Properties

Label 126.10.g.f.37.1
Level $126$
Weight $10$
Character 126.37
Analytic conductor $64.895$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,10,Mod(37,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.37"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,48,0,-768,733] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.8945153566\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1116x^{4} - 3085x^{3} + 1245325x^{2} - 2341500x + 4410000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(0.943118 - 1.63353i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.10.g.f.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.00000 - 13.8564i) q^{2} +(-128.000 - 221.703i) q^{4} +(-859.469 + 1488.64i) q^{5} +(1802.93 + 6091.23i) q^{7} -4096.00 q^{8} +(13751.5 + 23818.3i) q^{10} +(-35661.7 - 61767.9i) q^{11} +156547. q^{13} +(98826.0 + 23747.7i) q^{14} +(-32768.0 + 56755.8i) q^{16} +(255856. + 443155. i) q^{17} +(97247.0 - 168437. i) q^{19} +440048. q^{20} -1.14118e6 q^{22} +(-54078.1 + 93666.0i) q^{23} +(-500810. - 867429. i) q^{25} +(1.25237e6 - 2.16918e6i) q^{26} +(1.11966e6 - 1.17939e6i) q^{28} -4.21769e6 q^{29} +(-1.58367e6 - 2.74299e6i) q^{31} +(524288. + 908093. i) q^{32} +8.18738e6 q^{34} +(-1.06172e7 - 2.55130e6i) q^{35} +(-7.20686e6 + 1.24827e7i) q^{37} +(-1.55595e6 - 2.69499e6i) q^{38} +(3.52038e6 - 6.09748e6i) q^{40} -7.69007e6 q^{41} -3.64544e7 q^{43} +(-9.12940e6 + 1.58126e7i) q^{44} +(865249. + 1.49866e6i) q^{46} +(9.11895e6 - 1.57945e7i) q^{47} +(-3.38525e7 + 2.19641e7i) q^{49} -1.60259e7 q^{50} +(-2.00380e7 - 3.47068e7i) q^{52} +(2.26037e7 + 3.91507e7i) q^{53} +1.22601e8 q^{55} +(-7.38481e6 - 2.49497e7i) q^{56} +(-3.37415e7 + 5.84420e7i) q^{58} +(-4.89074e7 - 8.47100e7i) q^{59} +(-5.73352e7 + 9.93075e7i) q^{61} -5.06773e7 q^{62} +1.67772e7 q^{64} +(-1.34547e8 + 2.33042e8i) q^{65} +(-1.00808e8 - 1.74605e8i) q^{67} +(6.54991e7 - 1.13448e8i) q^{68} +(-1.20290e8 + 1.26706e8i) q^{70} -2.08831e7 q^{71} +(-4.42392e6 - 7.66245e6i) q^{73} +(1.15310e8 + 1.99722e8i) q^{74} -4.97905e7 q^{76} +(3.11947e8 - 3.28587e8i) q^{77} +(-1.92244e7 + 3.32976e7i) q^{79} +(-5.63261e7 - 9.75597e7i) q^{80} +(-6.15205e7 + 1.06557e8i) q^{82} -5.55300e8 q^{83} -8.79600e8 q^{85} +(-2.91635e8 + 5.05127e8i) q^{86} +(1.46070e8 + 2.53001e8i) q^{88} +(-8.24594e7 + 1.42824e8i) q^{89} +(2.82243e8 + 9.53562e8i) q^{91} +2.76880e7 q^{92} +(-1.45903e8 - 2.52712e8i) q^{94} +(1.67162e8 + 2.89532e8i) q^{95} +1.57025e8 q^{97} +(3.35242e7 + 6.44787e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 48 q^{2} - 768 q^{4} + 733 q^{5} + 5012 q^{7} - 24576 q^{8} - 11728 q^{10} - 7339 q^{11} + 197036 q^{13} + 142576 q^{14} - 196608 q^{16} + 306665 q^{17} - 377991 q^{19} - 375296 q^{20} - 234848 q^{22}+ \cdots + 2185885296 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 13.8564i 0.353553 0.612372i
\(3\) 0 0
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) −859.469 + 1488.64i −0.614986 + 1.06519i 0.375401 + 0.926862i \(0.377505\pi\)
−0.990387 + 0.138324i \(0.955828\pi\)
\(6\) 0 0
\(7\) 1802.93 + 6091.23i 0.283817 + 0.958878i
\(8\) −4096.00 −0.353553
\(9\) 0 0
\(10\) 13751.5 + 23818.3i 0.434861 + 0.753201i
\(11\) −35661.7 61767.9i −0.734404 1.27203i −0.954984 0.296657i \(-0.904128\pi\)
0.220580 0.975369i \(-0.429205\pi\)
\(12\) 0 0
\(13\) 156547. 1.52019 0.760097 0.649809i \(-0.225151\pi\)
0.760097 + 0.649809i \(0.225151\pi\)
\(14\) 98826.0 + 23747.7i 0.687535 + 0.165213i
\(15\) 0 0
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) 255856. + 443155.i 0.742976 + 1.28687i 0.951134 + 0.308778i \(0.0999199\pi\)
−0.208158 + 0.978095i \(0.566747\pi\)
\(18\) 0 0
\(19\) 97247.0 168437.i 0.171193 0.296514i −0.767644 0.640876i \(-0.778571\pi\)
0.938837 + 0.344362i \(0.111905\pi\)
\(20\) 440048. 0.614986
\(21\) 0 0
\(22\) −1.14118e6 −1.03860
\(23\) −54078.1 + 93666.0i −0.0402945 + 0.0697922i −0.885469 0.464698i \(-0.846163\pi\)
0.845175 + 0.534490i \(0.179496\pi\)
\(24\) 0 0
\(25\) −500810. 867429.i −0.256415 0.444124i
\(26\) 1.25237e6 2.16918e6i 0.537470 0.930925i
\(27\) 0 0
\(28\) 1.11966e6 1.17939e6i 0.344252 0.362616i
\(29\) −4.21769e6 −1.10735 −0.553674 0.832734i \(-0.686774\pi\)
−0.553674 + 0.832734i \(0.686774\pi\)
\(30\) 0 0
\(31\) −1.58367e6 2.74299e6i −0.307990 0.533454i 0.669933 0.742422i \(-0.266323\pi\)
−0.977922 + 0.208968i \(0.932990\pi\)
\(32\) 524288. + 908093.i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 8.18738e6 1.05073
\(35\) −1.06172e7 2.55130e6i −1.19593 0.287379i
\(36\) 0 0
\(37\) −7.20686e6 + 1.24827e7i −0.632177 + 1.09496i 0.354929 + 0.934893i \(0.384505\pi\)
−0.987106 + 0.160069i \(0.948828\pi\)
\(38\) −1.55595e6 2.69499e6i −0.121051 0.209667i
\(39\) 0 0
\(40\) 3.52038e6 6.09748e6i 0.217430 0.376600i
\(41\) −7.69007e6 −0.425014 −0.212507 0.977160i \(-0.568163\pi\)
−0.212507 + 0.977160i \(0.568163\pi\)
\(42\) 0 0
\(43\) −3.64544e7 −1.62608 −0.813040 0.582208i \(-0.802189\pi\)
−0.813040 + 0.582208i \(0.802189\pi\)
\(44\) −9.12940e6 + 1.58126e7i −0.367202 + 0.636013i
\(45\) 0 0
\(46\) 865249. + 1.49866e6i 0.0284925 + 0.0493505i
\(47\) 9.11895e6 1.57945e7i 0.272587 0.472134i −0.696937 0.717132i \(-0.745454\pi\)
0.969523 + 0.244999i \(0.0787876\pi\)
\(48\) 0 0
\(49\) −3.38525e7 + 2.19641e7i −0.838896 + 0.544292i
\(50\) −1.60259e7 −0.362625
\(51\) 0 0
\(52\) −2.00380e7 3.47068e7i −0.380049 0.658264i
\(53\) 2.26037e7 + 3.91507e7i 0.393494 + 0.681551i 0.992908 0.118888i \(-0.0379330\pi\)
−0.599414 + 0.800439i \(0.704600\pi\)
\(54\) 0 0
\(55\) 1.22601e8 1.80659
\(56\) −7.38481e6 2.49497e7i −0.100344 0.339015i
\(57\) 0 0
\(58\) −3.37415e7 + 5.84420e7i −0.391506 + 0.678109i
\(59\) −4.89074e7 8.47100e7i −0.525461 0.910124i −0.999560 0.0296532i \(-0.990560\pi\)
0.474100 0.880471i \(-0.342774\pi\)
\(60\) 0 0
\(61\) −5.73352e7 + 9.93075e7i −0.530197 + 0.918328i 0.469182 + 0.883101i \(0.344549\pi\)
