 0
\(201\) 245276.i 0.428219i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.49130e6 −2.47846
\(206\) 0 0
\(207\) − 350329.i − 0.568264i
\(208\) 0 0
\(209\) − 567269.i − 0.898305i
\(210\) 0 0
\(211\) − 129670.i − 0.200509i −0.994962 0.100254i \(-0.968034\pi\)
0.994962 0.100254i \(-0.0319656\pi\)
\(212\) 0 0
\(213\) 1.32751e6i 2.00489i
\(214\) 0 0
\(215\) −1.68492e6 −2.48589
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 1.50348e6i − 2.11830i
\(220\) 0 0
\(221\) 951371. 1.31030
\(222\) 0 0
\(223\) 1.16536e6 1.56927 0.784637 0.619956i \(-0.212849\pi\)
0.784637 + 0.619956i \(0.212849\pi\)
\(224\) 0 0
\(225\) −1.32273e6 −1.74187
\(226\) 0 0
\(227\) 1.09066e6 1.40484 0.702420 0.711763i \(-0.252103\pi\)
0.702420 + 0.711763i \(0.252103\pi\)
\(228\) 0 0
\(229\) − 43063.3i − 0.0542649i −0.999632 0.0271324i \(-0.991362\pi\)
0.999632 0.0271324i \(-0.00863758\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 801449. 0.967133 0.483567 0.875308i \(-0.339341\pi\)
0.483567 + 0.875308i \(0.339341\pi\)
\(234\) 0 0
\(235\) − 1.98220e6i − 2.34141i
\(236\) 0 0
\(237\) − 427014.i − 0.493823i
\(238\) 0 0
\(239\) − 841735.i − 0.953193i −0.879122 0.476596i \(-0.841870\pi\)
0.879122 0.476596i \(-0.158130\pi\)
\(240\) 0 0
\(241\) − 826079.i − 0.916176i −0.888907 0.458088i \(-0.848534\pi\)
0.888907 0.458088i \(-0.151466\pi\)
\(242\) 0 0
\(243\) −1.31050e6 −1.42370
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 896351.i − 0.934837i
\(248\) 0 0
\(249\) 395294. 0.404038
\(250\) 0 0
\(251\) −1.51586e6 −1.51871 −0.759357 0.650674i \(-0.774487\pi\)
−0.759357 + 0.650674i \(0.774487\pi\)
\(252\) 0 0
\(253\) 486511. 0.477849
\(254\) 0 0
\(255\) −3.00703e6 −2.89592
\(256\) 0 0
\(257\) − 419956.i − 0.396617i −0.980140 0.198309i \(-0.936455\pi\)
0.980140 0.198309i \(-0.0635448\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −574288. −0.521830
\(262\) 0 0
\(263\) 1.25652e6i 1.12016i 0.828440 + 0.560078i \(0.189229\pi\)
−0.828440 + 0.560078i \(0.810771\pi\)
\(264\) 0 0
\(265\) 1.40182e6i 1.22625i
\(266\) 0 0
\(267\) − 1.09141e6i − 0.936932i
\(268\) 0 0
\(269\) 273397.i 0.230363i 0.993344 + 0.115182i \(0.0367450\pi\)
−0.993344 + 0.115182i \(0.963255\pi\)
\(270\) 0 0
\(271\) −772690. −0.639119 −0.319560 0.947566i \(-0.603535\pi\)
−0.319560 + 0.947566i \(0.603535\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.83691e6i − 1.46473i
\(276\) 0 0
\(277\) 31861.9 0.0249501 0.0124750 0.999922i \(-0.496029\pi\)
0.0124750 + 0.999922i \(0.496029\pi\)
\(278\) 0 0
\(279\) −237487. −0.182654
\(280\) 0 0
\(281\) 510770. 0.385887 0.192943 0.981210i \(-0.438197\pi\)
0.192943 + 0.981210i \(0.438197\pi\)
\(282\) 0 0
\(283\) −1.94759e6 −1.44554 −0.722771 0.691088i \(-0.757132\pi\)
−0.722771 + 0.691088i \(0.757132\pi\)
\(284\) 0 0
\(285\) 2.83312e6i 2.06611i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −787976. −0.554968
\(290\) 0 0
\(291\) 1.22212e6i 0.846020i
\(292\) 0 0
\(293\) − 1.59231e6i − 1.08357i −0.840516 0.541787i \(-0.817748\pi\)
0.840516 0.541787i \(-0.182252\pi\)
\(294\) 0 0
\(295\) 2.63603e6i 1.76358i
\(296\) 0 0
\(297\) 457136.i 0.300715i
\(298\) 0 0
\(299\) 768743. 0.497283
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 4.16506e6i 2.60624i
