Properties

Label 112.10.i.b.81.2
Level $112$
Weight $10$
Character 112.81
Analytic conductor $57.684$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,233] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1116x^{4} - 3085x^{3} + 1245325x^{2} - 2341500x + 4410000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.2
Root \(0.943118 + 1.63353i\) of defining polynomial
Character \(\chi\) \(=\) 112.81
Dual form 112.10.i.b.65.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.98734 + 12.1024i) q^{3} +(859.469 + 1488.64i) q^{5} +(-1802.93 + 6091.23i) q^{7} +(9743.85 + 16876.9i) q^{9} +(-35661.7 + 61767.9i) q^{11} +156547. q^{13} -24021.6 q^{15} +(-255856. + 443155. i) q^{17} +(-97247.0 - 168437. i) q^{19} +(-61120.9 - 64381.3i) q^{21} +(-54078.1 - 93666.0i) q^{23} +(-500810. + 867429. i) q^{25} -547398. q^{27} +4.21769e6 q^{29} +(1.58367e6 - 2.74299e6i) q^{31} +(-498361. - 863187. i) q^{33} +(-1.06172e7 + 2.55130e6i) q^{35} +(-7.20686e6 - 1.24827e7i) q^{37} +(-1.09385e6 + 1.89460e6i) q^{39} +7.69007e6 q^{41} +3.64544e7 q^{43} +(-1.67491e7 + 2.90102e7i) q^{45} +(9.11895e6 + 1.57945e7i) q^{47} +(-3.38525e7 - 2.19641e7i) q^{49} +(-3.57550e6 - 6.19295e6i) q^{51} +(-2.26037e7 + 3.91507e7i) q^{53} -1.22601e8 q^{55} +2.71799e6 q^{57} +(-4.89074e7 + 8.47100e7i) q^{59} +(-5.73352e7 - 9.93075e7i) q^{61} +(-1.20368e8 + 2.89242e7i) q^{63} +(1.34547e8 + 2.33042e8i) q^{65} +(1.00808e8 - 1.74605e8i) q^{67} +1.51145e6 q^{69} -2.08831e7 q^{71} +(-4.42392e6 + 7.66245e6i) q^{73} +(-6.99866e6 - 1.21220e7i) q^{75} +(-3.11947e8 - 3.28587e8i) q^{77} +(1.92244e7 + 3.32976e7i) q^{79} +(-1.87963e8 + 3.25562e8i) q^{81} -5.55300e8 q^{83} -8.79600e8 q^{85} +(-2.94704e7 + 5.10443e7i) q^{87} +(8.24594e7 + 1.42824e8i) q^{89} +(-2.82243e8 + 9.53562e8i) q^{91} +(2.21312e7 + 3.83324e7i) q^{93} +(1.67162e8 - 2.89532e8i) q^{95} +1.57025e8 q^{97} -1.38993e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 233 q^{3} - 733 q^{5} - 5012 q^{7} - 15058 q^{9} - 7339 q^{11} + 197036 q^{13} - 738238 q^{15} - 306665 q^{17} + 377991 q^{19} - 1585927 q^{21} + 2267255 q^{23} - 142612 q^{25} - 21348358 q^{27} - 13085956 q^{29}+ \cdots + 1256218868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.98734 + 12.1024i −0.0498042 + 0.0862634i −0.889853 0.456248i \(-0.849193\pi\)
0.840049 + 0.542511i \(0.182526\pi\)
\(4\) 0 0
\(5\) 859.469 + 1488.64i 0.614986 + 1.06519i 0.990387 + 0.138324i \(0.0441716\pi\)
−0.375401 + 0.926862i \(0.622495\pi\)
\(6\) 0 0
\(7\) −1802.93 + 6091.23i −0.283817 + 0.958878i
\(8\) 0 0
\(9\) 9743.85 + 16876.9i 0.495039 + 0.857433i
\(10\) 0 0
\(11\) −35661.7 + 61767.9i −0.734404 + 1.27203i 0.220580 + 0.975369i \(0.429205\pi\)
−0.954984 + 0.296657i \(0.904128\pi\)
\(12\) 0 0
\(13\) 156547. 1.52019 0.760097 0.649809i \(-0.225151\pi\)
0.760097 + 0.649809i \(0.225151\pi\)
\(14\) 0 0
\(15\) −24021.6 −0.122516
\(16\) 0 0
\(17\) −255856. + 443155.i −0.742976 + 1.28687i 0.208158 + 0.978095i \(0.433253\pi\)
−0.951134 + 0.308778i \(0.900080\pi\)
\(18\) 0 0
\(19\) −97247.0 168437.i −0.171193 0.296514i 0.767644 0.640876i \(-0.221429\pi\)
−0.938837 + 0.344362i \(0.888095\pi\)
\(20\) 0 0
\(21\) −61120.9 64381.3i −0.0685809 0.0722392i
\(22\) 0 0
\(23\) −54078.1 93666.0i −0.0402945 0.0697922i 0.845175 0.534490i \(-0.179496\pi\)
−0.885469 + 0.464698i \(0.846163\pi\)
\(24\) 0 0
\(25\) −500810. + 867429.i −0.256415 + 0.444124i
\(26\) 0 0
\(27\) −547398. −0.198229
\(28\) 0 0
\(29\) 4.21769e6 1.10735 0.553674 0.832734i \(-0.313226\pi\)
0.553674 + 0.832734i \(0.313226\pi\)
\(30\) 0 0
\(31\) 1.58367e6 2.74299e6i 0.307990 0.533454i −0.669933 0.742422i \(-0.733677\pi\)
0.977922 + 0.208968i \(0.0670105\pi\)
\(32\) 0 0
\(33\) −498361. 863187.i −0.0731529 0.126704i
\(34\) 0 0
\(35\) −1.06172e7 + 2.55130e6i −1.19593 + 0.287379i
\(36\) 0 0
\(37\) −7.20686e6 1.24827e7i −0.632177 1.09496i −0.987106 0.160069i \(-0.948828\pi\)
0.354929 0.934893i \(-0.384505\pi\)
\(38\) 0 0
\(39\) −1.09385e6 + 1.89460e6i −0.0757121 + 0.131137i
\(40\) 0 0
\(41\) 7.69007e6 0.425014 0.212507 0.977160i \(-0.431837\pi\)
0.212507 + 0.977160i \(0.431837\pi\)
\(42\) 0 0
\(43\) 3.64544e7 1.62608 0.813040 0.582208i \(-0.197811\pi\)
0.813040 + 0.582208i \(0.197811\pi\)
\(44\) 0 0
\(45\) −1.67491e7 + 2.90102e7i −0.608884 + 1.05462i
\(46\) 0 0
\(47\) 9.11895e6 + 1.57945e7i 0.272587 + 0.472134i 0.969523 0.244999i \(-0.0787876\pi\)
−0.696937 + 0.717132i \(0.745454\pi\)
\(48\) 0 0
\(49\) −3.38525e7 2.19641e7i −0.838896 0.544292i
\(50\) 0 0
\(51\) −3.57550e6 6.19295e6i −0.0740067 0.128183i
\(52\) 0 0
\(53\) −2.26037e7 + 3.91507e7i −0.393494 + 0.681551i −0.992908 0.118888i \(-0.962067\pi\)
0.599414 + 0.800439i \(0.295400\pi\)
\(54\) 0 0
\(55\) −1.22601e8 −1.80659
\(56\) 0 0
\(57\) 2.71799e6 0.0341045
\(58\) 0 0
\(59\) −4.89074e7 + 8.47100e7i −0.525461 + 0.910124i 0.474100 + 0.880471i \(0.342774\pi\)
−0.999560 + 0.0296532i \(0.990560\pi\)
\(60\) 0 0
\(61\) −5.73352e7 9.93075e7i −0.530197 0.918328i −0.999379 0.0352269i \(-0.988785\pi\)
0.469182 0.883101i \(-0.344549\pi\)
\(62\) 0 0
\(63\) −1.20368e8 + 2.89242e7i −0.962674 + 0.231328i
\(64\) 0 0
\(65\) 1.34547e8 + 2.33042e8i 0.934898 + 1.61929i
\(66\) 0 0
\(67\) 1.00808e8 1.74605e8i 0.611166 1.05857i −0.379878 0.925036i \(-0.624034\pi\)
0.991044 0.133534i \(-0.0426325\pi\)
\(68\) 0 0
\(69\) 1.51145e6 0.00802735
\(70\) 0 0
\(71\) −2.08831e7 −0.0975288 −0.0487644 0.998810i \(-0.515528\pi\)
−0.0487644 + 0.998810i \(0.515528\pi\)
\(72\) 0 0
\(73\) −4.42392e6 + 7.66245e6i −0.0182328 + 0.0315802i −0.874998 0.484127i \(-0.839137\pi\)
0.856765 + 0.515707i \(0.172471\pi\)