−0.999379 + 0.0352269i \(0.988785\pi\)
\(62\) −5.06773e7 −0.435563
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −1.34547e8 + 2.33042e8i −0.934898 + 1.61929i
\(66\) 0 0
\(67\) −1.00808e8 1.74605e8i −0.611166 1.05857i −0.991044 0.133534i \(-0.957367\pi\)
0.379878 0.925036i \(-0.375966\pi\)
\(68\) 6.54991e7 1.13448e8i 0.371488 0.643436i
\(69\) 0 0
\(70\) −1.20290e8 + 1.26706e8i −0.598807 + 0.630750i
\(71\) −2.08831e7 −0.0975288 −0.0487644 0.998810i \(-0.515528\pi\)
−0.0487644 + 0.998810i \(0.515528\pi\)
\(72\) 0 0
\(73\) −4.42392e6 7.66245e6i −0.0182328 0.0315802i 0.856765 0.515707i \(-0.172471\pi\)
−0.874998 + 0.484127i \(0.839137\pi\)
\(74\) 1.15310e8 + 1.99722e8i 0.447016 + 0.774255i
\(75\) 0 0
\(76\) −4.97905e7 −0.171193
\(77\) 3.11947e8 3.28587e8i 1.01128 1.06523i
\(78\) 0 0
\(79\) −1.92244e7 + 3.32976e7i −0.0555304 + 0.0961814i −0.892454 0.451138i \(-0.851018\pi\)
0.836924 + 0.547319i \(0.184352\pi\)
\(80\) −5.63261e7 9.75597e7i −0.153746 0.266297i
\(81\) 0 0
\(82\) −6.15205e7 + 1.06557e8i −0.150265 + 0.260267i
\(83\) −5.55300e8 −1.28433 −0.642164 0.766567i \(-0.721963\pi\)
−0.642164 + 0.766567i \(0.721963\pi\)
\(84\) 0 0
\(85\) −8.79600e8 −1.82768
\(86\) −2.91635e8 + 5.05127e8i −0.574906 + 0.995767i
\(87\) 0 0
\(88\) 1.46070e8 + 2.53001e8i 0.259651 + 0.449729i
\(89\) −8.24594e7 + 1.42824e8i −0.139311 + 0.241294i −0.927236 0.374478i \(-0.877822\pi\)
0.787925 + 0.615771i \(0.211155\pi\)
\(90\) 0 0
\(91\) 2.82243e8 + 9.53562e8i 0.431457 + 1.45768i
\(92\) 2.76880e7 0.0402945
\(93\) 0 0
\(94\) −1.45903e8 2.52712e8i −0.192748 0.333849i
\(95\) 1.67162e8 + 2.89532e8i 0.210562 + 0.364704i
\(96\) 0 0
\(97\) 1.57025e8 0.180093 0.0900466 0.995938i \(-0.471298\pi\)
0.0900466 + 0.995938i \(0.471298\pi\)
\(98\) 3.35242e7 + 6.44787e8i 0.0367148 + 0.706153i
\(99\) 0 0
\(100\) −1.28207e8 + 2.22062e8i −0.128207 + 0.222062i
\(101\) 8.13868e7 + 1.40966e8i 0.0778230 + 0.134793i 0.902310 0.431087i \(-0.141870\pi\)
−0.824487 + 0.565880i \(0.808536\pi\)
\(102\) 0 0
\(103\) −6.77028e8 + 1.17265e9i −0.592705 + 1.02660i 0.401161 + 0.916008i \(0.368607\pi\)
−0.993866 + 0.110588i \(0.964727\pi\)
\(104\) −6.41216e8 −0.537470
\(105\) 0 0
\(106\) 7.23318e8 0.556484
\(107\) 4.39302e6 7.60893e6i 0.00323993 0.00561173i −0.864401 0.502803i \(-0.832302\pi\)
0.867641 + 0.497192i \(0.165635\pi\)
\(108\) 0 0
\(109\) −3.61434e8 6.26023e8i −0.245251 0.424787i 0.716951 0.697123i \(-0.245537\pi\)
−0.962202 + 0.272337i \(0.912204\pi\)
\(110\) 9.80804e8 1.69880e9i 0.638727 1.10631i
\(111\) 0 0
\(112\) −4.04791e8 9.72704e7i −0.243080 0.0584117i
\(113\) 2.94124e9 1.69698 0.848492 0.529209i \(-0.177511\pi\)
0.848492 + 0.529209i \(0.177511\pi\)
\(114\) 0 0
\(115\) −9.29568e7 1.61006e8i −0.0495611 0.0858424i
\(116\) 5.39864e8 + 9.35073e8i 0.276837 + 0.479495i
\(117\) 0 0
\(118\) −1.56504e9 −0.743113
\(119\) −2.23807e9 + 2.35745e9i −1.02309 + 1.07766i
\(120\) 0 0
\(121\) −1.36454e9 + 2.36346e9i −0.578699 + 1.00234i
\(122\) 9.17364e8 + 1.58892e9i 0.374906 + 0.649356i
\(123\) 0 0
\(124\) −4.05418e8 + 7.02205e8i −0.153995 + 0.266727i
\(125\) −1.63558e9 −0.599205
\(126\) 0 0
\(127\) −6.47761e8 −0.220952 −0.110476 0.993879i \(-0.535238\pi\)
−0.110476 + 0.993879i \(0.535238\pi\)
\(128\) 1.34218e8 2.32472e8i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 2.15275e9 + 3.72868e9i 0.661073 + 1.14501i
\(131\) −1.47377e9 + 2.55264e9i −0.437228 + 0.757301i −0.997475 0.0710247i \(-0.977373\pi\)
0.560246 + 0.828326i \(0.310706\pi\)
\(132\) 0 0
\(133\) 1.20132e9 + 2.88674e8i 0.332909 + 0.0799972i
\(134\) −3.22586e9 −0.864319
\(135\) 0 0
\(136\) −1.04799e9 1.81516e9i −0.262682 0.454978i
\(137\) −3.85668e9 6.67997e9i −0.935344 1.62006i −0.774019 0.633162i \(-0.781757\pi\)
−0.161325 0.986901i \(-0.551577\pi\)
\(138\) 0 0
\(139\) −5.40626e9 −1.22837 −0.614187 0.789161i \(-0.710516\pi\)
−0.614187 + 0.789161i \(0.710516\pi\)
\(140\) 7.93377e8 + 2.68043e9i 0.174543 + 0.589697i
\(141\) 0 0
\(142\) −1.67065e8 + 2.89365e8i −0.0344816 + 0.0597239i
\(143\) −5.58273e9 9.66957e9i −1.11644 1.93373i
\(144\) 0 0
\(145\) 3.62497e9 6.27864e9i 0.681003 1.17953i
\(146\) −1.41565e8 −0.0257851
\(147\) 0 0
\(148\) 3.68991e9 0.632177
\(149\) 1.55301e7 2.68989e7i 0.00258129 0.00447092i −0.864732 0.502234i \(-0.832512\pi\)
0.867313 + 0.497763i \(0.165845\pi\)
\(150\) 0 0
\(151\) −4.08350e9 7.07283e9i −0.639199 1.10713i −0.985609 0.169043i \(-0.945932\pi\)
0.346409 0.938083i \(-0.387401\pi\)
\(152\) −3.98324e8 + 6.89917e8i −0.0605257 + 0.104834i
\(153\) 0 0
\(154\) −2.05746e9 6.95116e9i −0.294774 0.995896i
\(155\) 5.44445e9 0.757637
\(156\) 0 0
\(157\) −7.72057e7 1.33724e8i −0.0101415 0.0175655i 0.860910 0.508757i \(-0.169895\pi\)
−0.871052 + 0.491192i \(0.836562\pi\)
\(158\) 3.07590e8 + 5.32762e8i 0.0392659 + 0.0680105i
\(159\) 0 0
\(160\) −1.80244e9 −0.217430
\(161\) −6.68040e8 1.60528e8i −0.0783585 0.0188294i
\(162\) 0 0
\(163\) −5.72335e9 + 9.91314e9i −0.635048 + 1.09994i 0.351457 + 0.936204i \(0.385686\pi\)
−0.986505 + 0.163731i \(0.947647\pi\)
\(164\) 9.84329e8 + 1.70491e9i 0.106253 + 0.184036i
\(165\) 0 0
\(166\) −4.44240e9 + 7.69446e9i −0.454079 + 0.786487i
\(167\) 1.71056e10 1.70182 0.850911 0.525310i \(-0.176051\pi\)
0.850911 + 0.525310i \(0.176051\pi\)
\(168\) 0 0
\(169\) 1.39024e10 1.31099
\(170\) −7.03680e9 + 1.21881e10i −0.646182 + 1.11922i
\(171\) 0 0
\(172\) 4.66616e9 + 8.08203e9i 0.406520 + 0.704113i
\(173\) −9.09679e8 + 1.57561e9i −0.0772113 + 0.133734i −0.902046 0.431640i \(-0.857935\pi\)
0.824834 + 0.565374i \(0.191268\pi\)
\(174\) 0 0
\(175\) 4.38078e9 4.61447e9i 0.353086 0.371921i
\(176\) 4.67425e9 0.367202
\(177\) 0 0
\(178\) 1.31935e9 + 2.28518e9i 0.0985077 + 0.170620i
\(179\) −1.18157e9 2.04654e9i −0.0860241 0.148998i 0.819803 0.572646i \(-0.194083\pi\)
−0.905827 + 0.423647i \(0.860750\pi\)
\(180\) 0 0
\(181\) 1.65554e10 1.14653 0.573265 0.819370i \(-0.305677\pi\)