\(304\) 0 0
\(305\) −3.82060e6 −2.35170
\(306\) 0 0
\(307\) −148691. −0.0900404 −0.0450202 0.998986i \(-0.514335\pi\)
−0.0450202 + 0.998986i \(0.514335\pi\)
\(308\) 0 0
\(309\) −570720. −0.340037
\(310\) 0 0
\(311\) −729282. −0.427557 −0.213779 0.976882i \(-0.568577\pi\)
−0.213779 + 0.976882i \(0.568577\pi\)
\(312\) 0 0
\(313\) 1.82131e6i 1.05081i 0.850853 + 0.525404i \(0.176086\pi\)
−0.850853 + 0.525404i \(0.823914\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.58021e6 0.883213 0.441607 0.897209i \(-0.354409\pi\)
0.441607 + 0.897209i \(0.354409\pi\)
\(318\) 0 0
\(319\) − 797529.i − 0.438803i
\(320\) 0 0
\(321\) − 329268.i − 0.178355i
\(322\) 0 0
\(323\) 2.08015e6i 1.10940i
\(324\) 0 0
\(325\) − 2.90254e6i − 1.52430i
\(326\) 0 0
\(327\) −4.18100e6 −2.16227
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 3.13334e6i − 1.57195i −0.618260 0.785974i \(-0.712162\pi\)
0.618260 0.785974i \(-0.287838\pi\)
\(332\) 0 0
\(333\) −4.05953e6 −2.00616
\(334\) 0 0
\(335\) 928178. 0.451876
\(336\) 0 0
\(337\) 3.16854e6 1.51979 0.759897 0.650043i \(-0.225249\pi\)
0.759897 + 0.650043i \(0.225249\pi\)
\(338\) 0 0
\(339\) −1.07490e6 −0.508008
\(340\) 0 0
\(341\) − 329804.i − 0.153593i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.42979e6 −1.09906
\(346\) 0 0
\(347\) − 274345.i − 0.122313i −0.998128 0.0611565i \(-0.980521\pi\)
0.998128 0.0611565i \(-0.0194789\pi\)
\(348\) 0 0
\(349\) 528446.i 0.232240i 0.993235 + 0.116120i \(0.0370457\pi\)
−0.993235 + 0.116120i \(0.962954\pi\)
\(350\) 0 0
\(351\) 722328.i 0.312944i
\(352\) 0 0
\(353\) 155996.i 0.0666310i 0.999445 + 0.0333155i \(0.0106066\pi\)
−0.999445 + 0.0333155i \(0.989393\pi\)
\(354\) 0 0
\(355\) 5.02360e6 2.11565
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 298899.i 0.122402i 0.998125 + 0.0612009i \(0.0194930\pi\)
−0.998125 + 0.0612009i \(0.980507\pi\)
\(360\) 0 0
\(361\) −516250. −0.208493
\(362\) 0 0
\(363\) −72672.9 −0.0289472
\(364\) 0 0
\(365\) −5.68950e6 −2.23533
\(366\) 0 0
\(367\) −2.72918e6 −1.05771 −0.528855 0.848712i \(-0.677379\pi\)
−0.528855 + 0.848712i \(0.677379\pi\)
\(368\) 0 0
\(369\) − 4.97237e6i − 1.90107i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.95224e6 0.726541 0.363270 0.931684i \(-0.381660\pi\)
0.363270 + 0.931684i \(0.381660\pi\)
\(374\) 0 0
\(375\) 2.84995e6i 1.04655i
\(376\) 0 0
\(377\) − 1.26019e6i − 0.456648i
\(378\) 0 0
\(379\) − 223755.i − 0.0800157i −0.999199 0.0400079i \(-0.987262\pi\)
0.999199 0.0400079i \(-0.0127383\pi\)
\(380\) 0 0
\(381\) − 2.99932e6i − 1.05855i
\(382\) 0 0
\(383\) −4.09699e6 −1.42714 −0.713572 0.700582i \(-0.752924\pi\)
−0.713572 + 0.700582i \(0.752924\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5.61792e6i − 1.90677i
\(388\) 0 0
\(389\) 1.37706e6 0.461400 0.230700 0.973025i \(-0.425898\pi\)
0.230700 + 0.973025i \(0.425898\pi\)
\(390\) 0 0
\(391\) −1.78401e6 −0.590141
\(392\) 0 0
\(393\) −3.67894e6 −1.20155
\(394\) 0 0
\(395\) −1.61591e6 −0.521105
\(396\) 0 0
\(397\) − 4.47452e6i − 1.42485i −0.701747 0.712427i \(-0.747596\pi\)
0.701747 0.712427i \(-0.252404\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.96522e6 1.85253 0.926266 0.376869i \(-0.122999\pi\)