\(74\) 0 0
\(75\) −6.99866e6 1.21220e7i −0.0255411 0.0442385i
\(76\) 0 0
\(77\) −3.11947e8 3.28587e8i −1.01128 1.06523i
\(78\) 0 0
\(79\) 1.92244e7 + 3.32976e7i 0.0555304 + 0.0961814i 0.892454 0.451138i \(-0.148982\pi\)
−0.836924 + 0.547319i \(0.815648\pi\)
\(80\) 0 0
\(81\) −1.87963e8 + 3.25562e8i −0.485166 + 0.840333i
\(82\) 0 0
\(83\) −5.55300e8 −1.28433 −0.642164 0.766567i \(-0.721963\pi\)
−0.642164 + 0.766567i \(0.721963\pi\)
\(84\) 0 0
\(85\) −8.79600e8 −1.82768
\(86\) 0 0
\(87\) −2.94704e7 + 5.10443e7i −0.0551506 + 0.0955236i
\(88\) 0 0
\(89\) 8.24594e7 + 1.42824e8i 0.139311 + 0.241294i 0.927236 0.374478i \(-0.122178\pi\)
−0.787925 + 0.615771i \(0.788845\pi\)
\(90\) 0 0
\(91\) −2.82243e8 + 9.53562e8i −0.431457 + 1.45768i
\(92\) 0 0
\(93\) 2.21312e7 + 3.83324e7i 0.0306784 + 0.0531365i
\(94\) 0 0
\(95\) 1.67162e8 2.89532e8i 0.210562 0.364704i
\(96\) 0 0
\(97\) 1.57025e8 0.180093 0.0900466 0.995938i \(-0.471298\pi\)
0.0900466 + 0.995938i \(0.471298\pi\)
\(98\) 0 0
\(99\) −1.38993e9 −1.45424
\(100\) 0 0
\(101\) −8.13868e7 + 1.40966e8i −0.0778230 + 0.134793i −0.902310 0.431087i \(-0.858130\pi\)
0.824487 + 0.565880i \(0.191464\pi\)
\(102\) 0 0
\(103\) 6.77028e8 + 1.17265e9i 0.592705 + 1.02660i 0.993866 + 0.110588i \(0.0352735\pi\)
−0.401161 + 0.916008i \(0.631393\pi\)
\(104\) 0 0
\(105\) 4.33093e7 1.46321e8i 0.0347720 0.117478i
\(106\) 0 0
\(107\) 4.39302e6 + 7.60893e6i 0.00323993 + 0.00561173i 0.867641 0.497192i \(-0.165635\pi\)
−0.864401 + 0.502803i \(0.832302\pi\)
\(108\) 0 0
\(109\) −3.61434e8 + 6.26023e8i −0.245251 + 0.424787i −0.962202 0.272337i \(-0.912204\pi\)
0.716951 + 0.697123i \(0.245537\pi\)
\(110\) 0 0
\(111\) 2.01427e8 0.125940
\(112\) 0 0
\(113\) −2.94124e9 −1.69698 −0.848492 0.529209i \(-0.822489\pi\)
−0.848492 + 0.529209i \(0.822489\pi\)
\(114\) 0 0
\(115\) 9.29568e7 1.61006e8i 0.0495611 0.0858424i
\(116\) 0 0
\(117\) 1.52537e9 + 2.64202e9i 0.752556 + 1.30346i
\(118\) 0 0
\(119\) −2.23807e9 2.35745e9i −1.02309 1.07766i
\(120\) 0 0
\(121\) −1.36454e9 2.36346e9i −0.578699 1.00234i
\(122\) 0 0
\(123\) −5.37331e7 + 9.30685e7i −0.0211675 + 0.0366631i
\(124\) 0 0
\(125\) 1.63558e9 0.599205
\(126\) 0 0
\(127\) 6.47761e8 0.220952 0.110476 0.993879i \(-0.464762\pi\)
0.110476 + 0.993879i \(0.464762\pi\)
\(128\) 0 0
\(129\) −2.54719e8 + 4.41187e8i −0.0809857 + 0.140271i
\(130\) 0 0
\(131\) −1.47377e9 2.55264e9i −0.437228 0.757301i 0.560246 0.828326i \(-0.310706\pi\)
−0.997475 + 0.0710247i \(0.977373\pi\)
\(132\) 0 0
\(133\) 1.20132e9 2.88674e8i 0.332909 0.0799972i
\(134\) 0 0
\(135\) −4.70472e8 8.14881e8i −0.121908 0.211150i
\(136\) 0 0
\(137\) 3.85668e9 6.67997e9i 0.935344 1.62006i 0.161325 0.986901i \(-0.448423\pi\)
0.774019 0.633162i \(-0.218243\pi\)
\(138\) 0 0
\(139\) 5.40626e9 1.22837 0.614187 0.789161i \(-0.289484\pi\)
0.614187 + 0.789161i \(0.289484\pi\)
\(140\) 0 0
\(141\) −2.54869e8 −0.0543038
\(142\) 0 0
\(143\) −5.58273e9 + 9.66957e9i −1.11644 + 1.93373i
\(144\) 0 0
\(145\) 3.62497e9 + 6.27864e9i 0.681003 + 1.17953i
\(146\) 0 0
\(147\) 5.02358e8 2.56226e8i 0.0887331 0.0452580i
\(148\) 0 0
\(149\) −1.55301e7 2.68989e7i −0.00258129 0.00447092i 0.864732 0.502234i \(-0.167488\pi\)
−0.867313 + 0.497763i \(0.834155\pi\)
\(150\) 0 0
\(151\) 4.08350e9 7.07283e9i 0.639199 1.10713i −0.346409 0.938083i \(-0.612599\pi\)
0.985609 0.169043i \(-0.0540675\pi\)
\(152\) 0 0
\(153\) −9.97208e9 −1.47121
\(154\) 0 0
\(155\) 5.44445e9 0.757637
\(156\) 0 0
\(157\) −7.72057e7 + 1.33724e8i −0.0101415 + 0.0175655i −0.871052 0.491192i \(-0.836562\pi\)
0.860910 + 0.508757i \(0.169895\pi\)
\(158\) 0 0
\(159\) −3.15879e8 5.47119e8i −0.0391953 0.0678882i
\(160\) 0 0
\(161\) 6.68040e8 1.60528e8i 0.0783585 0.0188294i
\(162\) 0 0
\(163\) 5.72335e9 + 9.91314e9i 0.635048 + 1.09994i 0.986505 + 0.163731i \(0.0523529\pi\)
−0.351457 + 0.936204i \(0.614314\pi\)
\(164\) 0 0
\(165\) 8.56652e8 1.48376e9i 0.0899759 0.155843i
\(166\) 0 0
\(167\) 1.71056e10 1.70182 0.850911 0.525310i \(-0.176051\pi\)
0.850911 + 0.525310i \(0.176051\pi\)
\(168\) 0 0
\(169\) 1.39024e10 1.31099
\(170\) 0 0
\(171\) 1.89512e9 3.28245e9i 0.169494 0.293572i
\(172\) 0 0
\(173\) 9.09679e8 + 1.57561e9i 0.0772113 + 0.133734i 0.902046 0.431640i \(-0.142065\pi\)
−0.824834 + 0.565374i \(0.808732\pi\)
\(174\) 0 0
\(175\) −4.38078e9 4.61447e9i −0.353086 0.371921i
\(176\) 0 0
\(177\) −6.83465e8 1.18380e9i −0.0523403 0.0906561i
\(178\) 0 0
\(179\) −1.18157e9 + 2.04654e9i −0.0860241 + 0.148998i −0.905827 0.423647i \(-0.860750\pi\)
0.819803 + 0.572646i \(0.194083\pi\)
\(180\) 0 0
\(181\) 1.65554e10 1.14653 0.573265 0.819370i \(-0.305677\pi\)
0.573265 + 0.819370i \(0.305677\pi\)
\(182\) 0 0
\(183\) 1.60248e9 0.105624
\(184\) 0 0
\(185\) 1.23881e10 2.14569e10i 0.777559 1.34677i
\(186\) 0 0
\(187\) −1.82485e10 3.16073e10i −1.09129 1.89017i
\(188\) 0 0
\(189\) 9.86922e8 3.33433e9i 0.0562606 0.190077i
\(190\) 0 0
\(191\) −1.68265e9 2.91443e9i −0.0914835 0.158454i 0.816652 0.577130i \(-0.195828\pi\)
−0.908136 + 0.418676i \(0.862494\pi\)
\(192\) 0 0
\(193\) 2.36192e9 4.09097e9i 0.122534 0.212236i −0.798232 0.602350i \(-0.794231\pi\)
0.920766 + 0.390114i \(0.127564\pi\)
\(194\) 0 0
\(195\) −3.76051e9 −0.186248
\(196\) 0 0
\(197\) −1.66982e10 −0.789897 −0.394949 0.918703i \(-0.629238\pi\)
−0.394949 + 0.918703i \(0.629238\pi\)
\(198\) 0 0
\(199\) 1.30913e10 2.26748e10i 0.591759 1.02496i −0.402237 0.915536i \(-0.631767\pi\)
0.993996 0.109421i \(-0.0348996\pi\)
\(200\) 0 0
\(201\) 1.40876e9 + 2.44005e9i 0.0608773 + 0.105443i
\(202\) 0 0
\(203\) −7.60421e9 + 2.56909e10i −0.314284 + 1.06181i
