Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 74 | 226 |
Cusp forms | 276 | 70 | 206 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(112, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)