0.926266 + 0.376869i \(0.122999\pi\)
\(402\) 0 0
\(403\) − 521129.i − 0.159839i
\(404\) 0 0
\(405\) 3.92179e6i 1.18808i
\(406\) 0 0
\(407\) − 5.63757e6i − 1.68696i
\(408\) 0 0
\(409\) 1.22131e6i 0.361008i 0.983574 + 0.180504i \(0.0577729\pi\)
−0.983574 + 0.180504i \(0.942227\pi\)
\(410\) 0 0
\(411\) −3.01152e6 −0.879389
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 1.49588e6i − 0.426359i
\(416\) 0 0
\(417\) 7.34051e6 2.06722
\(418\) 0 0
\(419\) 3.12252e6 0.868901 0.434450 0.900696i \(-0.356943\pi\)
0.434450 + 0.900696i \(0.356943\pi\)
\(420\) 0 0
\(421\) −937555. −0.257805 −0.128903 0.991657i \(-0.541145\pi\)
−0.128903 + 0.991657i \(0.541145\pi\)
\(422\) 0 0
\(423\) 6.60912e6 1.79594
\(424\) 0 0
\(425\) 6.73587e6i 1.80893i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.99976e6 −1.57395
\(430\) 0 0
\(431\) 272216.i 0.0705864i 0.999377 + 0.0352932i \(0.0112365\pi\)
−0.999377 + 0.0352932i \(0.988763\pi\)
\(432\) 0 0
\(433\) − 6.33614e6i − 1.62407i −0.583608 0.812035i \(-0.698360\pi\)
0.583608 0.812035i \(-0.301640\pi\)
\(434\) 0 0
\(435\) 3.98311e6i 1.00925i
\(436\) 0 0
\(437\) 1.68084e6i 0.421039i
\(438\) 0 0
\(439\) 118231. 0.0292798 0.0146399 0.999893i \(-0.495340\pi\)
0.0146399 + 0.999893i \(0.495340\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.47333e6i 1.08298i 0.840706 + 0.541492i \(0.182140\pi\)
−0.840706 + 0.541492i \(0.817860\pi\)
\(444\) 0 0
\(445\) −4.13011e6 −0.988694
\(446\) 0 0
\(447\) −458952. −0.108642
\(448\) 0 0
\(449\) 1.27906e6 0.299416 0.149708 0.988730i \(-0.452167\pi\)
0.149708 + 0.988730i \(0.452167\pi\)
\(450\) 0 0
\(451\) 6.90525e6 1.59859
\(452\) 0 0
\(453\) 4.85860e6i 1.11241i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.52132e6 −1.01269 −0.506343 0.862332i \(-0.669003\pi\)
−0.506343 + 0.862332i \(0.669003\pi\)
\(458\) 0 0
\(459\) − 1.67630e6i − 0.371381i
\(460\) 0 0
\(461\) 1.58045e6i 0.346360i 0.984890 + 0.173180i \(0.0554043\pi\)
−0.984890 + 0.173180i \(0.944596\pi\)
\(462\) 0 0
\(463\) − 7.54852e6i − 1.63648i −0.574880 0.818238i \(-0.694951\pi\)
0.574880 0.818238i \(-0.305049\pi\)
\(464\) 0 0
\(465\) 1.64715e6i 0.353265i
\(466\) 0 0
\(467\) 6.55082e6 1.38996 0.694982 0.719028i \(-0.255412\pi\)
0.694982 + 0.719028i \(0.255412\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 9.15026e6i 1.90056i
\(472\) 0 0
\(473\) 7.80175e6 1.60339
\(474\) 0 0
\(475\) 6.34632e6 1.29059
\(476\) 0 0
\(477\) −4.67401e6 −0.940576
\(478\) 0 0
\(479\) 4.19540e6 0.835477 0.417739 0.908567i \(-0.362823\pi\)
0.417739 + 0.908567i \(0.362823\pi\)
\(480\) 0 0
\(481\) − 8.90801e6i − 1.75557i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.62476e6 0.892759
\(486\) 0 0
\(487\) − 2.79453e6i − 0.533932i −0.963706 0.266966i \(-0.913979\pi\)
0.963706 0.266966i \(-0.0860212\pi\)
\(488\) 0 0
\(489\) − 5.08064e6i − 0.960830i
\(490\) 0 0
\(491\) − 3.03606e6i − 0.568338i −0.958774 0.284169i \(-0.908282\pi\)
0.958774 0.284169i \(-0.0917177\pi\)
\(492\) 0 0
\(493\) 2.92450e6i 0.541919i
\(494\) 0 0
\(495\) 1.03468e7 1.89798
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 4.51171e6i − 0.811128i −0.914067 0.405564i \(-0.867075\pi\)
0.914067 0.405564i \(-0.132925\pi\)
\(500\) 0 0