0.573265 + 0.819370i \(0.305677\pi\)
\(182\) 1.54709e10 + 3.71762e9i 1.04519 + 0.251156i
\(183\) 0 0
\(184\) 2.21504e8 3.83656e8i 0.0142463 0.0246753i
\(185\) −1.23881e10 2.14569e10i −0.777559 1.34677i
\(186\) 0 0
\(187\) 1.82485e10 3.16073e10i 1.09129 1.89017i
\(188\) −4.66890e9 −0.272587
\(189\) 0 0
\(190\) 5.34917e9 0.297780
\(191\) −1.68265e9 + 2.91443e9i −0.0914835 + 0.158454i −0.908136 0.418676i \(-0.862494\pi\)
0.816652 + 0.577130i \(0.195828\pi\)
\(192\) 0 0
\(193\) 2.36192e9 + 4.09097e9i 0.122534 + 0.212236i 0.920766 0.390114i \(-0.127564\pi\)
−0.798232 + 0.602350i \(0.794231\pi\)
\(194\) 1.25620e9 2.17581e9i 0.0636725 0.110284i
\(195\) 0 0
\(196\) 9.20262e9 + 4.69377e9i 0.445409 + 0.227180i
\(197\) 1.66982e10 0.789897 0.394949 0.918703i \(-0.370762\pi\)
0.394949 + 0.918703i \(0.370762\pi\)
\(198\) 0 0
\(199\) −1.30913e10 2.26748e10i −0.591759 1.02496i −0.993996 0.109421i \(-0.965100\pi\)
0.402237 0.915536i \(-0.368233\pi\)
\(200\) 2.05132e9 + 3.55299e9i 0.0906564 + 0.157021i
\(201\) 0 0
\(202\) 2.60438e9 0.110058
\(203\) −7.60421e9 2.56909e10i −0.314284 1.06181i
\(204\) 0 0
\(205\) 6.60937e9 1.14478e10i 0.261377 0.452719i
\(206\) 1.08324e10 + 1.87623e10i 0.419106 + 0.725913i
\(207\) 0 0
\(208\) −5.12973e9 + 8.88495e9i −0.190024 + 0.329132i
\(209\) −1.38720e10 −0.502898
\(210\) 0 0
\(211\) −3.90431e10 −1.35604 −0.678021 0.735042i \(-0.737162\pi\)
−0.678021 + 0.735042i \(0.737162\pi\)
\(212\) 5.78654e9 1.00226e10i 0.196747 0.340775i
\(213\) 0 0
\(214\) −7.02883e7 1.21743e8i −0.00229098 0.00396809i
\(215\) 3.13314e10 5.42676e10i 1.00002 1.73208i
\(216\) 0 0
\(217\) 1.38529e10 1.45919e10i 0.424104 0.446728i
\(218\) −1.15659e10 −0.346837
\(219\) 0 0
\(220\) −1.56929e10 2.71808e10i −0.451648 0.782278i
\(221\) 4.00534e10 + 6.93745e10i 1.12947 + 1.95630i
\(222\) 0 0
\(223\) 4.53210e10 1.22723 0.613617 0.789603i \(-0.289714\pi\)
0.613617 + 0.789603i \(0.289714\pi\)
\(224\) −4.58615e9 + 4.83079e9i −0.121712 + 0.128204i
\(225\) 0 0
\(226\) 2.35299e10 4.07550e10i 0.599974 1.03919i
\(227\) 3.75422e9 + 6.50249e9i 0.0938432 + 0.162541i 0.909125 0.416523i \(-0.136751\pi\)
−0.815282 + 0.579064i \(0.803418\pi\)
\(228\) 0 0
\(229\) −2.09237e10 + 3.62409e10i −0.502781 + 0.870842i 0.497214 + 0.867628i \(0.334356\pi\)
−0.999995 + 0.00321410i \(0.998977\pi\)
\(230\) −2.97462e9 −0.0700900
\(231\) 0 0
\(232\) 1.72757e10 0.391506
\(233\) 1.52461e10 2.64070e10i 0.338888 0.586971i −0.645336 0.763899i \(-0.723283\pi\)
0.984224 + 0.176928i \(0.0566158\pi\)
\(234\) 0 0
\(235\) 1.56749e10 + 2.71497e10i 0.335274 + 0.580711i
\(236\) −1.25203e10 + 2.16858e10i −0.262730 + 0.455062i
\(237\) 0 0
\(238\) 1.47613e10 + 4.98712e10i 0.298214 + 1.00752i
\(239\) −4.29290e10 −0.851060 −0.425530 0.904944i \(-0.639912\pi\)
−0.425530 + 0.904944i \(0.639912\pi\)
\(240\) 0 0
\(241\) 4.20533e9 + 7.28385e9i 0.0803015 + 0.139086i 0.903379 0.428842i \(-0.141078\pi\)
−0.823078 + 0.567928i \(0.807745\pi\)
\(242\) 2.18327e10 + 3.78153e10i 0.409202 + 0.708759i
\(243\) 0 0
\(244\) 2.93556e10 0.530197
\(245\) −3.60163e9 6.92718e10i −0.0638633 1.22831i
\(246\) 0 0
\(247\) 1.52237e10 2.63682e10i 0.260246 0.450760i
\(248\) 6.48670e9 + 1.12353e10i 0.108891 + 0.188604i
\(249\) 0 0
\(250\) −1.30846e10 + 2.26632e10i −0.211851 + 0.366937i
\(251\) −8.14744e10 −1.29566 −0.647828 0.761787i \(-0.724322\pi\)
−0.647828 + 0.761787i \(0.724322\pi\)
\(252\) 0 0
\(253\) 7.71407e9 0.118370
\(254\) −5.18209e9 + 8.97564e9i −0.0781184 + 0.135305i
\(255\) 0 0
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) 1.90519e10 3.29988e10i 0.272420 0.471845i −0.697061 0.717012i \(-0.745509\pi\)
0.969481 + 0.245167i \(0.0788428\pi\)
\(258\) 0 0
\(259\) −8.90281e10 2.13933e10i −1.22936 0.295412i
\(260\) 6.88881e10 0.934898
\(261\) 0 0
\(262\) 2.35803e10 + 4.08422e10i 0.309167 + 0.535493i
\(263\) −2.83241e10 4.90588e10i −0.365053 0.632290i 0.623732 0.781638i \(-0.285616\pi\)
−0.988785 + 0.149349i \(0.952282\pi\)
\(264\) 0 0
\(265\) −7.77086e10 −0.967972
\(266\) 1.36105e10 1.43365e10i 0.166689 0.175581i
\(267\) 0 0
\(268\) −2.58069e10 + 4.46988e10i −0.305583 + 0.529285i
\(269\) 7.10675e10 + 1.23092e11i 0.827534 + 1.43333i 0.899967 + 0.435957i \(0.143590\pi\)
−0.0724338 + 0.997373i \(0.523077\pi\)
\(270\) 0 0
\(271\) 1.86332e10 3.22737e10i 0.209859 0.363486i −0.741811 0.670609i \(-0.766033\pi\)
0.951670 + 0.307123i \(0.0993663\pi\)
\(272\) −3.35355e10 −0.371488
\(273\) 0 0
\(274\) −1.23414e11 −1.32278
\(275\) −3.57195e10 + 6.18680e10i −0.376624 + 0.652333i
\(276\) 0 0
\(277\) −7.86972e10 1.36308e11i −0.803157 1.39111i −0.917528 0.397671i \(-0.869819\pi\)
0.114371 0.993438i \(-0.463515\pi\)
\(278\) −4.32501e10 + 7.49114e10i −0.434296 + 0.752222i
\(279\) 0 0
\(280\) 4.34882e10 + 1.04501e10i 0.422824 + 0.101604i
\(281\) −9.66888e10 −0.925119 −0.462560 0.886588i \(-0.653069\pi\)
−0.462560 + 0.886588i \(0.653069\pi\)
\(282\) 0 0
\(283\) 9.95631e10 + 1.72448e11i 0.922698 + 1.59816i 0.795223 + 0.606318i \(0.207354\pi\)
0.127475 + 0.991842i \(0.459313\pi\)
\(284\) 2.67304e9 + 4.62984e9i 0.0243822 + 0.0422312i
\(285\) 0 0
\(286\) −1.78647e11 −1.57888
\(287\) −1.38647e10 4.68420e10i −0.120626 0.407536i
\(288\) 0 0
\(289\) −7.16304e10 + 1.24067e11i −0.604028 + 1.04621i
\(290\) −5.79996e10 1.00458e11i −0.481542 0.834055i
\(291\) 0 0
\(292\) −1.13252e9 + 1.96159e9i −0.00911641 + 0.0157901i
\(293\) −7.28364e10 −0.577357 −0.288679 0.957426i \(-0.593216\pi\)
−0.288679 + 0.957426i \(0.593216\pi\)
\(294\) 0 0
\(295\) 1.68137e11 1.29260
\(296\) 2.95193e10 5.11289e10i 0.223508 0.387128i
\(297\) 0 0
\(298\) −2.48482e8 4.30383e8i −0.00182524 0.00316142i
\(299\) −8.46575e9 + 1.46631e10i −0.0612555 + 0.106098i
\(300\) 0 0
\(301\) −6.57248e10 2.22052e11i −0.461509 1.55921i
\(302\) −1.30672e11 −0.903965
\(303\) 0 0
\(304\) 6.37318e9 + 1.10387e10i 0.0427982 + 0.0741286i
\(305\) −9.85557e10 1.70703e11i −0.652127 1.12952i