\(204\) 0 0
\(205\) 6.60937e9 + 1.14478e10i 0.261377 + 0.452719i
\(206\) 0 0
\(207\) 1.05386e9 1.82534e9i 0.0398947 0.0690997i
\(208\) 0 0
\(209\) 1.38720e10 0.502898
\(210\) 0 0
\(211\) 3.90431e10 1.35604 0.678021 0.735042i \(-0.262838\pi\)
0.678021 + 0.735042i \(0.262838\pi\)
\(212\) 0 0
\(213\) 1.45917e8 2.52736e8i 0.00485734 0.00841317i
\(214\) 0 0
\(215\) 3.13314e10 + 5.42676e10i 1.00002 + 1.73208i
\(216\) 0 0
\(217\) 1.38529e10 + 1.45919e10i 0.424104 + 0.446728i
\(218\) 0 0
\(219\) −6.18228e7 1.07080e8i −0.00181614 0.00314565i
\(220\) 0 0
\(221\) −4.00534e10 + 6.93745e10i −1.12947 + 1.95630i
\(222\) 0 0
\(223\) −4.53210e10 −1.22723 −0.613617 0.789603i \(-0.710286\pi\)
−0.613617 + 0.789603i \(0.710286\pi\)
\(224\) 0 0
\(225\) −1.95193e10 −0.507742
\(226\) 0 0
\(227\) 3.75422e9 6.50249e9i 0.0938432 0.162541i −0.815282 0.579064i \(-0.803418\pi\)
0.909125 + 0.416523i \(0.136751\pi\)
\(228\) 0 0
\(229\) −2.09237e10 3.62409e10i −0.502781 0.870842i −0.999995 0.00321410i \(-0.998977\pi\)
0.497214 0.867628i \(-0.334356\pi\)
\(230\) 0 0
\(231\) 6.15638e9 1.47936e9i 0.142256 0.0341838i
\(232\) 0 0
\(233\) −1.52461e10 2.64070e10i −0.338888 0.586971i 0.645336 0.763899i \(-0.276717\pi\)
−0.984224 + 0.176928i \(0.943384\pi\)
\(234\) 0 0
\(235\) −1.56749e10 + 2.71497e10i −0.335274 + 0.580711i
\(236\) 0 0
\(237\) −5.37309e8 −0.0110626
\(238\) 0 0
\(239\) −4.29290e10 −0.851060 −0.425530 0.904944i \(-0.639912\pi\)
−0.425530 + 0.904944i \(0.639912\pi\)
\(240\) 0 0
\(241\) 4.20533e9 7.28385e9i 0.0803015 0.139086i −0.823078 0.567928i \(-0.807745\pi\)
0.903379 + 0.428842i \(0.141078\pi\)
\(242\) 0 0
\(243\) −8.01395e9 1.38806e10i −0.147441 0.255375i
\(244\) 0 0
\(245\) 3.60163e9 6.92718e10i 0.0638633 1.22831i
\(246\) 0 0
\(247\) −1.52237e10 2.63682e10i −0.260246 0.450760i
\(248\) 0 0
\(249\) 3.88007e9 6.72047e9i 0.0639650 0.110791i
\(250\) 0 0
\(251\) −8.14744e10 −1.29566 −0.647828 0.761787i \(-0.724322\pi\)
−0.647828 + 0.761787i \(0.724322\pi\)
\(252\) 0 0
\(253\) 7.71407e9 0.118370
\(254\) 0 0
\(255\) 6.14606e9 1.06453e10i 0.0910262 0.157662i
\(256\) 0 0
\(257\) −1.90519e10 3.29988e10i −0.272420 0.471845i 0.697061 0.717012i \(-0.254491\pi\)
−0.969481 + 0.245167i \(0.921157\pi\)
\(258\) 0 0
\(259\) 8.90281e10 2.13933e10i 1.22936 0.295412i
\(260\) 0 0
\(261\) 4.10966e10 + 7.11813e10i 0.548180 + 0.949476i
\(262\) 0 0
\(263\) −2.83241e10 + 4.90588e10i −0.365053 + 0.632290i −0.988785 0.149349i \(-0.952282\pi\)
0.623732 + 0.781638i \(0.285616\pi\)
\(264\) 0 0
\(265\) −7.77086e10 −0.967972
\(266\) 0 0
\(267\) −2.30469e9 −0.0277531
\(268\) 0 0
\(269\) −7.10675e10 + 1.23092e11i −0.827534 + 1.43333i 0.0724338 + 0.997373i \(0.476923\pi\)
−0.899967 + 0.435957i \(0.856410\pi\)
\(270\) 0 0
\(271\) −1.86332e10 3.22737e10i −0.209859 0.363486i 0.741811 0.670609i \(-0.233967\pi\)
−0.951670 + 0.307123i \(0.900634\pi\)
\(272\) 0 0
\(273\) −9.56829e9 1.00787e10i −0.104256 0.109818i
\(274\) 0 0
\(275\) −3.57195e10 6.18680e10i −0.376624 0.652333i
\(276\) 0 0
\(277\) −7.86972e10 + 1.36308e11i −0.803157 + 1.39111i 0.114371 + 0.993438i \(0.463515\pi\)
−0.917528 + 0.397671i \(0.869819\pi\)
\(278\) 0 0
\(279\) 6.17240e10 0.609867
\(280\) 0 0
\(281\) 9.66888e10 0.925119 0.462560 0.886588i \(-0.346931\pi\)
0.462560 + 0.886588i \(0.346931\pi\)
\(282\) 0 0
\(283\) −9.95631e10 + 1.72448e11i −0.922698 + 1.59816i −0.127475 + 0.991842i \(0.540687\pi\)
−0.795223 + 0.606318i \(0.792646\pi\)
\(284\) 0 0
\(285\) 2.33603e9 + 4.04612e9i 0.0209738 + 0.0363276i
\(286\) 0 0
\(287\) −1.38647e10 + 4.68420e10i −0.120626 + 0.407536i
\(288\) 0 0
\(289\) −7.16304e10 1.24067e11i −0.604028 1.04621i
\(290\) 0 0
\(291\) −1.09719e9 + 1.90039e9i −0.00896940 + 0.0155355i
\(292\) 0 0
\(293\) 7.28364e10 0.577357 0.288679 0.957426i \(-0.406784\pi\)
0.288679 + 0.957426i \(0.406784\pi\)
\(294\) 0 0
\(295\) −1.68137e11 −1.29260
\(296\) 0 0
\(297\) 1.95212e10 3.38116e10i 0.145580 0.252152i
\(298\) 0 0
\(299\) −8.46575e9 1.46631e10i −0.0612555 0.106098i
\(300\) 0 0
\(301\) −6.57248e10 + 2.22052e11i −0.461509 + 1.55921i
\(302\) 0 0
\(303\) −1.13735e9 1.96996e9i −0.00775183 0.0134266i
\(304\) 0 0
\(305\) 9.85557e10 1.70703e11i 0.652127 1.12952i
\(306\) 0 0
\(307\) 1.17824e11 0.757027 0.378514 0.925596i \(-0.376435\pi\)
0.378514 + 0.925596i \(0.376435\pi\)
\(308\) 0 0
\(309\) −1.89225e10 −0.118077
\(310\) 0 0
\(311\) 9.06944e10 1.57087e11i 0.549742 0.952180i −0.448550 0.893758i \(-0.648060\pi\)
0.998292 0.0584227i \(-0.0186071\pi\)
\(312\) 0 0
\(313\) −1.42218e11 2.46328e11i −0.837537 1.45066i −0.891948 0.452138i \(-0.850662\pi\)
0.0544112 0.998519i \(-0.482672\pi\)
\(314\) 0 0
\(315\) −1.46511e11 1.54326e11i −0.838439 0.883164i
\(316\) 0 0
\(317\) 5.08743e10 + 8.81169e10i 0.282964 + 0.490109i 0.972114 0.234511i \(-0.0753488\pi\)
−0.689149 + 0.724620i \(0.742016\pi\)
\(318\) 0 0
\(319\) −1.50410e11 + 2.60518e11i −0.813241 + 1.40857i
\(320\) 0 0
\(321\) −1.22782e8 −0.000645449
\(322\) 0 0
\(323\) 9.95248e10 0.508768
\(324\) 0 0
\(325\) −7.84003e10 + 1.35793e11i −0.389801 + 0.675154i
\(326\) 0 0
\(327\) −5.05093e9 8.74846e9i −0.0244290 0.0423123i
\(328\) 0 0
\(329\) −1.12649e11 + 2.70692e10i −0.530084 + 0.127378i
\(330\) 0 0
\(331\) 1.51983e11 + 2.63242e11i 0.695935 + 1.20540i 0.969864 + 0.243645i \(0.0783432\pi\)
−0.273929 + 0.961750i \(0.588323\pi\)
\(332\) 0 0
\(333\) 1.40445e11 2.43258e11i 0.625904 1.08410i
\(334\) 0 0
\(335\) 3.46566e11 1.50343
\(336\) 0 0
\(337\) −1.72473e10 −0.0728427 −0.0364213 0.999337i \(-0.511596\pi\)
−0.0364213 + 0.999337i \(0.511596\pi\)