\(501\) −650070. −0.115709
\(502\) 0 0
\(503\) −5.19848e6 −0.916129 −0.458065 0.888919i \(-0.651457\pi\)
−0.458065 + 0.888919i \(0.651457\pi\)
\(504\) 0 0
\(505\) 1.57615e7 2.75023
\(506\) 0 0
\(507\) −894021. −0.154464
\(508\) 0 0
\(509\) − 4.14280e6i − 0.708761i −0.935101 0.354380i \(-0.884692\pi\)
0.935101 0.354380i \(-0.115308\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.57935e6 −0.264963
\(514\) 0 0
\(515\) 2.15973e6i 0.358823i
\(516\) 0 0
\(517\) 9.17825e6i 1.51020i
\(518\) 0 0
\(519\) 9.95088e6i 1.62160i
\(520\) 0 0
\(521\) 4.90738e6i 0.792055i 0.918239 + 0.396027i \(0.129611\pi\)
−0.918239 + 0.396027i \(0.870389\pi\)
\(522\) 0 0
\(523\) 8.99644e6 1.43819 0.719095 0.694911i \(-0.244556\pi\)
0.719095 + 0.694911i \(0.244556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.20938e6i 0.189686i
\(528\) 0 0
\(529\) 4.99480e6 0.776030
\(530\) 0 0
\(531\) −8.78915e6 −1.35273
\(532\) 0 0
\(533\) 1.09111e7 1.66360
\(534\) 0 0
\(535\) −1.24602e6 −0.188209
\(536\) 0 0
\(537\) 961400.i 0.143869i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.11507e6 0.163799 0.0818993 0.996641i \(-0.473901\pi\)
0.0818993 + 0.996641i \(0.473901\pi\)
\(542\) 0 0
\(543\) 6.31943e6i 0.919768i
\(544\) 0 0
\(545\) 1.58218e7i 2.28173i
\(546\) 0 0
\(547\) 164832.i 0.0235545i 0.999931 + 0.0117772i \(0.00374889\pi\)
−0.999931 + 0.0117772i \(0.996251\pi\)
\(548\) 0 0
\(549\) − 1.27388e7i − 1.80384i
\(550\) 0 0
\(551\) 2.75537e6 0.386634
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.81558e7i 3.88004i
\(556\) 0 0
\(557\) −9.13565e6 −1.24768 −0.623838 0.781554i \(-0.714427\pi\)
−0.623838 + 0.781554i \(0.714427\pi\)
\(558\) 0 0
\(559\) 1.23277e7 1.66860
\(560\) 0 0
\(561\) 1.39236e7 1.86786
\(562\) 0 0
\(563\) 7.69699e6 1.02341 0.511705 0.859161i \(-0.329014\pi\)
0.511705 + 0.859161i \(0.329014\pi\)
\(564\) 0 0
\(565\) 4.06767e6i 0.536074i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.92396e6 0.767064 0.383532 0.923528i \(-0.374708\pi\)
0.383532 + 0.923528i \(0.374708\pi\)
\(570\) 0 0
\(571\) − 8.59815e6i − 1.10361i −0.833974 0.551804i \(-0.813940\pi\)
0.833974 0.551804i \(-0.186060\pi\)
\(572\) 0 0
\(573\) − 1.14901e7i − 1.46197i
\(574\) 0 0
\(575\) 5.44283e6i 0.686524i
\(576\) 0 0
\(577\) 6.90585e6i 0.863531i 0.901986 + 0.431765i \(0.142109\pi\)
−0.901986 + 0.431765i \(0.857891\pi\)
\(578\) 0 0
\(579\) −5.31819e6 −0.659277
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 6.49092e6i − 0.790924i
\(584\) 0 0
\(585\) 1.63491e7 1.97517
\(586\) 0 0
\(587\) −9.16568e6 −1.09792 −0.548958 0.835850i \(-0.684975\pi\)
−0.548958 + 0.835850i \(0.684975\pi\)
\(588\) 0 0
\(589\) 1.13944e6 0.135332
\(590\) 0 0
\(591\) 1.56931e6 0.184817
\(592\) 0 0
\(593\) 3.81010e6i 0.444938i 0.974940 + 0.222469i \(0.0714116\pi\)
−0.974940 + 0.222469i \(0.928588\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.53502e7 1.76270
\(598\) 0 0
\(599\) − 3.66114e6i − 0.416917i −0.978031 0.208459i \(-0.933155\pi\)
0.978031 0.208459i \(-0.0668446\pi\)
\(600\) 0 0
\(601\) − 1.35098e6i − 0.152568i −0.997086 0.0762840i \(-0.975694\pi\)
0.997086 0.0762840i \(-0.0243056\pi\)
\(602\) 0 0
\(603\) 3.09477e6i 0.346605i
\(604\) 0 0
\(605\) 275010.i 0.0305464i