\(306\) 0 0
\(307\) −1.17824e11 −0.757027 −0.378514 0.925596i \(-0.623565\pi\)
−0.378514 + 0.925596i \(0.623565\pi\)
\(308\) −1.12778e11 2.71002e10i −0.714077 0.171591i
\(309\) 0 0
\(310\) 4.35556e10 7.54404e10i 0.267865 0.463956i
\(311\) 9.06944e10 + 1.57087e11i 0.549742 + 0.952180i 0.998292 + 0.0584227i \(0.0186071\pi\)
−0.448550 + 0.893758i \(0.648060\pi\)
\(312\) 0 0
\(313\) −1.42218e11 + 2.46328e11i −0.837537 + 1.45066i 0.0544112 + 0.998519i \(0.482672\pi\)
−0.891948 + 0.452138i \(0.850662\pi\)
\(314\) −2.47058e9 −0.0143422
\(315\) 0 0
\(316\) 9.84288e9 0.0555304
\(317\) −5.08743e10 + 8.81169e10i −0.282964 + 0.490109i −0.972114 0.234511i \(-0.924651\pi\)
0.689149 + 0.724620i \(0.257984\pi\)
\(318\) 0 0
\(319\) 1.50410e11 + 2.60518e11i 0.813241 + 1.40857i
\(320\) −1.44195e10 + 2.49753e10i −0.0768732 + 0.133148i
\(321\) 0 0
\(322\) −7.56867e9 + 7.97240e9i −0.0392345 + 0.0413274i
\(323\) 9.95248e10 0.508768
\(324\) 0 0
\(325\) −7.84003e10 1.35793e11i −0.389801 0.675154i
\(326\) 9.15737e10 + 1.58610e11i 0.449047 + 0.777772i
\(327\) 0 0
\(328\) 3.14985e10 0.150265
\(329\) 1.12649e11 + 2.70692e10i 0.530084 + 0.127378i
\(330\) 0 0
\(331\) −1.51983e11 + 2.63242e11i −0.695935 + 1.20540i 0.273929 + 0.961750i \(0.411677\pi\)
−0.969864 + 0.243645i \(0.921657\pi\)
\(332\) 7.10784e10 + 1.23111e11i 0.321082 + 0.556130i
\(333\) 0 0
\(334\) 1.36845e11 2.37022e11i 0.601685 1.04215i
\(335\) 3.46566e11 1.50343
\(336\) 0 0
\(337\) −1.72473e10 −0.0728427 −0.0364213 0.999337i \(-0.511596\pi\)
−0.0364213 + 0.999337i \(0.511596\pi\)
\(338\) 1.11219e11 1.92638e11i 0.463506 0.802816i
\(339\) 0 0
\(340\) 1.12589e11 + 1.95010e11i 0.456920 + 0.791408i
\(341\) −1.12953e11 + 1.95639e11i −0.452378 + 0.783541i
\(342\) 0 0
\(343\) −1.94822e11 1.66603e11i −0.760003 0.649920i
\(344\) 1.49317e11 0.574906
\(345\) 0 0
\(346\) 1.45549e10 + 2.52098e10i 0.0545966 + 0.0945642i
\(347\) 1.58417e11 + 2.74386e11i 0.586569 + 1.01597i 0.994678 + 0.103034i \(0.0328551\pi\)
−0.408109 + 0.912933i \(0.633812\pi\)
\(348\) 0 0
\(349\) 9.59821e10 0.346318 0.173159 0.984894i \(-0.444602\pi\)
0.173159 + 0.984894i \(0.444602\pi\)
\(350\) −2.88937e10 9.76176e10i −0.102919 0.347714i
\(351\) 0 0
\(352\) 3.73940e10 6.47684e10i 0.129826 0.224864i
\(353\) −1.31095e11 2.27063e11i −0.449365 0.778324i 0.548979 0.835836i \(-0.315017\pi\)
−0.998345 + 0.0575122i \(0.981683\pi\)
\(354\) 0 0
\(355\) 1.79484e10 3.10875e10i 0.0599788 0.103886i
\(356\) 4.22192e10 0.139311
\(357\) 0 0
\(358\) −3.78102e10 −0.121656
\(359\) −5.42664e10 + 9.39922e10i −0.172427 + 0.298653i −0.939268 0.343185i \(-0.888494\pi\)
0.766841 + 0.641838i \(0.221828\pi\)
\(360\) 0 0
\(361\) 1.42430e11 + 2.46696e11i 0.441386 + 0.764503i
\(362\) 1.32443e11 2.29398e11i 0.405360 0.702104i
\(363\) 0 0
\(364\) 1.75280e11 1.84630e11i 0.523331 0.551247i
\(365\) 1.52089e10 0.0448517
\(366\) 0 0
\(367\) −1.06268e11 1.84061e11i −0.305777 0.529621i 0.671657 0.740862i \(-0.265583\pi\)
−0.977434 + 0.211241i \(0.932249\pi\)
\(368\) −3.54406e9 6.13849e9i −0.0100736 0.0174480i
\(369\) 0 0
\(370\) −3.96421e11 −1.09963
\(371\) −1.97723e11 + 2.08270e11i −0.541844 + 0.570748i
\(372\) 0 0
\(373\) 1.58915e11 2.75249e11i 0.425085 0.736269i −0.571343 0.820711i \(-0.693577\pi\)
0.996428 + 0.0844421i \(0.0269108\pi\)
\(374\) −2.91976e11 5.05718e11i −0.771659 1.33655i
\(375\) 0 0
\(376\) −3.73512e10 + 6.46942e10i −0.0963739 + 0.166924i
\(377\) −6.60266e11 −1.68338
\(378\) 0 0
\(379\) 6.09315e11 1.51693 0.758465 0.651714i \(-0.225950\pi\)
0.758465 + 0.651714i \(0.225950\pi\)
\(380\) 4.27934e10 7.41203e10i 0.105281 0.182352i
\(381\) 0 0
\(382\) 2.69224e10 + 4.66309e10i 0.0646886 + 0.112044i
\(383\) 1.70032e11 2.94503e11i 0.403771 0.699352i −0.590407 0.807106i \(-0.701033\pi\)
0.994178 + 0.107754i \(0.0343659\pi\)
\(384\) 0 0
\(385\) 2.21040e11 + 7.46788e11i 0.512742 + 1.73230i
\(386\) 7.55816e10 0.173290
\(387\) 0 0
\(388\) −2.00993e10 3.48129e10i −0.0450233 0.0779826i
\(389\) 3.77442e11 + 6.53749e11i 0.835751 + 1.44756i 0.893417 + 0.449227i \(0.148301\pi\)
−0.0576663 + 0.998336i \(0.518366\pi\)
\(390\) 0 0
\(391\) −5.53447e10 −0.119751
\(392\) 1.38660e11 8.99651e10i 0.296595 0.192436i
\(393\) 0 0
\(394\) 1.33585e11 2.31376e11i 0.279271 0.483711i
\(395\) −3.30455e10 5.72365e10i −0.0683008 0.118300i
\(396\) 0 0
\(397\) 1.34694e11 2.33297e11i 0.272140 0.471360i −0.697270 0.716809i \(-0.745602\pi\)
0.969409 + 0.245449i \(0.0789354\pi\)
\(398\) −4.18923e11 −0.836874
\(399\) 0 0
\(400\) 6.56422e10 0.128207
\(401\) −1.78083e11 + 3.08449e11i −0.343932 + 0.595708i −0.985159 0.171643i \(-0.945092\pi\)
0.641227 + 0.767351i \(0.278426\pi\)
\(402\) 0 0
\(403\) −2.47918e11 4.29406e11i −0.468204 0.810953i
\(404\) 2.08350e10 3.60873e10i 0.0389115 0.0673967i
\(405\) 0 0
\(406\) −4.16817e11 1.00160e11i −0.761340 0.182948i
\(407\) 1.02804e12 1.85709
\(408\) 0 0
\(409\) 4.37201e10 + 7.57254e10i 0.0772549 + 0.133809i 0.902065 0.431601i \(-0.142051\pi\)
−0.824810 + 0.565410i \(0.808718\pi\)
\(410\) −1.05750e11 1.83164e11i −0.184822 0.320121i
\(411\) 0 0
\(412\) 3.46638e11 0.592705
\(413\) 4.27811e11 4.50632e11i 0.723564 0.762162i
\(414\) 0 0
\(415\) 4.77263e11 8.26643e11i 0.789843 1.36805i
\(416\) 8.20756e10 + 1.42159e11i 0.134368 + 0.232731i
\(417\) 0 0
\(418\) −1.10976e11 + 1.92216e11i −0.177801 + 0.307961i
\(419\) −4.46048e9 −0.00706999 −0.00353499 0.999994i \(-0.501125\pi\)
−0.00353499 + 0.999994i \(0.501125\pi\)
\(420\) 0 0
\(421\) −9.34684e10 −0.145009 −0.0725046 0.997368i \(-0.523099\pi\)
−0.0725046 + 0.997368i \(0.523099\pi\)
\(422\) −3.12345e11 + 5.40997e11i −0.479434 + 0.830403i
\(423\) 0 0
\(424\) −9.25846e10 1.60361e11i −0.139121 0.240965i
\(425\) 2.56270e11 4.43873e11i 0.381020 0.659947i
\(426\) 0 0
\(427\) −7.08276e11 1.70197e11i −1.03104 0.247757i
\(428\) −2.24923e9 −0.00323993
\(429\) 0 0
\(430\) −5.01303e11 8.68282e11i −0.707118 1.22476i