\(338\) 0 0
\(339\) 2.05514e10 3.55961e10i 0.0845169 0.146388i
\(340\) 0 0
\(341\) 1.12953e11 + 1.95639e11i 0.452378 + 0.783541i
\(342\) 0 0
\(343\) 1.94822e11 1.66603e11i 0.760003 0.649920i
\(344\) 0 0
\(345\) 1.29904e9 + 2.25001e9i 0.00493671 + 0.00855062i
\(346\) 0 0
\(347\) 1.58417e11 2.74386e11i 0.586569 1.01597i −0.408109 0.912933i \(-0.633812\pi\)
0.994678 0.103034i \(-0.0328551\pi\)
\(348\) 0 0
\(349\) 9.59821e10 0.346318 0.173159 0.984894i \(-0.444602\pi\)
0.173159 + 0.984894i \(0.444602\pi\)
\(350\) 0 0
\(351\) −8.56934e10 −0.301346
\(352\) 0 0
\(353\) 1.31095e11 2.27063e11i 0.449365 0.778324i −0.548979 0.835836i \(-0.684983\pi\)
0.998345 + 0.0575122i \(0.0183168\pi\)
\(354\) 0 0
\(355\) −1.79484e10 3.10875e10i −0.0599788 0.103886i
\(356\) 0 0
\(357\) 4.41691e10 1.06137e10i 0.143917 0.0345828i
\(358\) 0 0
\(359\) −5.42664e10 9.39922e10i −0.172427 0.298653i 0.766841 0.641838i \(-0.221828\pi\)
−0.939268 + 0.343185i \(0.888494\pi\)
\(360\) 0 0
\(361\) 1.42430e11 2.46696e11i 0.441386 0.764503i
\(362\) 0 0
\(363\) 3.81381e10 0.115287
\(364\) 0 0
\(365\) −1.52089e10 −0.0448517
\(366\) 0 0
\(367\) 1.06268e11 1.84061e11i 0.305777 0.529621i −0.671657 0.740862i \(-0.734417\pi\)
0.977434 + 0.211241i \(0.0677505\pi\)
\(368\) 0 0
\(369\) 7.49309e10 + 1.29784e11i 0.210398 + 0.364421i
\(370\) 0 0
\(371\) −1.97723e11 2.08270e11i −0.541844 0.570748i
\(372\) 0 0
\(373\) 1.58915e11 + 2.75249e11i 0.425085 + 0.736269i 0.996428 0.0844421i \(-0.0269108\pi\)
−0.571343 + 0.820711i \(0.693577\pi\)
\(374\) 0 0
\(375\) −1.14283e10 + 1.97944e10i −0.0298430 + 0.0516895i
\(376\) 0 0
\(377\) 6.60266e11 1.68338
\(378\) 0 0
\(379\) −6.09315e11 −1.51693 −0.758465 0.651714i \(-0.774050\pi\)
−0.758465 + 0.651714i \(0.774050\pi\)
\(380\) 0 0
\(381\) −4.52613e9 + 7.83948e9i −0.0110043 + 0.0190601i
\(382\) 0 0
\(383\) 1.70032e11 + 2.94503e11i 0.403771 + 0.699352i 0.994178 0.107754i \(-0.0343659\pi\)
−0.590407 + 0.807106i \(0.701033\pi\)
\(384\) 0 0
\(385\) 2.21040e11 7.46788e11i 0.512742 1.73230i
\(386\) 0 0
\(387\) 3.55206e11 + 6.15236e11i 0.804973 + 1.39425i
\(388\) 0 0
\(389\) −3.77442e11 + 6.53749e11i −0.835751 + 1.44756i 0.0576663 + 0.998336i \(0.481634\pi\)
−0.893417 + 0.449227i \(0.851699\pi\)
\(390\) 0 0
\(391\) 5.53447e10 0.119751
\(392\) 0 0
\(393\) 4.11908e10 0.0871032
\(394\) 0 0
\(395\) −3.30455e10 + 5.72365e10i −0.0683008 + 0.118300i
\(396\) 0 0
\(397\) 1.34694e11 + 2.33297e11i 0.272140 + 0.471360i 0.969409 0.245449i \(-0.0789354\pi\)
−0.697270 + 0.716809i \(0.745602\pi\)
\(398\) 0 0
\(399\) −4.90036e9 + 1.65559e10i −0.00967942 + 0.0327020i
\(400\) 0 0
\(401\) 1.78083e11 + 3.08449e11i 0.343932 + 0.595708i 0.985159 0.171643i \(-0.0549076\pi\)
−0.641227 + 0.767351i \(0.721574\pi\)
\(402\) 0 0
\(403\) 2.47918e11 4.29406e11i 0.468204 0.810953i
\(404\) 0 0
\(405\) −6.46195e11 −1.19348
\(406\) 0 0
\(407\) 1.02804e12 1.85709
\(408\) 0 0
\(409\) 4.37201e10 7.57254e10i 0.0772549 0.133809i −0.824810 0.565410i \(-0.808718\pi\)
0.902065 + 0.431601i \(0.142051\pi\)
\(410\) 0 0
\(411\) 5.38959e10 + 9.33505e10i 0.0931682 + 0.161372i
\(412\) 0 0
\(413\) −4.27811e11 4.50632e11i −0.723564 0.762162i
\(414\) 0 0
\(415\) −4.77263e11 8.26643e11i −0.789843 1.36805i
\(416\) 0 0
\(417\) −3.77754e10 + 6.54289e10i −0.0611782 + 0.105964i
\(418\) 0 0
\(419\) −4.46048e9 −0.00706999 −0.00353499 0.999994i \(-0.501125\pi\)
−0.00353499 + 0.999994i \(0.501125\pi\)
\(420\) 0 0
\(421\) −9.34684e10 −0.145009 −0.0725046 0.997368i \(-0.523099\pi\)
−0.0725046 + 0.997368i \(0.523099\pi\)
\(422\) 0 0
\(423\) −1.77707e11 + 3.07798e11i −0.269882 + 0.467449i
\(424\) 0 0
\(425\) −2.56270e11 4.43873e11i −0.381020 0.659947i
\(426\) 0 0
\(427\) 7.08276e11 1.70197e11i 1.03104 0.247757i
\(428\) 0 0
\(429\) −7.80169e10 1.35129e11i −0.111207 0.192616i
\(430\) 0 0
\(431\) −2.49562e11 + 4.32254e11i −0.348362 + 0.603381i −0.985959 0.166990i \(-0.946595\pi\)
0.637597 + 0.770370i \(0.279929\pi\)
\(432\) 0 0
\(433\) 1.04168e12 1.42410 0.712049 0.702130i \(-0.247768\pi\)
0.712049 + 0.702130i \(0.247768\pi\)
\(434\) 0 0
\(435\) −1.01316e11 −0.135667
\(436\) 0 0
\(437\) −1.05179e10 + 1.82175e10i −0.0137963 + 0.0238958i
\(438\) 0 0
\(439\) −1.00140e11 1.73447e11i −0.128681 0.222883i 0.794485 0.607284i \(-0.207741\pi\)
−0.923166 + 0.384402i \(0.874408\pi\)
\(440\) 0 0
\(441\) 4.08319e10 7.85339e11i 0.0514074 0.988743i
\(442\) 0 0
\(443\) 1.13051e11 + 1.95810e11i 0.139463 + 0.241556i 0.927293 0.374335i \(-0.122129\pi\)
−0.787831 + 0.615892i \(0.788796\pi\)
\(444\) 0 0
\(445\) −1.41743e11 + 2.45505e11i −0.171349 + 0.296784i
\(446\) 0 0
\(447\) 4.34056e8 0.000514236
\(448\) 0 0
\(449\) −1.20089e12 −1.39443 −0.697213 0.716864i \(-0.745577\pi\)
−0.697213 + 0.716864i \(0.745577\pi\)
\(450\) 0 0
\(451\) −2.74241e11 + 4.74999e11i −0.312132 + 0.540628i
\(452\) 0 0
\(453\) 5.70656e10 + 9.88405e10i 0.0636697 + 0.110279i
\(454\) 0 0
\(455\) −1.66209e12 + 3.99397e11i −1.81804 + 0.436872i
\(456\) 0 0
\(457\) −1.64864e11 2.85552e11i −0.176808 0.306241i 0.763977 0.645243i \(-0.223244\pi\)
−0.940786 + 0.339002i \(0.889911\pi\)
\(458\) 0 0
\(459\) 1.40055e11 2.42582e11i 0.147279 0.255095i
\(460\) 0 0
\(461\) 1.38928e12 1.43263 0.716317 0.697775i \(-0.245827\pi\)
0.716317 + 0.697775i \(0.245827\pi\)
\(462\) 0 0
\(463\) 6.88123e7 6.95908e−5 3.47954e−5 1.00000i \(-0.499989\pi\)
3.47954e−5 1.00000i \(0.499989\pi\)
\(464\) 0 0
\(465\) −3.80422e10 + 6.58910e10i −0.0377335 + 0.0653564i
\(466\) 0 0
\(467\) −5.39451e11 9.34356e11i −0.524839 0.909048i −0.999582 0.0289230i \(-0.990792\pi\)
0.474743 0.880125i \(-0.342541\pi\)