\(606\) 0 0
\(607\) 1.21732e7 1.34102 0.670509 0.741901i \(-0.266076\pi\)
0.670509 + 0.741901i \(0.266076\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.45027e7i 1.57161i
\(612\) 0 0
\(613\) −2.77702e6 −0.298489 −0.149245 0.988800i \(-0.547684\pi\)
−0.149245 + 0.988800i \(0.547684\pi\)
\(614\) 0 0
\(615\) −3.44870e7 −3.67678
\(616\) 0 0
\(617\) −3.36595e6 −0.355955 −0.177978 0.984035i \(-0.556955\pi\)
−0.177978 + 0.984035i \(0.556955\pi\)
\(618\) 0 0
\(619\) 1.67628e7 1.75841 0.879207 0.476440i \(-0.158073\pi\)
0.879207 + 0.476440i \(0.158073\pi\)
\(620\) 0 0
\(621\) − 1.35451e6i − 0.140946i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −3.38161e6 −0.346277
\(626\) 0 0
\(627\) − 1.31183e7i − 1.33263i
\(628\) 0 0
\(629\) 2.06727e7i 2.08339i
\(630\) 0 0
\(631\) 7.07244e6i 0.707124i 0.935411 + 0.353562i \(0.115030\pi\)
−0.935411 + 0.353562i \(0.884970\pi\)
\(632\) 0 0
\(633\) − 2.99867e6i − 0.297454i
\(634\) 0 0
\(635\) −1.13501e7 −1.11703
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.67499e7i 1.62278i
\(640\) 0 0
\(641\) −1.75827e7 −1.69021 −0.845105 0.534600i \(-0.820462\pi\)
−0.845105 + 0.534600i \(0.820462\pi\)
\(642\) 0 0
\(643\) −1.07973e7 −1.02988 −0.514940 0.857226i \(-0.672186\pi\)
−0.514940 + 0.857226i \(0.672186\pi\)
\(644\) 0 0
\(645\) −3.89644e7 −3.68781
\(646\) 0 0
\(647\) −3.53076e6 −0.331594 −0.165797 0.986160i \(-0.553020\pi\)
−0.165797 + 0.986160i \(0.553020\pi\)
\(648\) 0 0
\(649\) − 1.22057e7i − 1.13750i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.41325e7 −1.29699 −0.648493 0.761221i \(-0.724600\pi\)
−0.648493 + 0.761221i \(0.724600\pi\)
\(654\) 0 0
\(655\) 1.39219e7i 1.26793i
\(656\) 0 0
\(657\) − 1.89702e7i − 1.71458i
\(658\) 0 0
\(659\) − 8.40793e6i − 0.754181i −0.926176 0.377090i \(-0.876925\pi\)
0.926176 0.377090i \(-0.123075\pi\)
\(660\) 0 0
\(661\) − 6.54101e6i − 0.582293i −0.956679 0.291146i \(-0.905963\pi\)
0.956679 0.291146i \(-0.0940367\pi\)
\(662\) 0 0
\(663\) 2.20008e7 1.94382
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.36310e6i 0.205669i
\(668\) 0 0
\(669\) 2.69495e7 2.32801
\(670\) 0 0
\(671\) 1.76907e7 1.51683
\(672\) 0 0
\(673\) −1.09027e6 −0.0927890 −0.0463945 0.998923i \(-0.514773\pi\)
−0.0463945 + 0.998923i \(0.514773\pi\)
\(674\) 0 0
\(675\) −5.11421e6 −0.432035
\(676\) 0 0
\(677\) − 1.62072e6i − 0.135905i −0.997689 0.0679525i \(-0.978353\pi\)
0.997689 0.0679525i \(-0.0216466\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.52221e7 2.08407
\(682\) 0 0
\(683\) 2.11839e7i 1.73761i 0.495150 + 0.868807i \(0.335113\pi\)
−0.495150 + 0.868807i \(0.664887\pi\)
\(684\) 0 0
\(685\) 1.13962e7i 0.927973i
\(686\) 0 0
\(687\) − 995856.i − 0.0805017i
\(688\) 0 0
\(689\) − 1.02564e7i − 0.823089i
\(690\) 0 0
\(691\) −9.47759e6 −0.755097 −0.377549 0.925990i \(-0.623233\pi\)
−0.377549 + 0.925990i \(0.623233\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 2.77781e7i − 2.18142i
\(696\) 0 0
\(697\) −2.53212e7 −1.97425
\(698\) 0 0
\(699\) 1.85338e7 1.43474
\(700\) 0 0
\(701\) 1.44960e7 1.11417 0.557087 0.830454i \(-0.311919\pi\)
0.557087 + 0.830454i \(0.311919\pi\)
\(702\) 0 0
\(703\) 1.94771e7 1.48640
\(704\) 0 0