\(431\) −2.49562e11 4.32254e11i −0.348362 0.603381i 0.637597 0.770370i \(-0.279929\pi\)
−0.985959 + 0.166990i \(0.946595\pi\)
\(432\) 0 0
\(433\) 1.04168e12 1.42410 0.712049 0.702130i \(-0.247768\pi\)
0.712049 + 0.702130i \(0.247768\pi\)
\(434\) −9.13678e10 3.08687e11i −0.123620 0.417652i
\(435\) 0 0
\(436\) −9.25272e10 + 1.60262e11i −0.122625 + 0.212393i
\(437\) 1.05179e10 + 1.82175e10i 0.0137963 + 0.0238958i
\(438\) 0 0
\(439\) 1.00140e11 1.73447e11i 0.128681 0.222883i −0.794485 0.607284i \(-0.792259\pi\)
0.923166 + 0.384402i \(0.125592\pi\)
\(440\) −5.02172e11 −0.638727
\(441\) 0 0
\(442\) 1.28171e12 1.59731
\(443\) 1.13051e11 1.95810e11i 0.139463 0.241556i −0.787831 0.615892i \(-0.788796\pi\)
0.927293 + 0.374335i \(0.122129\pi\)
\(444\) 0 0
\(445\) −1.41743e11 2.45505e11i −0.171349 0.296784i
\(446\) 3.62568e11 6.27986e11i 0.433893 0.751525i
\(447\) 0 0
\(448\) 3.02482e10 + 1.02194e11i 0.0354771 + 0.119860i
\(449\) 1.20089e12 1.39443 0.697213 0.716864i \(-0.254423\pi\)
0.697213 + 0.716864i \(0.254423\pi\)
\(450\) 0 0
\(451\) 2.74241e11 + 4.74999e11i 0.312132 + 0.540628i
\(452\) −3.76479e11 6.52080e11i −0.424246 0.734815i
\(453\) 0 0
\(454\) 1.20135e11 0.132714
\(455\) −1.66209e12 3.99397e11i −1.81804 0.436872i
\(456\) 0 0
\(457\) −1.64864e11 + 2.85552e11i −0.176808 + 0.306241i −0.940786 0.339002i \(-0.889911\pi\)
0.763977 + 0.645243i \(0.223244\pi\)
\(458\) 3.34779e11 + 5.79855e11i 0.355520 + 0.615778i
\(459\) 0 0
\(460\) −2.37969e10 + 4.12175e10i −0.0247806 + 0.0429212i
\(461\) −1.38928e12 −1.43263 −0.716317 0.697775i \(-0.754173\pi\)
−0.716317 + 0.697775i \(0.754173\pi\)
\(462\) 0 0
\(463\) −6.88123e7 −6.95908e−5 −3.47954e−5 1.00000i \(-0.500011\pi\)
−3.47954e−5 1.00000i \(0.500011\pi\)
\(464\) 1.38205e11 2.39379e11i 0.138418 0.239748i
\(465\) 0 0
\(466\) −2.43937e11 4.22512e11i −0.239630 0.415052i
\(467\) −5.39451e11 + 9.34356e11i −0.524839 + 0.909048i 0.474743 + 0.880125i \(0.342541\pi\)
−0.999582 + 0.0289230i \(0.990792\pi\)
\(468\) 0 0
\(469\) 8.81808e11 9.28846e11i 0.841581 0.886474i
\(470\) 5.01597e11 0.474149
\(471\) 0 0
\(472\) 2.00325e11 + 3.46972e11i 0.185778 + 0.321778i
\(473\) 1.30003e12 + 2.25171e12i 1.19420 + 2.06842i
\(474\) 0 0
\(475\) −1.94809e11 −0.175585
\(476\) 8.09126e11 + 1.94431e11i 0.722412 + 0.173594i
\(477\) 0 0
\(478\) −3.43432e11 + 5.94841e11i −0.300895 + 0.521165i
\(479\) −3.11905e11 5.40235e11i −0.270715 0.468892i 0.698330 0.715776i \(-0.253927\pi\)
−0.969045 + 0.246884i \(0.920593\pi\)
\(480\) 0 0
\(481\) −1.12821e12 + 1.95412e12i −0.961032 + 1.66456i
\(482\) 1.34571e11 0.113563
\(483\) 0 0
\(484\) 6.98646e11 0.578699
\(485\) −1.34958e11 + 2.33755e11i −0.110755 + 0.191833i
\(486\) 0 0
\(487\) 7.48463e11 + 1.29638e12i 0.602962 + 1.04436i 0.992370 + 0.123295i \(0.0393462\pi\)
−0.389408 + 0.921065i \(0.627321\pi\)
\(488\) 2.34845e11 4.06764e11i 0.187453 0.324678i
\(489\) 0 0
\(490\) −9.88671e11 5.04268e11i −0.774764 0.395166i
\(491\) −6.91050e11 −0.536590 −0.268295 0.963337i \(-0.586460\pi\)
−0.268295 + 0.963337i \(0.586460\pi\)
\(492\) 0 0
\(493\) −1.07912e12 1.86909e12i −0.822733 1.42501i
\(494\) −2.43579e11 4.21892e11i −0.184022 0.318735i
\(495\) 0 0
\(496\) 2.07574e11 0.153995
\(497\) −3.76508e10 1.27204e11i −0.0276803 0.0935182i
\(498\) 0 0
\(499\) −6.87459e11 + 1.19071e12i −0.496357 + 0.859716i −0.999991 0.00420123i \(-0.998663\pi\)
0.503634 + 0.863917i \(0.331996\pi\)
\(500\) 2.09354e11 + 3.62611e11i 0.149801 + 0.259464i
\(501\) 0 0
\(502\) −6.51796e11 + 1.12894e12i −0.458084 + 0.793424i
\(503\) 2.02197e12 1.40837 0.704187 0.710015i \(-0.251312\pi\)
0.704187 + 0.710015i \(0.251312\pi\)
\(504\) 0 0
\(505\) −2.79798e11 −0.191440
\(506\) 6.17126e10 1.06889e11i 0.0418501 0.0724864i
\(507\) 0 0
\(508\) 8.29134e10 + 1.43610e11i 0.0552380 + 0.0956751i
\(509\) −5.74038e11 + 9.94263e11i −0.379062 + 0.656555i −0.990926 0.134408i \(-0.957087\pi\)
0.611864 + 0.790963i \(0.290420\pi\)
\(510\) 0 0
\(511\) 3.86977e10 4.07620e10i 0.0251068 0.0264461i
\(512\) −6.87195e10 −0.0441942
\(513\) 0 0
\(514\) −3.04830e11 5.27981e11i −0.192630 0.333645i
\(515\) −1.16377e12 2.01571e12i −0.729011 1.26268i
\(516\) 0 0
\(517\) −1.30079e12 −0.800755
\(518\) −1.00866e12 + 1.06246e12i −0.615546 + 0.648381i
\(519\) 0 0
\(520\) 5.51105e11 9.54542e11i 0.330536 0.572506i
\(521\) −6.50321e11 1.12639e12i −0.386686 0.669759i 0.605316 0.795985i \(-0.293047\pi\)
−0.992002 + 0.126226i \(0.959714\pi\)
\(522\) 0 0
\(523\) 1.12086e12 1.94139e12i 0.655079 1.13463i −0.326794 0.945095i \(-0.605968\pi\)
0.981874 0.189535i \(-0.0606982\pi\)
\(524\) 7.54569e11 0.437228
\(525\) 0 0
\(526\) −9.06371e11 −0.516262
\(527\) 8.10380e11 1.40362e12i 0.457658 0.792687i
\(528\) 0 0
\(529\) 8.94727e11 + 1.54971e12i 0.496753 + 0.860401i
\(530\) −6.21669e11 + 1.07676e12i −0.342230 + 0.592759i
\(531\) 0 0
\(532\) −8.97689e10 3.03285e11i −0.0485874 0.164153i
\(533\) −1.20386e12 −0.646104
\(534\) 0 0
\(535\) 7.55132e9 + 1.30793e10i 0.00398502 + 0.00690227i
\(536\) 4.12910e11 + 7.15182e11i 0.216080 + 0.374261i
\(537\) 0 0
\(538\) 2.27416e12 1.17031
\(539\) 2.56392e12 + 1.30772e12i 1.30844 + 0.667367i
\(540\) 0 0
\(541\) 5.81162e10 1.00660e11i 0.0291682 0.0505208i −0.851073 0.525048i \(-0.824047\pi\)
0.880241 + 0.474527i \(0.157381\pi\)
\(542\) −2.98132e11 5.16380e11i −0.148392 0.257023i
\(543\) 0 0
\(544\) −2.68284e11 + 4.64682e11i −0.131341 + 0.227489i
\(545\) 1.24257e12 0.603303
\(546\) 0 0
\(547\) 1.58473e12 0.756854 0.378427 0.925631i \(-0.376465\pi\)
0.378427 + 0.925631i \(0.376465\pi\)
\(548\) −9.87311e11 + 1.71007e12i −0.467672 + 0.810032i
\(549\) 0 0
\(550\) 5.71512e11 + 9.89888e11i 0.266314 + 0.461269i
\(551\) −4.10158e11 + 7.10414e11i −0.189570 + 0.328344i
\(552\) 0 0
\(553\) −2.37484e11 5.70667e10i −0.107987 0.0259490i
\(554\) −2.51831e12 −1.13584
\(555\) 0 0
\(556\) 6.92002e11 + 1.19858e12i 0.307093 + 0.531901i
