Properties

Label 112.10.i
Level $112$
Weight $10$
Character orbit 112.i
Rep. character $\chi_{112}(65,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $70$
Newform subspaces $6$
Sturm bound $160$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(160\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(112, [\chi])\).

Total New Old
Modular forms 300 74 226
Cusp forms 276 70 206
Eisenstein series 24 4 20

Trace form

\( 70 q + 163 q^{3} - q^{5} + 1028 q^{7} - 216514 q^{9} - 32929 q^{11} - 4 q^{13} - 39362 q^{15} - q^{17} + 1116997 q^{19} + 336765 q^{21} + 2243129 q^{23} - 12490652 q^{25} - 8542418 q^{27} - 3244436 q^{29}+ \cdots + 264949324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
112.10.i.a 112.i 7.c $6$ $57.684$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 14.10.c.b \(0\) \(-71\) \(-1085\) \(6796\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-24-24\beta _{1}+\beta _{2}-\beta _{4})q^{3}+(364\beta _{1}+\cdots)q^{5}+\cdots\)
112.10.i.b 112.i 7.c $6$ $57.684$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 14.10.c.a \(0\) \(233\) \(-733\) \(-5012\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-78\beta _{2}+\beta _{3})q^{3}+(-246+5\beta _{1}+\cdots)q^{5}+\cdots\)
112.10.i.c 112.i 7.c $10$ $57.684$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 7.10.c.a \(0\) \(-161\) \(1533\) \(1036\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2^{5}\beta _{2}+\beta _{7})q^{3}+(307-307\beta _{2}+\cdots)q^{5}+\cdots\)
112.10.i.d 112.i 7.c $12$ $57.684$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 28.10.e.a \(0\) \(0\) \(-966\) \(-7696\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{3}-\beta _{4})q^{3}+(-161+161\beta _{1}+\cdots)q^{5}+\cdots\)
112.10.i.e 112.i 7.c $18$ $57.684$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 56.10.i.b \(0\) \(71\) \(449\) \(1084\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-8\beta _{1}+\beta _{3})q^{3}+(50+50\beta _{1}-\beta _{5}+\cdots)q^{5}+\cdots\)
112.10.i.f 112.i 7.c $18$ $57.684$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 56.10.i.a \(0\) \(91\) \(801\) \(4820\) $\mathrm{SU}(2)[C_{3}]$ \(q+(10+10\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(-89\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)