\(468\) 0 0
\(469\) 8.81808e11 + 9.28846e11i 0.841581 + 0.886474i
\(470\) 0 0
\(471\) −1.07893e9 1.86875e9i −0.00101018 0.00174968i
\(472\) 0 0
\(473\) −1.30003e12 + 2.25171e12i −1.19420 + 2.06842i
\(474\) 0 0
\(475\) 1.94809e11 0.175585
\(476\) 0 0
\(477\) −8.80988e11 −0.779179
\(478\) 0 0
\(479\) −3.11905e11 + 5.40235e11i −0.270715 + 0.468892i −0.969045 0.246884i \(-0.920593\pi\)
0.698330 + 0.715776i \(0.253927\pi\)
\(480\) 0 0
\(481\) −1.12821e12 1.95412e12i −0.961032 1.66456i
\(482\) 0 0
\(483\) −2.72504e9 + 9.20657e9i −0.00227830 + 0.00769725i
\(484\) 0 0
\(485\) 1.34958e11 + 2.33755e11i 0.110755 + 0.191833i
\(486\) 0 0
\(487\) −7.48463e11 + 1.29638e12i −0.602962 + 1.04436i 0.389408 + 0.921065i \(0.372679\pi\)
−0.992370 + 0.123295i \(0.960654\pi\)
\(488\) 0 0
\(489\) −1.59964e11 −0.126512
\(490\) 0 0
\(491\) −6.91050e11 −0.536590 −0.268295 0.963337i \(-0.586460\pi\)
−0.268295 + 0.963337i \(0.586460\pi\)
\(492\) 0 0
\(493\) −1.07912e12 + 1.86909e12i −0.822733 + 1.42501i
\(494\) 0 0
\(495\) −1.19460e12 2.06911e12i −0.894334 1.54903i
\(496\) 0 0
\(497\) 3.76508e10 1.27204e11i 0.0276803 0.0935182i
\(498\) 0 0
\(499\) 6.87459e11 + 1.19071e12i 0.496357 + 0.859716i 0.999991 0.00420123i \(-0.00133730\pi\)
−0.503634 + 0.863917i \(0.668004\pi\)
\(500\) 0 0
\(501\) −1.19523e11 + 2.07019e11i −0.0847579 + 0.146805i
\(502\) 0 0
\(503\) 2.02197e12 1.40837 0.704187 0.710015i \(-0.251312\pi\)
0.704187 + 0.710015i \(0.251312\pi\)
\(504\) 0 0
\(505\) −2.79798e11 −0.191440
\(506\) 0 0
\(507\) −9.71409e10 + 1.68253e11i −0.0652930 + 0.113091i
\(508\) 0 0
\(509\) 5.74038e11 + 9.94263e11i 0.379062 + 0.656555i 0.990926 0.134408i \(-0.0429133\pi\)
−0.611864 + 0.790963i \(0.709580\pi\)
\(510\) 0 0
\(511\) −3.86977e10 4.07620e10i −0.0251068 0.0264461i
\(512\) 0 0
\(513\) 5.32328e10 + 9.22020e10i 0.0339353 + 0.0587776i
\(514\) 0 0
\(515\) −1.16377e12 + 2.01571e12i −0.729011 + 1.26268i
\(516\) 0 0
\(517\) −1.30079e12 −0.800755
\(518\) 0 0
\(519\) −2.54250e10 −0.0153818
\(520\) 0 0
\(521\) 6.50321e11 1.12639e12i 0.386686 0.669759i −0.605316 0.795985i \(-0.706953\pi\)
0.992002 + 0.126226i \(0.0402865\pi\)
\(522\) 0 0
\(523\) −1.12086e12 1.94139e12i −0.655079 1.13463i −0.981874 0.189535i \(-0.939302\pi\)
0.326794 0.945095i \(-0.394032\pi\)
\(524\) 0 0
\(525\) 8.64562e10 2.07752e10i 0.0496683 0.0119352i
\(526\) 0 0
\(527\) 8.10380e11 + 1.40362e12i 0.457658 + 0.792687i
\(528\) 0 0
\(529\) 8.94727e11 1.54971e12i 0.496753 0.860401i
\(530\) 0 0
\(531\) −1.90618e12 −1.04049
\(532\) 0 0
\(533\) 1.20386e12 0.646104
\(534\) 0 0
\(535\) −7.55132e9 + 1.30793e10i −0.00398502 + 0.00690227i
\(536\) 0 0
\(537\) −1.65120e10 2.85997e10i −0.00856873 0.0148415i
\(538\) 0 0
\(539\) 2.56392e12 1.30772e12i 1.30844 0.667367i
\(540\) 0 0
\(541\) 5.81162e10 + 1.00660e11i 0.0291682 + 0.0505208i 0.880241 0.474527i \(-0.157381\pi\)
−0.851073 + 0.525048i \(0.824047\pi\)
\(542\) 0 0
\(543\) −1.15678e11 + 2.00360e11i −0.0571021 + 0.0989037i
\(544\) 0 0
\(545\) −1.24257e12 −0.603303
\(546\) 0 0
\(547\) −1.58473e12 −0.756854 −0.378427 0.925631i \(-0.623535\pi\)
−0.378427 + 0.925631i \(0.623535\pi\)
\(548\) 0 0
\(549\) 1.11733e12 1.93528e12i 0.524937 0.909217i
\(550\) 0 0
\(551\) −4.10158e11 7.10414e11i −0.189570 0.328344i
\(552\) 0 0
\(553\) −2.37484e11 + 5.70667e10i −0.107987 + 0.0259490i
\(554\) 0 0
\(555\) 1.73120e11 + 2.99853e11i 0.0774515 + 0.134150i
\(556\) 0 0
\(557\) −7.55286e11 + 1.30819e12i −0.332478 + 0.575869i −0.982997 0.183621i \(-0.941218\pi\)
0.650519 + 0.759490i \(0.274551\pi\)
\(558\) 0 0
\(559\) 5.70682e12 2.47196
\(560\) 0 0
\(561\) 5.10034e11 0.217403
\(562\) 0 0
\(563\) −3.03012e11 + 5.24832e11i −0.127108 + 0.220157i −0.922555 0.385866i \(-0.873903\pi\)
0.795447 + 0.606023i \(0.207236\pi\)
\(564\) 0 0
\(565\) −2.52790e12 4.37846e12i −1.04362 1.80760i
\(566\) 0 0
\(567\) −1.64419e12 1.73189e12i −0.668079 0.703716i
\(568\) 0 0
\(569\) 1.60132e11 + 2.77356e11i 0.0640431 + 0.110926i 0.896269 0.443511i \(-0.146267\pi\)
−0.832226 + 0.554436i \(0.812934\pi\)
\(570\) 0 0
\(571\) −1.52614e12 + 2.64335e12i −0.600802 + 1.04062i 0.391898 + 0.920009i \(0.371819\pi\)
−0.992700 + 0.120611i \(0.961515\pi\)
\(572\) 0 0
\(573\) 4.70289e10 0.0182251
\(574\) 0 0
\(575\) 1.08331e11 0.0413285
\(576\) 0 0
\(577\) −1.41483e12 + 2.45055e12i −0.531389 + 0.920392i 0.467940 + 0.883760i \(0.344996\pi\)
−0.999329 + 0.0366320i \(0.988337\pi\)
\(578\) 0 0
\(579\) 3.30071e10 + 5.71700e10i 0.0122055 + 0.0211405i
\(580\) 0 0
\(581\) 1.00117e12 3.38246e12i 0.364514 1.23151i
\(582\) 0 0
\(583\) −1.61217e12 2.79236e12i −0.577967 1.00107i
\(584\) 0 0
\(585\) −2.62201e12 + 4.54146e12i −0.925622 + 1.60322i
\(586\) 0 0
\(587\) 2.10206e12 0.730756 0.365378 0.930859i \(-0.380940\pi\)
0.365378 + 0.930859i \(0.380940\pi\)
\(588\) 0 0
\(589\) −6.16027e11 −0.210902
\(590\) 0 0
\(591\) 1.16676e11 2.02088e11i 0.0393402 0.0681393i
\(592\) 0 0
\(593\) 2.96534e12 + 5.13612e12i 0.984756 + 1.70565i 0.643014 + 0.765854i \(0.277684\pi\)
0.341742 + 0.939794i \(0.388983\pi\)
\(594\) 0 0
\(595\) 1.58586e12 5.35784e12i 0.518726 1.75252i
\(596\) 0 0
\(597\) 1.82947e11 + 3.16874e11i 0.0589442 + 0.102094i
\(598\) 0 0
\(599\) −1.57607e12 + 2.72984e12i −0.500213 + 0.866395i 0.499787 + 0.866149i \(0.333412\pi\)
−1.00000 0.000246421i \(0.999922\pi\)
\(600\) 0 0
\(601\) 6.20966e12 1.94148 0.970740 0.240132i \(-0.0771909\pi\)
0.970740 + 0.240132i \(0.0771909\pi\)
\(602\) 0 0
\(603\) 3.92904e12 1.21020
\(604\) 0 0
\(605\) 2.34556e12 4.06264e12i 0.711784 1.23285i
\(606\) 0 0