\(557\) 7.55286e11 + 1.30819e12i 0.332478 + 0.575869i 0.982997 0.183621i \(-0.0587820\pi\)
−0.650519 + 0.759490i \(0.725449\pi\)
\(558\) 0 0
\(559\) −5.70682e12 −2.47196
\(560\) 4.92706e11 5.18989e11i 0.211710 0.223004i
\(561\) 0 0
\(562\) −7.73510e11 + 1.33976e12i −0.327079 + 0.566517i
\(563\) −3.03012e11 5.24832e11i −0.127108 0.220157i 0.795447 0.606023i \(-0.207236\pi\)
−0.922555 + 0.385866i \(0.873903\pi\)
\(564\) 0 0
\(565\) −2.52790e12 + 4.37846e12i −1.04362 + 1.80760i
\(566\) 3.18602e12 1.30489
\(567\) 0 0
\(568\) 8.55372e10 0.0344816
\(569\) −1.60132e11 + 2.77356e11i −0.0640431 + 0.110926i −0.896269 0.443511i \(-0.853733\pi\)
0.832226 + 0.554436i \(0.187066\pi\)
\(570\) 0 0
\(571\) 1.52614e12 + 2.64335e12i 0.600802 + 1.04062i 0.992700 + 0.120611i \(0.0384853\pi\)
−0.391898 + 0.920009i \(0.628181\pi\)
\(572\) −1.42918e12 + 2.47541e12i −0.558219 + 0.966863i
\(573\) 0 0
\(574\) −7.59979e11 1.82621e11i −0.292212 0.0702178i
\(575\) 1.08331e11 0.0413285
\(576\) 0 0
\(577\) −1.41483e12 2.45055e12i −0.531389 0.920392i −0.999329 0.0366320i \(-0.988337\pi\)
0.467940 0.883760i \(-0.344996\pi\)
\(578\) 1.14609e12 + 1.98508e12i 0.427112 + 0.739780i
\(579\) 0 0
\(580\) −1.85599e12 −0.681003
\(581\) −1.00117e12 3.38246e12i −0.364514 1.23151i
\(582\) 0 0
\(583\) 1.61217e12 2.79236e12i 0.577967 1.00107i
\(584\) 1.81204e10 + 3.13854e10i 0.00644628 + 0.0111653i
\(585\) 0 0
\(586\) −5.82692e11 + 1.00925e12i −0.204127 + 0.353558i
\(587\) 2.10206e12 0.730756 0.365378 0.930859i \(-0.380940\pi\)
0.365378 + 0.930859i \(0.380940\pi\)
\(588\) 0 0
\(589\) −6.16027e11 −0.210902
\(590\) 1.34510e12 2.32978e12i 0.457004 0.791554i
\(591\) 0 0
\(592\) −4.72309e11 8.18063e11i −0.158044 0.273741i
\(593\) −2.96534e12 + 5.13612e12i −0.984756 + 1.70565i −0.341742 + 0.939794i \(0.611017\pi\)
−0.643014 + 0.765854i \(0.722316\pi\)
\(594\) 0 0
\(595\) −1.58586e12 5.35784e12i −0.518726 1.75252i
\(596\) −7.95141e9 −0.00258129
\(597\) 0 0
\(598\) 1.35452e11 + 2.34610e11i 0.0433142 + 0.0750224i
\(599\) −1.57607e12 2.72984e12i −0.500213 0.866395i −1.00000 0.000246421i \(-0.999922\pi\)
0.499787 0.866149i \(-0.333412\pi\)
\(600\) 0 0
\(601\) 6.20966e12 1.94148 0.970740 0.240132i \(-0.0771909\pi\)
0.970740 + 0.240132i \(0.0771909\pi\)
\(602\) −3.60264e12 8.65706e11i −1.11799 0.268650i
\(603\) 0 0
\(604\) −1.04538e12 + 1.81064e12i −0.319600 + 0.553563i
\(605\) −2.34556e12 4.06264e12i −0.711784 1.23285i
\(606\) 0 0
\(607\) −2.27519e12 + 3.94075e12i −0.680251 + 1.17823i 0.294653 + 0.955604i \(0.404796\pi\)
−0.974904 + 0.222625i \(0.928537\pi\)
\(608\) 2.03942e11 0.0605257
\(609\) 0 0
\(610\) −3.15378e12 −0.922247
\(611\) 1.42754e12 2.47258e12i 0.414385 0.717735i
\(612\) 0 0
\(613\) 3.48631e11 + 6.03847e11i 0.0997227 + 0.172725i 0.911570 0.411145i \(-0.134871\pi\)
−0.811847 + 0.583870i \(0.801538\pi\)
\(614\) −9.42593e11 + 1.63262e12i −0.267650 + 0.463583i
\(615\) 0 0
\(616\) −1.27773e12 + 1.34589e12i −0.357542 + 0.376615i
\(617\) −3.02922e12 −0.841488 −0.420744 0.907179i \(-0.638231\pi\)
−0.420744 + 0.907179i \(0.638231\pi\)
\(618\) 0 0
\(619\) −1.58193e12 2.73998e12i −0.433090 0.750135i 0.564047 0.825743i \(-0.309244\pi\)
−0.997138 + 0.0756079i \(0.975910\pi\)
\(620\) −6.96889e11 1.20705e12i −0.189409 0.328066i
\(621\) 0 0
\(622\) 2.90222e12 0.777452
\(623\) −1.01864e12 2.44777e11i −0.270910 0.0650991i
\(624\) 0 0
\(625\) 2.38387e12 4.12899e12i 0.624918 1.08239i
\(626\) 2.27548e12 + 3.94125e12i 0.592228 + 1.02577i
\(627\) 0 0
\(628\) −1.97647e10 + 3.42334e10i −0.00507074 + 0.00878277i
\(629\) −7.37567e12 −1.87877
\(630\) 0 0
\(631\) 6.97874e12 1.75245 0.876223 0.481906i \(-0.160055\pi\)
0.876223 + 0.481906i \(0.160055\pi\)
\(632\) 7.87431e10 1.36387e11i 0.0196329 0.0340053i
\(633\) 0 0
\(634\) 8.13989e11 + 1.40987e12i 0.200086 + 0.346559i
\(635\) 5.56730e11 9.64285e11i 0.135882 0.235355i
\(636\) 0 0
\(637\) −5.29950e12 + 3.43842e12i −1.27529 + 0.827430i
\(638\) 4.81312e12 1.15010
\(639\) 0 0
\(640\) 2.30712e11 + 3.99605e11i 0.0543576 + 0.0941501i
\(641\) −1.49724e12 2.59330e12i −0.350293 0.606725i 0.636008 0.771682i \(-0.280585\pi\)
−0.986301 + 0.164958i \(0.947251\pi\)
\(642\) 0 0
\(643\) 1.46030e12 0.336894 0.168447 0.985711i \(-0.446125\pi\)
0.168447 + 0.985711i \(0.446125\pi\)
\(644\) 4.99195e10 + 1.68654e11i 0.0114363 + 0.0386375i
\(645\) 0 0
\(646\) 7.96199e11 1.37906e12i 0.179877 0.311556i
\(647\) 2.07950e12 + 3.60181e12i 0.466542 + 0.808074i 0.999270 0.0382124i \(-0.0121663\pi\)
−0.532728 + 0.846287i \(0.678833\pi\)
\(648\) 0 0
\(649\) −3.48824e12 + 6.04181e12i −0.771801 + 1.33680i
\(650\) −2.50881e12 −0.551261
\(651\) 0 0
\(652\) 2.93036e12 0.635048
\(653\) 7.92472e11 1.37260e12i 0.170559 0.295417i −0.768056 0.640382i \(-0.778776\pi\)
0.938615 + 0.344965i \(0.112109\pi\)
\(654\) 0 0
\(655\) −2.53331e12 4.38783e12i −0.537778 0.931459i
\(656\) 2.51988e11 4.36456e11i 0.0531267 0.0920182i
\(657\) 0 0
\(658\) 1.27627e12 1.34435e12i 0.265416 0.279574i
\(659\) 3.00036e12 0.619711 0.309855 0.950784i \(-0.399719\pi\)
0.309855 + 0.950784i \(0.399719\pi\)
\(660\) 0 0
\(661\) −3.44920e12 5.97419e12i −0.702768 1.21723i −0.967491 0.252905i \(-0.918614\pi\)
0.264723 0.964325i \(-0.414719\pi\)
\(662\) 2.43173e12 + 4.21187e12i 0.492100 + 0.852343i
\(663\) 0 0
\(664\) 2.27451e12 0.454079
\(665\) −1.46223e12 + 1.54023e12i −0.289946 + 0.305413i
\(666\) 0 0
\(667\) 2.28085e11 3.95054e11i 0.0446200 0.0772841i
\(668\) −2.18952e12 3.79235e12i −0.425455 0.736910i
\(669\) 0 0
\(670\) 2.77253e12 4.80216e12i 0.531544 0.920661i
\(671\) 8.17869e12 1.55752
\(672\) 0 0
\(673\) −4.53756e12 −0.852618 −0.426309 0.904578i \(-0.640186\pi\)
−0.426309 + 0.904578i \(0.640186\pi\)
\(674\) −1.37978e11 + 2.38985e11i −0.0257538 + 0.0446069i
\(675\) 0 0
\(676\) −1.77951e12 3.08220e12i −0.327748 0.567676i
\(677\) 5.21397e12 9.03085e12i 0.953936 1.65227i 0.217151 0.976138i \(-0.430324\pi\)