\(705\) − 4.58391e7i − 3.47347i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.32615e7 1.73789 0.868945 0.494908i \(-0.164798\pi\)
0.868945 + 0.494908i \(0.164798\pi\)
\(710\) 0 0
\(711\) − 5.38784e6i − 0.399706i
\(712\) 0 0
\(713\) 977221.i 0.0719895i
\(714\) 0 0
\(715\) 2.27044e7i 1.66091i
\(716\) 0 0
\(717\) − 1.94655e7i − 1.41406i
\(718\) 0 0
\(719\) −3.79131e6 −0.273506 −0.136753 0.990605i \(-0.543667\pi\)
−0.136753 + 0.990605i \(0.543667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 1.91034e7i − 1.35914i
\(724\) 0 0
\(725\) 8.92235e6 0.630426
\(726\) 0 0
\(727\) 1.04927e7 0.736294 0.368147 0.929768i \(-0.379992\pi\)
0.368147 + 0.929768i \(0.379992\pi\)
\(728\) 0 0
\(729\) −1.94158e7 −1.35312
\(730\) 0 0
\(731\) −2.86086e7 −1.98017
\(732\) 0 0
\(733\) 9.17803e6i 0.630942i 0.948935 + 0.315471i \(0.102163\pi\)
−0.948935 + 0.315471i \(0.897837\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.29778e6 −0.291458
\(738\) 0 0
\(739\) 2.28875e7i 1.54165i 0.637044 + 0.770827i \(0.280157\pi\)
−0.637044 + 0.770827i \(0.719843\pi\)
\(740\) 0 0
\(741\) − 2.07285e7i − 1.38683i
\(742\) 0 0
\(743\) 8.13890e6i 0.540871i 0.962738 + 0.270435i \(0.0871676\pi\)
−0.962738 + 0.270435i \(0.912832\pi\)
\(744\) 0 0
\(745\) 1.73677e6i 0.114644i
\(746\) 0 0
\(747\) 4.98761e6 0.327033
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 8.00773e6i − 0.518095i −0.965865 0.259048i \(-0.916591\pi\)
0.965865 0.259048i \(-0.0834086\pi\)
\(752\) 0 0
\(753\) −3.50550e7 −2.25301
\(754\) 0 0
\(755\) 1.83860e7 1.17387
\(756\) 0 0
\(757\) −1.42534e7 −0.904020 −0.452010 0.892013i \(-0.649293\pi\)
−0.452010 + 0.892013i \(0.649293\pi\)
\(758\) 0 0
\(759\) 1.12508e7 0.708887
\(760\) 0 0
\(761\) − 8.02161e6i − 0.502111i −0.967973 0.251056i \(-0.919222\pi\)
0.967973 0.251056i \(-0.0807777\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.79411e7 −2.34399
\(766\) 0 0
\(767\) − 1.92864e7i − 1.18376i
\(768\) 0 0
\(769\) − 6.02804e6i − 0.367587i −0.982965 0.183794i \(-0.941162\pi\)
0.982965 0.183794i \(-0.0588378\pi\)
\(770\) 0 0
\(771\) − 9.71166e6i − 0.588380i
\(772\) 0 0
\(773\) − 5.98145e6i − 0.360046i −0.983662 0.180023i \(-0.942383\pi\)
0.983662 0.180023i \(-0.0576172\pi\)
\(774\) 0 0
\(775\) 3.68968e6 0.220666
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.38568e7i 1.40854i
\(780\) 0 0
\(781\) −2.32610e7 −1.36459
\(782\) 0 0
\(783\) −2.22043e6 −0.129429
\(784\) 0 0
\(785\) 3.46265e7 2.00556
\(786\) 0 0
\(787\) −1.08999e7 −0.627317 −0.313659 0.949536i \(-0.601555\pi\)
−0.313659 + 0.949536i \(0.601555\pi\)
\(788\) 0 0
\(789\) 2.90574e7i 1.66175i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.79533e7 1.57852
\(794\) 0 0
\(795\) 3.24177e7i 1.81913i
\(796\) 0 0
\(797\) 9.04729e6i 0.504514i 0.967660 + 0.252257i \(0.0811728\pi\)
−0.967660 + 0.252257i \(0.918827\pi\)
\(798\) 0 0
\(799\) − 3.36562e7i − 1.86508i
\(800\) 0 0
\(801\) − 1.37708e7i − 0.758363i
\(802\) 0 0
\(803\) 2.63443e7 1.44178
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.32242e6i 0.341743i
\(808\) 0 0
\(809\) 2.67854e7 1.43889 0.719445 0.694549i \(-0.244396\pi\)
0.719445 + 0.694549i \(0.244396\pi\)
\(810\) 0 0
\(811\) −1.53751e7 −0.820853 −0.410427 0.911894i \(-0.634620\pi\)