\(607\) 2.27519e12 + 3.94075e12i 0.680251 + 1.17823i 0.974904 + 0.222625i \(0.0714627\pi\)
−0.294653 + 0.955604i \(0.595204\pi\)
\(608\) 0 0
\(609\) −2.57789e11 2.71541e11i −0.0759428 0.0799939i
\(610\) 0 0
\(611\) 1.42754e12 + 2.47258e12i 0.414385 + 0.717735i
\(612\) 0 0
\(613\) 3.48631e11 6.03847e11i 0.0997227 0.172725i −0.811847 0.583870i \(-0.801538\pi\)
0.911570 + 0.411145i \(0.134871\pi\)
\(614\) 0 0
\(615\) −1.84728e11 −0.0520708
\(616\) 0 0
\(617\) 3.02922e12 0.841488 0.420744 0.907179i \(-0.361769\pi\)
0.420744 + 0.907179i \(0.361769\pi\)
\(618\) 0 0
\(619\) 1.58193e12 2.73998e12i 0.433090 0.750135i −0.564047 0.825743i \(-0.690756\pi\)
0.997138 + 0.0756079i \(0.0240897\pi\)
\(620\) 0 0
\(621\) 2.96022e10 + 5.12726e10i 0.00798753 + 0.0138348i
\(622\) 0 0
\(623\) −1.01864e12 + 2.44777e11i −0.270910 + 0.0650991i
\(624\) 0 0
\(625\) 2.38387e12 + 4.12899e12i 0.624918 + 1.08239i
\(626\) 0 0
\(627\) −9.69283e10 + 1.67885e11i −0.0250465 + 0.0433818i
\(628\) 0 0
\(629\) 7.37567e12 1.87877
\(630\) 0 0
\(631\) −6.97874e12 −1.75245 −0.876223 0.481906i \(-0.839945\pi\)
−0.876223 + 0.481906i \(0.839945\pi\)
\(632\) 0 0
\(633\) −2.72807e11 + 4.72516e11i −0.0675367 + 0.116977i
\(634\) 0 0
\(635\) 5.56730e11 + 9.64285e11i 0.135882 + 0.235355i
\(636\) 0 0
\(637\) −5.29950e12 3.43842e12i −1.27529 0.827430i
\(638\) 0 0
\(639\) −2.03482e11 3.52441e11i −0.0482805 0.0836244i
\(640\) 0 0
\(641\) 1.49724e12 2.59330e12i 0.350293 0.606725i −0.636008 0.771682i \(-0.719415\pi\)
0.986301 + 0.164958i \(0.0527488\pi\)
\(642\) 0 0
\(643\) −1.46030e12 −0.336894 −0.168447 0.985711i \(-0.553875\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(644\) 0 0
\(645\) −8.75693e11 −0.199220
\(646\) 0 0
\(647\) 2.07950e12 3.60181e12i 0.466542 0.808074i −0.532728 0.846287i \(-0.678833\pi\)
0.999270 + 0.0382124i \(0.0121663\pi\)
\(648\) 0 0
\(649\) −3.48824e12 6.04181e12i −0.771801 1.33680i
\(650\) 0 0
\(651\) −2.73392e11 + 6.56956e10i −0.0596585 + 0.0143358i
\(652\) 0 0
\(653\) −7.92472e11 1.37260e12i −0.170559 0.295417i 0.768056 0.640382i \(-0.221224\pi\)
−0.938615 + 0.344965i \(0.887891\pi\)
\(654\) 0 0
\(655\) 2.53331e12 4.38783e12i 0.537778 0.931459i
\(656\) 0 0
\(657\) −1.72424e11 −0.0361039
\(658\) 0 0
\(659\) 3.00036e12 0.619711 0.309855 0.950784i \(-0.399719\pi\)
0.309855 + 0.950784i \(0.399719\pi\)
\(660\) 0 0
\(661\) −3.44920e12 + 5.97419e12i −0.702768 + 1.21723i 0.264723 + 0.964325i \(0.414719\pi\)
−0.967491 + 0.252905i \(0.918614\pi\)
\(662\) 0 0
\(663\) −5.59733e11 9.69487e11i −0.112505 0.194864i
\(664\) 0 0
\(665\) 1.46223e12 + 1.54023e12i 0.289946 + 0.305413i
\(666\) 0 0
\(667\) −2.28085e11 3.95054e11i −0.0446200 0.0772841i
\(668\) 0 0
\(669\) 3.16673e11 5.48494e11i 0.0611215 0.105866i
\(670\) 0 0
\(671\) 8.17869e12 1.55752
\(672\) 0 0
\(673\) −4.53756e12 −0.852618 −0.426309 0.904578i \(-0.640186\pi\)
−0.426309 + 0.904578i \(0.640186\pi\)
\(674\) 0 0
\(675\) 2.74143e11 4.74829e11i 0.0508288 0.0880380i
\(676\) 0 0
\(677\) −5.21397e12 9.03085e12i −0.953936 1.65227i −0.736785 0.676127i \(-0.763657\pi\)
−0.217151 0.976138i \(-0.569676\pi\)
\(678\) 0 0
\(679\) −2.83106e11 + 9.56477e11i −0.0511135 + 0.172687i
\(680\) 0 0
\(681\) 5.24640e10 + 9.08703e10i 0.00934758 + 0.0161905i
\(682\) 0 0
\(683\) 2.01247e12 3.48569e12i 0.353863 0.612909i −0.633060 0.774103i \(-0.718201\pi\)
0.986923 + 0.161194i \(0.0515346\pi\)
\(684\) 0 0
\(685\) 1.32588e13 2.30089
\(686\) 0 0
\(687\) 5.84804e11 0.100162
\(688\) 0 0
\(689\) −3.53853e12 + 6.12892e12i −0.598187 + 1.03609i
\(690\) 0 0
\(691\) 2.02863e12 + 3.51369e12i 0.338494 + 0.586289i 0.984150 0.177339i \(-0.0567491\pi\)
−0.645655 + 0.763629i \(0.723416\pi\)
\(692\) 0 0
\(693\) 2.50595e12 8.46638e12i 0.412737 1.39443i
\(694\) 0 0
\(695\) 4.64651e12 + 8.04800e12i 0.755432 + 1.30845i
\(696\) 0 0
\(697\) −1.96755e12 + 3.40789e12i −0.315775 + 0.546938i
\(698\) 0 0
\(699\) 4.26118e11 0.0675122
\(700\) 0 0
\(701\) 2.14575e11 0.0335621 0.0167810 0.999859i \(-0.494658\pi\)
0.0167810 + 0.999859i \(0.494658\pi\)
\(702\) 0 0
\(703\) −1.40169e12 + 2.42780e12i −0.216448 + 0.374899i
\(704\) 0 0
\(705\) −2.19052e11 3.79409e11i −0.0333961 0.0578437i
\(706\) 0 0
\(707\) −7.11922e11 7.49898e11i −0.107163 0.112879i
\(708\) 0 0
\(709\) 4.27735e12 + 7.40859e12i 0.635721 + 1.10110i 0.986362 + 0.164592i \(0.0526306\pi\)
−0.350640 + 0.936510i \(0.614036\pi\)
\(710\) 0 0
\(711\) −3.74639e11 + 6.48894e11i −0.0549794 + 0.0952271i
\(712\) 0 0
\(713\) −3.42566e11 −0.0496412
\(714\) 0 0
\(715\) −1.91927e13 −2.74637
\(716\) 0 0
\(717\) 2.99959e11 5.19545e11i 0.0423864 0.0734153i
\(718\) 0 0
\(719\) −3.24741e12 5.62468e12i −0.453166 0.784906i 0.545415 0.838166i \(-0.316372\pi\)
−0.998581 + 0.0532602i \(0.983039\pi\)
\(720\) 0 0
\(721\) −8.36349e12 + 2.00973e12i −1.15260 + 0.276967i
\(722\) 0 0
\(723\) 5.87682e10 + 1.01789e11i 0.00799871 + 0.0138542i
\(724\) 0 0
\(725\) −2.11226e12 + 3.65855e12i −0.283940 + 0.491799i
\(726\) 0 0
\(727\) −5.36028e12 −0.711677 −0.355838 0.934548i \(-0.615805\pi\)
−0.355838 + 0.934548i \(0.615805\pi\)
\(728\) 0 0
\(729\) −7.17538e12 −0.940960
\(730\) 0 0
\(731\) −9.32707e12 + 1.61550e13i −1.20814 + 2.09256i
\(732\) 0 0
\(733\) −1.73332e12 3.00220e12i −0.221774 0.384124i 0.733573 0.679611i \(-0.237851\pi\)
−0.955347 + 0.295487i \(0.904518\pi\)
\(734\) 0 0
\(735\) 8.13191e11 + 5.27614e11i 0.102778 + 0.0666842i
\(736\) 0 0
\(737\) 7.18999e12 + 1.24534e13i 0.897686 + 1.55484i
\(738\) 0 0
\(739\) −2.12046e12 + 3.67275e12i −0.261536 + 0.452993i −0.966650 0.256100i \(-0.917562\pi\)
0.705115 + 0.709093i \(0.250896\pi\)
\(740\) 0 0