0.736785 0.676127i \(-0.236343\pi\)
\(678\) 0 0
\(679\) 2.83106e11 + 9.56477e11i 0.0511135 + 0.172687i
\(680\) 3.60284e12 0.646182
\(681\) 0 0
\(682\) 1.80724e12 + 3.13023e12i 0.319879 + 0.554047i
\(683\) 2.01247e12 + 3.48569e12i 0.353863 + 0.612909i 0.986923 0.161194i \(-0.0515346\pi\)
−0.633060 + 0.774103i \(0.718201\pi\)
\(684\) 0 0
\(685\) 1.32588e13 2.30089
\(686\) −3.86710e12 + 1.36671e12i −0.666695 + 0.235623i
\(687\) 0 0
\(688\) 1.19454e12 2.06900e12i 0.203260 0.352057i
\(689\) 3.53853e12 + 6.12892e12i 0.598187 + 1.03609i
\(690\) 0 0
\(691\) −2.02863e12 + 3.51369e12i −0.338494 + 0.586289i −0.984150 0.177339i \(-0.943251\pi\)
0.645655 + 0.763629i \(0.276584\pi\)
\(692\) 4.65756e11 0.0772113
\(693\) 0 0
\(694\) 5.06934e12 0.829534
\(695\) 4.64651e12 8.04800e12i 0.755432 1.30845i
\(696\) 0 0
\(697\) −1.96755e12 3.40789e12i −0.315775 0.546938i
\(698\) 7.67856e11 1.32997e12i 0.122442 0.212076i
\(699\) 0 0
\(700\) −1.58378e12 3.80578e11i −0.249318 0.0599105i
\(701\) −2.14575e11 −0.0335621 −0.0167810 0.999859i \(-0.505342\pi\)
−0.0167810 + 0.999859i \(0.505342\pi\)
\(702\) 0 0
\(703\) 1.40169e12 + 2.42780e12i 0.216448 + 0.374899i
\(704\) −5.98304e11 1.03629e12i −0.0918005 0.159003i
\(705\) 0 0
\(706\) −4.19504e12 −0.635499
\(707\) −7.11922e11 + 7.49898e11i −0.107163 + 0.112879i
\(708\) 0 0
\(709\) 4.27735e12 7.40859e12i 0.635721 1.10110i −0.350640 0.936510i \(-0.614036\pi\)
0.986362 0.164592i \(-0.0526306\pi\)
\(710\) −2.87174e11 4.97400e11i −0.0424114 0.0734587i
\(711\) 0 0
\(712\) 3.37754e11 5.85007e11i 0.0492539 0.0853102i
\(713\) 3.42566e11 0.0496412
\(714\) 0 0
\(715\) 1.91927e13 2.74637
\(716\) −3.02481e11 + 5.23913e11i −0.0430121 + 0.0744991i
\(717\) 0 0
\(718\) 8.68263e11 + 1.50388e12i 0.121925 + 0.211180i
\(719\) −3.24741e12 + 5.62468e12i −0.453166 + 0.784906i −0.998581 0.0532602i \(-0.983039\pi\)
0.545415 + 0.838166i \(0.316372\pi\)
\(720\) 0 0
\(721\) −8.36349e12 2.00973e12i −1.15260 0.276967i
\(722\) 4.55776e12 0.624214
\(723\) 0 0
\(724\) −2.11909e12 3.67037e12i −0.286633 0.496462i
\(725\) 2.11226e12 + 3.65855e12i 0.283940 + 0.491799i
\(726\) 0 0
\(727\) 5.36028e12 0.711677 0.355838 0.934548i \(-0.384195\pi\)
0.355838 + 0.934548i \(0.384195\pi\)
\(728\) −1.15607e12 3.90579e12i −0.152543 0.515368i
\(729\) 0 0
\(730\) 1.21671e11 2.10740e11i 0.0158575 0.0274660i
\(731\) −9.32707e12 1.61550e13i −1.20814 2.09256i
\(732\) 0 0
\(733\) −1.73332e12 + 3.00220e12i −0.221774 + 0.384124i −0.955347 0.295487i \(-0.904518\pi\)
0.733573 + 0.679611i \(0.237851\pi\)
\(734\) −3.40057e12 −0.432434
\(735\) 0 0
\(736\) −1.13410e11 −0.0142463
\(737\) −7.18999e12 + 1.24534e13i −0.897686 + 1.55484i
\(738\) 0 0
\(739\) 2.12046e12 + 3.67275e12i 0.261536 + 0.452993i 0.966650 0.256100i \(-0.0824378\pi\)
−0.705115 + 0.709093i \(0.749104\pi\)
\(740\) −3.17136e12 + 5.49297e12i −0.388780 + 0.673386i
\(741\) 0 0
\(742\) 1.30409e12 + 4.40589e12i 0.157940 + 0.533600i
\(743\) 7.87489e12 0.947970 0.473985 0.880533i \(-0.342815\pi\)
0.473985 + 0.880533i \(0.342815\pi\)
\(744\) 0 0
\(745\) 2.66953e10 + 4.62376e10i 0.00317491 + 0.00549910i
\(746\) −2.54264e12 4.40399e12i −0.300581 0.520621i
\(747\) 0 0
\(748\) −9.34324e12 −1.09129
\(749\) 5.42680e10 + 1.30405e10i 0.00630051 + 0.00151400i
\(750\) 0 0
\(751\) 5.52671e12 9.57254e12i 0.633997 1.09811i −0.352730 0.935725i \(-0.614747\pi\)
0.986727 0.162389i \(-0.0519200\pi\)
\(752\) 5.97619e11 + 1.03511e12i 0.0681466 + 0.118033i
\(753\) 0 0
\(754\) −5.28213e12 + 9.14892e12i −0.595166 + 1.03086i
\(755\) 1.40386e13 1.57239
\(756\) 0 0
\(757\) −3.02707e12 −0.335035 −0.167518 0.985869i \(-0.553575\pi\)
−0.167518 + 0.985869i \(0.553575\pi\)
\(758\) 4.87452e12 8.44291e12i 0.536315 0.928926i
\(759\) 0 0
\(760\) −6.84694e11 1.18592e12i −0.0744449 0.128942i
\(761\) −6.58247e12 + 1.14012e13i −0.711472 + 1.23231i 0.252832 + 0.967510i \(0.418638\pi\)
−0.964304 + 0.264796i \(0.914695\pi\)
\(762\) 0 0
\(763\) 3.16160e12 3.33025e12i 0.337712 0.355727i
\(764\) 8.61515e11 0.0914835
\(765\) 0 0
\(766\) −2.72051e12 4.71205e12i −0.285509 0.494516i
\(767\) −7.65629e12 1.32611e13i −0.798802 1.38357i
\(768\) 0 0
\(769\) −5.52244e12 −0.569460 −0.284730 0.958608i \(-0.591904\pi\)
−0.284730 + 0.958608i \(0.591904\pi\)
\(770\) 1.21161e13 + 2.91147e12i 1.24210 + 0.298473i
\(771\) 0 0
\(772\) 6.04652e11 1.04729e12i 0.0612672 0.106118i
\(773\) −9.92941e11 1.71982e12i −0.100027 0.173251i 0.811669 0.584118i \(-0.198559\pi\)
−0.911695 + 0.410867i \(0.865226\pi\)
\(774\) 0 0
\(775\) −1.58623e12 + 2.74744e12i −0.157946 + 0.273571i
\(776\) −6.43176e11 −0.0636725
\(777\) 0 0
\(778\) 1.20781e13 1.18193
\(779\) −7.47836e11 + 1.29529e12i −0.0727592 + 0.126023i
\(780\) 0 0
\(781\) 7.44728e11 + 1.28991e12i 0.0716255 + 0.124059i
\(782\) −4.42758e11 + 7.66879e11i −0.0423385 + 0.0733325i
\(783\) 0 0
\(784\) −1.37315e11 2.64105e12i −0.0129806 0.249663i
\(785\) 2.65424e11 0.0249474
\(786\) 0 0
\(787\) −7.05480e12 1.22193e13i −0.655538 1.13543i −0.981759 0.190132i \(-0.939108\pi\)
0.326220 0.945294i \(-0.394225\pi\)
\(788\) −2.13736e12 3.70202e12i −0.197474 0.342036i
\(789\) 0 0
\(790\) −1.05746e12 −0.0965919
\(791\) 5.30286e12 + 1.79158e13i 0.481632 + 1.62720i
\(792\) 0 0
\(793\) −8.97565e12 + 1.55463e13i −0.806003 + 1.39604i
\(794\) −2.15511e12 3.73276e12i −0.192432 0.333302i
\(795\) 0 0
\(796\) −3.35138e12 + 5.80476e12i −0.295880 + 0.512478i
\(797\) 9.54651e12 0.838074 0.419037 0.907969i \(-0.362368\pi\)
0.419037 + 0.907969i \(0.362368\pi\)
\(798\) 0 0
\(799\) 9.33254e12 0.810101
\(800\) 5.25138e11 9.09565e11i 0.0453282 0.0785107i
\(801\) 0 0
\(802\) 2.84933e12 + 4.93518e12i 0.243197 + 0.421229i
\(803\) −3.15529e11 + 5.46512e11i −0.0267805 + 0.0463852i
\(804\) 0 0
\(805\) 8.13129e11 8.56504e11i 0.0682461 0.0718866i
\(806\) −7.93337e12 −0.662141
\(807\) 0 0
\(808\) −3.33360e11 5.77397e11i −0.0275146 0.0476566i