−0.410427 + 0.911894i \(0.634620\pi\)
\(812\) 0 0
\(813\) −1.78688e7 −0.948130
\(814\) 0 0
\(815\) −1.92262e7 −1.01391
\(816\) 0 0
\(817\) 2.69541e7i 1.41276i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.20149e7 −1.13988 −0.569940 0.821686i \(-0.693034\pi\)
−0.569940 + 0.821686i \(0.693034\pi\)
\(822\) 0 0
\(823\) − 4.40589e6i − 0.226743i −0.993553 0.113371i \(-0.963835\pi\)
0.993553 0.113371i \(-0.0361650\pi\)
\(824\) 0 0
\(825\) − 4.24794e7i − 2.17292i
\(826\) 0 0
\(827\) − 1.96164e7i − 0.997369i −0.866783 0.498685i \(-0.833817\pi\)
0.866783 0.498685i \(-0.166183\pi\)
\(828\) 0 0
\(829\) − 5.76695e6i − 0.291447i −0.989325 0.145724i \(-0.953449\pi\)
0.989325 0.145724i \(-0.0465511\pi\)
\(830\) 0 0
\(831\) 736819. 0.0370133
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.46001e6i 0.122101i
\(836\) 0 0
\(837\) −918219. −0.0453036
\(838\) 0 0
\(839\) −1.04959e6 −0.0514774 −0.0257387 0.999669i \(-0.508194\pi\)
−0.0257387 + 0.999669i \(0.508194\pi\)
\(840\) 0 0
\(841\) −1.66374e7 −0.811137
\(842\) 0 0
\(843\) 1.18118e7 0.572461
\(844\) 0 0
\(845\) 3.38317e6i 0.162998i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −4.50387e7 −2.14445
\(850\) 0 0
\(851\) 1.67043e7i 0.790687i
\(852\) 0 0
\(853\) 2.19938e7i 1.03497i 0.855692 + 0.517485i \(0.173132\pi\)
−0.855692 + 0.517485i \(0.826868\pi\)
\(854\) 0 0
\(855\) 3.57469e7i 1.67233i
\(856\) 0 0
\(857\) − 1.63145e7i − 0.758789i −0.925235 0.379394i \(-0.876132\pi\)
0.925235 0.379394i \(-0.123868\pi\)
\(858\) 0 0
\(859\) −3.14463e7 −1.45408 −0.727038 0.686597i \(-0.759104\pi\)
−0.727038 + 0.686597i \(0.759104\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1.94425e7i − 0.888640i −0.895868 0.444320i \(-0.853445\pi\)
0.895868 0.444320i \(-0.146555\pi\)
\(864\) 0 0
\(865\) 3.76563e7 1.71119
\(866\) 0 0
\(867\) −1.82222e7 −0.823293
\(868\) 0 0
\(869\) 7.48223e6 0.336110
\(870\) 0 0
\(871\) −6.79099e6 −0.303311
\(872\) 0 0
\(873\) 1.54200e7i 0.684778i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.15776e7 1.82541 0.912704 0.408621i \(-0.133990\pi\)
0.912704 + 0.408621i \(0.133990\pi\)
\(878\) 0 0
\(879\) − 3.68228e7i − 1.60748i
\(880\) 0 0
\(881\) − 7.22354e6i − 0.313553i −0.987634 0.156776i \(-0.949890\pi\)
0.987634 0.156776i \(-0.0501102\pi\)
\(882\) 0 0
\(883\) − 2.73652e7i − 1.18113i −0.806992 0.590563i \(-0.798906\pi\)
0.806992 0.590563i \(-0.201094\pi\)
\(884\) 0 0
\(885\) 6.09592e7i 2.61626i
\(886\) 0 0
\(887\) 2.10859e6 0.0899878 0.0449939 0.998987i \(-0.485673\pi\)
0.0449939 + 0.998987i \(0.485673\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 1.81592e7i − 0.766307i
\(892\) 0 0
\(893\) −3.17098e7 −1.33065
\(894\) 0 0
\(895\) 3.63814e6 0.151818
\(896\) 0 0
\(897\) 1.77775e7 0.737716
\(898\) 0 0
\(899\) 1.60194e6 0.0661070
\(900\) 0 0
\(901\) 2.38019e7i 0.976785i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.39141e7 0.970582
\(906\) 0 0
\(907\) − 3.70799e7i − 1.49665i −0.663333 0.748324i \(-0.730859\pi\)
0.663333 0.748324i \(-0.269141\pi\)
\(908\) 0 0
\(909\) 5.25525e7i 2.10952i
\(910\) 0 0
\(911\) − 8.94944e6i − 0.357273i −0.983915 0.178636i \(-0.942831\pi\)
0.983915 0.178636i \(-0.0571686\pi\)
\(912\) 0 0
\(913\) 6.92642e6i 0.275000i
\(914\) 0 0