\(741\) 4.25493e11 0.0518454
\(742\) 0 0
\(743\) 7.87489e12 0.947970 0.473985 0.880533i \(-0.342815\pi\)
0.473985 + 0.880533i \(0.342815\pi\)
\(744\) 0 0
\(745\) 2.66953e10 4.62376e10i 0.00317491 0.00549910i
\(746\) 0 0
\(747\) −5.41076e12 9.37171e12i −0.635793 1.10123i
\(748\) 0 0
\(749\) −5.42680e10 + 1.30405e10i −0.00630051 + 0.00151400i
\(750\) 0 0
\(751\) −5.52671e12 9.57254e12i −0.633997 1.09811i −0.986727 0.162389i \(-0.948080\pi\)
0.352730 0.935725i \(-0.385253\pi\)
\(752\) 0 0
\(753\) 5.69290e11 9.86038e11i 0.0645291 0.111768i
\(754\) 0 0
\(755\) 1.40386e13 1.57239
\(756\) 0 0
\(757\) −3.02707e12 −0.335035 −0.167518 0.985869i \(-0.553575\pi\)
−0.167518 + 0.985869i \(0.553575\pi\)
\(758\) 0 0
\(759\) −5.39008e10 + 9.33590e10i −0.00589532 + 0.0102110i
\(760\) 0 0
\(761\) 6.58247e12 + 1.14012e13i 0.711472 + 1.23231i 0.964304 + 0.264796i \(0.0853047\pi\)
−0.252832 + 0.967510i \(0.581362\pi\)
\(762\) 0 0
\(763\) −3.16160e12 3.33025e12i −0.337712 0.355727i
\(764\) 0 0
\(765\) −8.57069e12 1.48449e13i −0.904773 1.56711i
\(766\) 0 0
\(767\) −7.65629e12 + 1.32611e13i −0.798802 + 1.38357i
\(768\) 0 0
\(769\) −5.52244e12 −0.569460 −0.284730 0.958608i \(-0.591904\pi\)
−0.284730 + 0.958608i \(0.591904\pi\)
\(770\) 0 0
\(771\) 5.32487e11 0.0542706
\(772\) 0 0
\(773\) 9.92941e11 1.71982e12i 0.100027 0.173251i −0.811669 0.584118i \(-0.801441\pi\)
0.911695 + 0.410867i \(0.134774\pi\)
\(774\) 0 0
\(775\) 1.58623e12 + 2.74744e12i 0.157946 + 0.273571i
\(776\) 0 0
\(777\) −3.63160e11 + 1.22694e12i −0.0357440 + 0.120761i
\(778\) 0 0
\(779\) −7.47836e11 1.29529e12i −0.0727592 0.126023i
\(780\) 0 0
\(781\) 7.44728e11 1.28991e12i 0.0716255 0.124059i
\(782\) 0 0
\(783\) −2.30876e12 −0.219508
\(784\) 0 0
\(785\) −2.65424e11 −0.0249474
\(786\) 0 0
\(787\) 7.05480e12 1.22193e13i 0.655538 1.13543i −0.326220 0.945294i \(-0.605775\pi\)
0.981759 0.190132i \(-0.0608916\pi\)
\(788\) 0 0
\(789\) −3.95820e11 6.85581e11i −0.0363623 0.0629814i
\(790\) 0 0
\(791\) 5.30286e12 1.79158e13i 0.481632 1.62720i
\(792\) 0 0
\(793\) −8.97565e12 1.55463e13i −0.806003 1.39604i
\(794\) 0 0
\(795\) 5.42976e11 9.40463e11i 0.0482091 0.0835006i
\(796\) 0 0
\(797\) −9.54651e12 −0.838074 −0.419037 0.907969i \(-0.637632\pi\)
−0.419037 + 0.907969i \(0.637632\pi\)
\(798\) 0 0
\(799\) −9.33254e12 −0.810101
\(800\) 0 0
\(801\) −1.60695e12 + 2.78331e12i −0.137929 + 0.238900i
\(802\) 0 0
\(803\) −3.15529e11 5.46512e11i −0.0267805 0.0463852i
\(804\) 0 0
\(805\) 8.13129e11 + 8.56504e11i 0.0682461 + 0.0718866i
\(806\) 0 0
\(807\) −9.93145e11 1.72018e12i −0.0824293 0.142772i
\(808\) 0 0
\(809\) −9.23775e12 + 1.60003e13i −0.758225 + 1.31328i 0.185531 + 0.982639i \(0.440600\pi\)
−0.943755 + 0.330645i \(0.892734\pi\)
\(810\) 0 0
\(811\) 1.08163e13 0.877981 0.438991 0.898492i \(-0.355336\pi\)
0.438991 + 0.898492i \(0.355336\pi\)
\(812\) 0 0
\(813\) 5.20787e11 0.0418074
\(814\) 0 0
\(815\) −9.83809e12 + 1.70401e13i −0.781091 + 1.35289i
\(816\) 0 0
\(817\) −3.54508e12 6.14026e12i −0.278373 0.482156i
\(818\) 0 0
\(819\) −1.88433e13 + 4.52799e12i −1.46345 + 0.351664i
\(820\) 0 0
\(821\) 4.49231e12 + 7.78092e12i 0.345085 + 0.597704i 0.985369 0.170434i \(-0.0545168\pi\)
−0.640284 + 0.768138i \(0.721183\pi\)
\(822\) 0 0
\(823\) −1.04734e13 + 1.81404e13i −0.795770 + 1.37831i 0.126579 + 0.991957i \(0.459600\pi\)
−0.922349 + 0.386357i \(0.873733\pi\)
\(824\) 0 0
\(825\) 9.98338e11 0.0750300
\(826\) 0 0
\(827\) 7.58139e12 0.563604 0.281802 0.959473i \(-0.409068\pi\)
0.281802 + 0.959473i \(0.409068\pi\)
\(828\) 0 0
\(829\) 6.64524e12 1.15099e13i 0.488670 0.846401i −0.511245 0.859435i \(-0.670816\pi\)
0.999915 + 0.0130340i \(0.00414896\pi\)
\(830\) 0 0
\(831\) −1.09977e12 1.90485e12i −0.0800012 0.138566i
\(832\) 0 0
\(833\) 1.83949e13 9.38225e12i 1.32371 0.675156i
\(834\) 0 0
\(835\) 1.47017e13 + 2.54641e13i 1.04660 + 1.81276i
\(836\) 0 0
\(837\) −8.66896e11 + 1.50151e12i −0.0610523 + 0.105746i
\(838\) 0 0
\(839\) −6.44356e12 −0.448949 −0.224474 0.974480i \(-0.572067\pi\)
−0.224474 + 0.974480i \(0.572067\pi\)
\(840\) 0 0
\(841\) 3.28177e12 0.226218
\(842\) 0 0
\(843\) −6.75597e11 + 1.17017e12i −0.0460748 + 0.0798040i
\(844\) 0 0
\(845\) 1.19487e13 + 2.06957e13i 0.806242 + 1.39645i
\(846\) 0 0
\(847\) 1.68565e13 4.05059e12i 1.12536 0.270422i
\(848\) 0 0
\(849\) −1.39136e12 2.40991e12i −0.0919085 0.159190i
\(850\) 0 0
\(851\) −7.79466e11 + 1.35008e12i −0.0509465 + 0.0882419i
\(852\) 0 0
\(853\) −1.11447e13 −0.720769 −0.360384 0.932804i \(-0.617354\pi\)
−0.360384 + 0.932804i \(0.617354\pi\)
\(854\) 0 0
\(855\) 6.51519e12 0.416946
\(856\) 0 0
\(857\) −2.95516e12 + 5.11849e12i −0.187140 + 0.324137i −0.944296 0.329098i \(-0.893255\pi\)
0.757155 + 0.653235i \(0.226589\pi\)
\(858\) 0 0
\(859\) −8.90380e12 1.54218e13i −0.557964 0.966422i −0.997666 0.0682787i \(-0.978249\pi\)
0.439702 0.898144i \(-0.355084\pi\)
\(860\) 0 0
\(861\) −4.70024e11 4.95097e11i −0.0291478 0.0307027i
\(862\) 0 0
\(863\) 7.15238e12 + 1.23883e13i 0.438937 + 0.760261i 0.997608 0.0691286i \(-0.0220219\pi\)
−0.558671 + 0.829389i \(0.688689\pi\)
\(864\) 0 0
\(865\) −1.56368e12 + 2.70838e12i −0.0949677 + 0.164489i
\(866\) 0 0
\(867\) 2.00202e12 0.120333
\(868\) 0 0
\(869\) −2.74230e12 −0.163127
\(870\) 0 0
\(871\) 1.57812e13 2.73338e13i 0.929091 1.60923i
\(872\) 0 0
\(873\) 1.53003e12 + 2.65009e12i 0.0891531 + 0.154418i
\(874\) 0 0
\(875\) −2.94883e12 + 9.96267e12i −0.170065 + 0.574565i
\(876\) 0 0
\(877\) −3.01728e12 5.22608e12i −0.172233 0.298317i 0.766967 0.641687i \(-0.221765\pi\)
−0.939200 + 0.343370i \(0.888432\pi\)