\(915\) −8.83528e7 −3.48873
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.75668e7i 1.07671i 0.842719 + 0.538353i \(0.180953\pi\)
−0.842719 + 0.538353i \(0.819047\pi\)
\(920\) 0 0
\(921\) −3.43853e6 −0.133575
\(922\) 0 0
\(923\) −3.67550e7 −1.42008
\(924\) 0 0
\(925\) 6.30703e7 2.42365
\(926\) 0 0
\(927\) −7.20104e6 −0.275230
\(928\) 0 0
\(929\) − 3.45828e7i − 1.31468i −0.753593 0.657341i \(-0.771681\pi\)
0.753593 0.657341i \(-0.228319\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.68649e7 −0.634279
\(934\) 0 0
\(935\) − 5.26898e7i − 1.97105i
\(936\) 0 0
\(937\) 2.64955e7i 0.985877i 0.870064 + 0.492938i \(0.164077\pi\)
−0.870064 + 0.492938i \(0.835923\pi\)
\(938\) 0 0
\(939\) 4.21185e7i 1.55887i
\(940\) 0 0
\(941\) 2.41317e7i 0.888410i 0.895925 + 0.444205i \(0.146514\pi\)
−0.895925 + 0.444205i \(0.853486\pi\)
\(942\) 0 0
\(943\) −2.04605e7 −0.749267
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 3.25752e7i − 1.18036i −0.807273 0.590178i \(-0.799058\pi\)
0.807273 0.590178i \(-0.200942\pi\)
\(948\) 0 0
\(949\) 4.16271e7 1.50041
\(950\) 0 0
\(951\) 3.65429e7 1.31024
\(952\) 0 0
\(953\) 2.20095e7 0.785016 0.392508 0.919749i \(-0.371608\pi\)
0.392508 + 0.919749i \(0.371608\pi\)
\(954\) 0 0
\(955\) −4.34811e7 −1.54274
\(956\) 0 0
\(957\) − 1.84432e7i − 0.650962i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.79667e7 −0.976861
\(962\) 0 0
\(963\) − 4.15452e6i − 0.144363i
\(964\) 0 0
\(965\) 2.01252e7i 0.695699i
\(966\) 0 0
\(967\) 4.35658e7i 1.49823i 0.662439 + 0.749116i \(0.269522\pi\)
−0.662439 + 0.749116i \(0.730478\pi\)
\(968\) 0 0
\(969\) 4.81043e7i 1.64579i
\(970\) 0 0
\(971\) 3.50418e7 1.19272 0.596360 0.802717i \(-0.296613\pi\)
0.596360 + 0.802717i \(0.296613\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 6.71223e7i − 2.26129i
\(976\) 0 0
\(977\) 8.28519e6 0.277694 0.138847 0.990314i \(-0.455660\pi\)
0.138847 + 0.990314i \(0.455660\pi\)
\(978\) 0 0
\(979\) 1.91238e7 0.637703
\(980\) 0 0
\(981\) −5.27536e7 −1.75017
\(982\) 0 0
\(983\) 7.67863e6 0.253454 0.126727 0.991938i \(-0.459553\pi\)
0.126727 + 0.991938i \(0.459553\pi\)
\(984\) 0 0
\(985\) − 5.93862e6i − 0.195027i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.31168e7 −0.751515
\(990\) 0 0
\(991\) 4.54415e7i 1.46983i 0.678157 + 0.734917i \(0.262779\pi\)
−0.678157 + 0.734917i \(0.737221\pi\)
\(992\) 0 0
\(993\) − 7.24598e7i − 2.33198i
\(994\) 0 0
\(995\) − 5.80884e7i − 1.86008i
\(996\) 0 0
\(997\) 5.29962e7i 1.68852i 0.535932 + 0.844261i \(0.319960\pi\)
−0.535932 + 0.844261i \(0.680040\pi\)
\(998\) 0 0
\(999\) −1.56957e7 −0.497586
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.f.c.783.13 14
4.3 odd 2 784.6.f.d.783.1 14
7.2 even 3 112.6.p.c.31.1 yes 14
7.3 odd 6 112.6.p.b.47.7 yes 14
7.6 odd 2 784.6.f.d.783.2 14
28.3 even 6 112.6.p.c.47.1 yes 14
28.23 odd 6 112.6.p.b.31.7 14
28.27 even 2 inner 784.6.f.c.783.14 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.b.31.7 14 28.23 odd 6
112.6.p.b.47.7 yes 14 7.3 odd 6
112.6.p.c.31.1 yes 14 7.2 even 3
112.6.p.c.47.1 yes 14 28.3 even 6
784.6.f.c.783.13 14 1.1 even 1 trivial
784.6.f.c.783.14 14 28.27 even 2 inner
784.6.f.d.783.1 14 4.3 odd 2
784.6.f.d.783.2 14 7.6 odd 2