\(878\) 0 0
\(879\) −5.08933e11 + 8.81498e11i −0.0287548 + 0.0498048i
\(880\) 0 0
\(881\) 1.54875e12 0.0866142 0.0433071 0.999062i \(-0.486211\pi\)
0.0433071 + 0.999062i \(0.486211\pi\)
\(882\) 0 0
\(883\) 2.01052e13 1.11297 0.556487 0.830857i \(-0.312149\pi\)
0.556487 + 0.830857i \(0.312149\pi\)
\(884\) 0 0
\(885\) 1.17483e12 2.03487e12i 0.0643771 0.111504i
\(886\) 0 0
\(887\) −1.07813e13 1.86737e13i −0.584809 1.01292i −0.994899 0.100873i \(-0.967836\pi\)
0.410091 0.912045i \(-0.365497\pi\)
\(888\) 0 0
\(889\) −1.16787e12 + 3.94566e12i −0.0627099 + 0.211866i
\(890\) 0 0
\(891\) −1.34062e13 2.32202e13i −0.712617 1.23429i
\(892\) 0 0
\(893\) 1.77358e12 3.07193e12i 0.0933296 0.161652i
\(894\) 0 0
\(895\) −4.06208e12 −0.211614
\(896\) 0 0
\(897\) 2.36612e11 0.0122031
\(898\) 0 0
\(899\) 6.67941e12 1.15691e13i 0.341051 0.590718i
\(900\) 0 0
\(901\) −1.15666e13 2.00339e13i −0.584713 1.01275i
\(902\) 0 0
\(903\) −2.22813e12 2.34698e12i −0.111518 0.117467i
\(904\) 0 0
\(905\) 1.42288e13 + 2.46451e13i 0.705100 + 1.22127i
\(906\) 0 0
\(907\) −1.10527e12 + 1.91438e12i −0.0542295 + 0.0939283i −0.891866 0.452300i \(-0.850604\pi\)
0.837636 + 0.546228i \(0.183937\pi\)
\(908\) 0 0
\(909\) −3.17208e12 −0.154102
\(910\) 0 0
\(911\) −7.06459e11 −0.0339824 −0.0169912 0.999856i \(-0.505409\pi\)
−0.0169912 + 0.999856i \(0.505409\pi\)
\(912\) 0 0
\(913\) 1.98029e13 3.42997e13i 0.943216 1.63370i
\(914\) 0 0
\(915\) 1.37728e12 + 2.38553e12i 0.0649574 + 0.112509i
\(916\) 0 0
\(917\) 1.82058e13 4.37481e12i 0.850253 0.204314i
\(918\) 0 0
\(919\) 8.29830e12 + 1.43731e13i 0.383768 + 0.664706i 0.991597 0.129362i \(-0.0412928\pi\)
−0.607829 + 0.794068i \(0.707959\pi\)
\(920\) 0 0
\(921\) −8.23277e11 + 1.42596e12i −0.0377032 + 0.0653038i
\(922\) 0 0
\(923\) −3.26919e12 −0.148263
\(924\) 0 0
\(925\) 1.44371e13 0.648398
\(926\) 0 0
\(927\) −1.31937e13 + 2.28522e13i −0.586825 + 1.01641i
\(928\) 0 0
\(929\) −8.93907e12 1.54829e13i −0.393751 0.681996i 0.599190 0.800607i \(-0.295489\pi\)
−0.992941 + 0.118610i \(0.962156\pi\)
\(930\) 0 0
\(931\) −4.07516e11 + 7.83795e12i −0.0177775 + 0.341923i
\(932\) 0 0
\(933\) 1.26742e12 + 2.19524e12i 0.0547589 + 0.0948452i
\(934\) 0 0
\(935\) 3.13680e13 5.43311e13i 1.34226 2.32485i
\(936\) 0 0
\(937\) 4.36868e13 1.85149 0.925747 0.378143i \(-0.123437\pi\)
0.925747 + 0.378143i \(0.123437\pi\)
\(938\) 0 0
\(939\) 3.97489e12 0.166852
\(940\) 0 0
\(941\) −3.20352e12 + 5.54866e12i −0.133191 + 0.230693i −0.924905 0.380199i \(-0.875856\pi\)
0.791714 + 0.610892i \(0.209189\pi\)
\(942\) 0 0
\(943\) −4.15864e11 7.20298e11i −0.0171257 0.0296626i
\(944\) 0 0
\(945\) 5.81185e12 1.39657e12i 0.237067 0.0569667i
\(946\) 0 0
\(947\) −5.20865e12 9.02164e12i −0.210451 0.364511i 0.741405 0.671058i \(-0.234160\pi\)
−0.951856 + 0.306547i \(0.900826\pi\)
\(948\) 0 0
\(949\) −6.92550e11 + 1.19953e12i −0.0277175 + 0.0480080i
\(950\) 0 0
\(951\) −1.42190e12 −0.0563713
\(952\) 0 0
\(953\) 6.40900e12 0.251694 0.125847 0.992050i \(-0.459835\pi\)
0.125847 + 0.992050i \(0.459835\pi\)
\(954\) 0 0
\(955\) 2.89236e12 5.00972e12i 0.112522 0.194894i
\(956\) 0 0
\(957\) −2.10193e12 3.64066e12i −0.0810056 0.140306i
\(958\) 0 0
\(959\) 3.37359e13 + 3.55355e13i 1.28798 + 1.35668i
\(960\) 0 0
\(961\) 8.20382e12 + 1.42094e13i 0.310285 + 0.537429i
\(962\) 0 0
\(963\) −8.56099e10 + 1.48281e11i −0.00320779 + 0.00555605i
\(964\) 0 0
\(965\) 8.12000e12 0.301428
\(966\) 0 0
\(967\) −1.24456e12 −0.0457718 −0.0228859 0.999738i \(-0.507285\pi\)
−0.0228859 + 0.999738i \(0.507285\pi\)
\(968\) 0 0
\(969\) −6.95414e11 + 1.20449e12i −0.0253388 + 0.0438881i
\(970\) 0 0
\(971\) 1.88913e13 + 3.27208e13i 0.681988 + 1.18124i 0.974373 + 0.224937i \(0.0722175\pi\)
−0.292386 + 0.956300i \(0.594449\pi\)
\(972\) 0 0
\(973\) −9.74713e12 + 3.29308e13i −0.348633 + 1.17786i
\(974\) 0 0
\(975\) −1.09562e12 1.89767e12i −0.0388274 0.0672511i
\(976\) 0 0
\(977\) 6.39041e12 1.10685e13i 0.224390 0.388655i −0.731746 0.681577i \(-0.761294\pi\)
0.956136 + 0.292922i \(0.0946278\pi\)
\(978\) 0 0
\(979\) −1.17626e13 −0.409242
\(980\) 0 0
\(981\) −1.40871e13 −0.485635
\(982\) 0 0
\(983\) −1.14746e13 + 1.98746e13i −0.391964 + 0.678902i −0.992709 0.120539i \(-0.961538\pi\)
0.600744 + 0.799441i \(0.294871\pi\)
\(984\) 0 0
\(985\) −1.43515e13 2.48576e13i −0.485776 0.841388i
\(986\) 0 0
\(987\) 4.59511e11 1.55246e12i 0.0154123 0.0520708i
\(988\) 0 0
\(989\) −1.97138e12 3.41454e12i −0.0655221 0.113488i
\(990\) 0 0
\(991\) 1.37595e13 2.38322e13i 0.453182 0.784934i −0.545400 0.838176i \(-0.683622\pi\)
0.998582 + 0.0532423i \(0.0169556\pi\)
\(992\) 0 0
\(993\) −4.24782e12 −0.138642
\(994\) 0 0
\(995\) 4.50063e13 1.45569
\(996\) 0 0
\(997\) −1.41861e13 + 2.45711e13i −0.454712 + 0.787583i −0.998672 0.0515277i \(-0.983591\pi\)
0.543960 + 0.839111i \(0.316924\pi\)
\(998\) 0 0
\(999\) 3.94502e12 + 6.83298e12i 0.125315 + 0.217053i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.b.81.2 6
4.3 odd 2 14.10.c.a.11.2 yes 6
7.2 even 3 inner 112.10.i.b.65.2 6
12.11 even 2 126.10.g.f.109.1 6
28.3 even 6 98.10.a.i.1.2 3
28.11 odd 6 98.10.a.j.1.2 3
28.19 even 6 98.10.c.k.79.2 6
28.23 odd 6 14.10.c.a.9.2 6
28.27 even 2 98.10.c.k.67.2 6
84.23 even 6 126.10.g.f.37.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.2 6 28.23 odd 6
14.10.c.a.11.2 yes 6 4.3 odd 2
98.10.a.i.1.2 3 28.3 even 6
98.10.a.j.1.2 3 28.11 odd 6
98.10.c.k.67.2 6 28.27 even 2
98.10.c.k.79.2 6 28.19 even 6
112.10.i.b.65.2 6 7.2 even 3 inner
112.10.i.b.81.2 6 1.1 even 1 trivial
126.10.g.f.37.1 6 84.23 even 6
126.10.g.f.109.1 6 12.11 even 2