\(809\) 9.23775e12 + 1.60003e13i 0.758225 + 1.31328i 0.943755 + 0.330645i \(0.107266\pi\)
−0.185531 + 0.982639i \(0.559400\pi\)
\(810\) 0 0
\(811\) −1.08163e13 −0.877981 −0.438991 0.898492i \(-0.644664\pi\)
−0.438991 + 0.898492i \(0.644664\pi\)
\(812\) −4.72240e12 + 4.97431e12i −0.381207 + 0.401542i
\(813\) 0 0
\(814\) 8.22429e12 1.42449e13i 0.656582 1.13723i
\(815\) −9.83809e12 1.70401e13i −0.781091 1.35289i
\(816\) 0 0
\(817\) −3.54508e12 + 6.14026e12i −0.278373 + 0.482156i
\(818\) 1.39904e12 0.109255
\(819\) 0 0
\(820\) −3.38400e12 −0.261377
\(821\) −4.49231e12 + 7.78092e12i −0.345085 + 0.597704i −0.985369 0.170434i \(-0.945483\pi\)
0.640284 + 0.768138i \(0.278817\pi\)
\(822\) 0 0
\(823\) 1.04734e13 + 1.81404e13i 0.795770 + 1.37831i 0.922349 + 0.386357i \(0.126267\pi\)
−0.126579 + 0.991957i \(0.540400\pi\)
\(824\) 2.77310e12 4.80316e12i 0.209553 0.362956i
\(825\) 0 0
\(826\) −2.82165e12 9.53299e12i −0.210908 0.712556i
\(827\) 7.58139e12 0.563604 0.281802 0.959473i \(-0.409068\pi\)
0.281802 + 0.959473i \(0.409068\pi\)
\(828\) 0 0
\(829\) 6.64524e12 + 1.15099e13i 0.488670 + 0.846401i 0.999915 0.0130340i \(-0.00414896\pi\)
−0.511245 + 0.859435i \(0.670816\pi\)
\(830\) −7.63620e12 1.32263e13i −0.558504 0.967357i
\(831\) 0 0
\(832\) 2.62642e12 0.190024
\(833\) −1.83949e13 9.38225e12i −1.32371 0.675156i
\(834\) 0 0
\(835\) −1.47017e13 + 2.54641e13i −1.04660 + 1.81276i
\(836\) 1.77561e12 + 3.07545e12i 0.125725 + 0.217761i
\(837\) 0 0
\(838\) −3.56838e10 + 6.18062e10i −0.00249962 + 0.00432946i
\(839\) −6.44356e12 −0.448949 −0.224474 0.974480i \(-0.572067\pi\)
−0.224474 + 0.974480i \(0.572067\pi\)
\(840\) 0 0
\(841\) 3.28177e12 0.226218
\(842\) −7.47748e11 + 1.29514e12i −0.0512685 + 0.0887996i
\(843\) 0 0
\(844\) 4.99752e12 + 8.65596e12i 0.339011 + 0.587184i
\(845\) −1.19487e13 + 2.06957e13i −0.806242 + 1.39645i
\(846\) 0 0
\(847\) −1.68565e13 4.05059e12i −1.12536 0.270422i
\(848\) −2.96271e12 −0.196747
\(849\) 0 0
\(850\) −4.10033e12 7.10197e12i −0.269422 0.466653i
\(851\) −7.79466e11 1.35008e12i −0.0509465 0.0882419i
\(852\) 0 0
\(853\) −1.11447e13 −0.720769 −0.360384 0.932804i \(-0.617354\pi\)
−0.360384 + 0.932804i \(0.617354\pi\)
\(854\) −8.02453e12 + 8.45259e12i −0.516249 + 0.543787i
\(855\) 0 0
\(856\) −1.79938e10 + 3.11662e10i −0.00114549 + 0.00198405i
\(857\) 2.95516e12 + 5.11849e12i 0.187140 + 0.324137i 0.944296 0.329098i \(-0.106745\pi\)
−0.757155 + 0.653235i \(0.773411\pi\)
\(858\) 0 0
\(859\) 8.90380e12 1.54218e13i 0.557964 0.966422i −0.439702 0.898144i \(-0.644916\pi\)
0.997666 0.0682787i \(-0.0217507\pi\)
\(860\) −1.60417e13 −1.00002
\(861\) 0 0
\(862\) −7.98598e12 −0.492658
\(863\) 7.15238e12 1.23883e13i 0.438937 0.760261i −0.558671 0.829389i \(-0.688689\pi\)
0.997608 + 0.0691286i \(0.0220219\pi\)
\(864\) 0 0
\(865\) −1.56368e12 2.70838e12i −0.0949677 0.164489i
\(866\) 8.33346e12 1.44340e13i 0.503494 0.872078i
\(867\) 0 0
\(868\) −5.00823e12 1.20347e12i −0.299465 0.0719607i
\(869\) 2.74230e12 0.163127
\(870\) 0 0
\(871\) −1.57812e13 2.73338e13i −0.929091 1.60923i
\(872\) 1.48043e12 + 2.56419e12i 0.0867092 + 0.150185i
\(873\) 0 0
\(874\) 3.36572e11 0.0195108
\(875\) −2.94883e12 9.96267e12i −0.170065 0.574565i
\(876\) 0 0
\(877\) −3.01728e12 + 5.22608e12i −0.172233 + 0.298317i −0.939200 0.343370i \(-0.888432\pi\)
0.766967 + 0.641687i \(0.221765\pi\)
\(878\) −1.60223e12 2.77515e12i −0.0909914 0.157602i
\(879\) 0 0
\(880\) −4.01737e12 + 6.95830e12i −0.225824 + 0.391139i
\(881\) −1.54875e12 −0.0866142 −0.0433071 0.999062i \(-0.513789\pi\)
−0.0433071 + 0.999062i \(0.513789\pi\)
\(882\) 0 0
\(883\) −2.01052e13 −1.11297 −0.556487 0.830857i \(-0.687851\pi\)
−0.556487 + 0.830857i \(0.687851\pi\)
\(884\) 1.02537e13 1.77599e13i 0.564734 0.978149i
\(885\) 0 0
\(886\) −1.80882e12 3.13296e12i −0.0986150 0.170806i
\(887\) −1.07813e13 + 1.86737e13i −0.584809 + 1.01292i 0.410091 + 0.912045i \(0.365497\pi\)
−0.994899 + 0.100873i \(0.967836\pi\)
\(888\) 0 0
\(889\) −1.16787e12 3.94566e12i −0.0627099 0.211866i
\(890\) −4.53576e12 −0.242323
\(891\) 0 0
\(892\) −5.80109e12 1.00478e13i −0.306809 0.531408i
\(893\) −1.77358e12 3.07193e12i −0.0933296 0.161652i
\(894\) 0 0
\(895\) 4.06208e12 0.211614
\(896\) 1.65802e12 + 3.98419e11i 0.0859419 + 0.0206516i
\(897\) 0 0
\(898\) 9.60713e12 1.66400e13i 0.493004 0.853908i
\(899\) 6.67941e12 + 1.15691e13i 0.341051 + 0.590718i
\(900\) 0 0
\(901\) −1.15666e13 + 2.00339e13i −0.584713 + 1.01275i
\(902\) 8.77571e12 0.441421
\(903\) 0 0
\(904\) −1.20473e13 −0.599974
\(905\) −1.42288e13 + 2.46451e13i −0.705100 + 1.22127i
\(906\) 0 0
\(907\) 1.10527e12 + 1.91438e12i 0.0542295 + 0.0939283i 0.891866 0.452300i \(-0.149396\pi\)
−0.837636 + 0.546228i \(0.816063\pi\)
\(908\) 9.61079e11 1.66464e12i 0.0469216 0.0812706i
\(909\) 0 0
\(910\) −1.88310e13 + 1.98355e13i −0.910303 + 0.958862i
\(911\) −7.06459e11 −0.0339824 −0.0169912 0.999856i \(-0.505409\pi\)
−0.0169912 + 0.999856i \(0.505409\pi\)
\(912\) 0 0
\(913\) 1.98029e13 + 3.42997e13i 0.943216 + 1.63370i
\(914\) 2.63782e12 + 4.56884e12i 0.125022 + 0.216545i
\(915\) 0 0
\(916\) 1.07129e13 0.502781
\(917\) −1.82058e13 4.37481e12i −0.850253 0.204314i
\(918\) 0 0
\(919\) −8.29830e12 + 1.43731e13i −0.383768 + 0.664706i −0.991597 0.129362i \(-0.958707\pi\)
0.607829 + 0.794068i \(0.292041\pi\)
\(920\) 3.80751e11 + 6.59480e11i 0.0175225 + 0.0303499i
\(921\) 0 0
\(922\) −1.11142e13 + 1.92504e13i −0.506513 + 0.877305i
\(923\) −3.26919e12 −0.148263
\(924\) 0 0
\(925\) 1.44371e13 0.648398
\(926\) −5.50499e8 + 9.53492e8i −2.46041e−5 + 4.26155e-5i
\(927\) 0 0
\(928\) −2.21128e12 3.83006e12i −0.0978766 0.169527i
\(929\) 8.93907e12 1.54829e13i 0.393751 0.681996i −0.599190 0.800607i \(-0.704511\pi\)
0.992941 + 0.118610i \(0.0378440\pi\)
\(930\) 0 0
\(931\) 4.07516e11 + 7.83795e12i 0.0177775 + 0.341923i
\(932\) −7.80599e12 −0.338888
\(933\) 0 0
\(934\) 8.63121e12 + 1.49497e13i 0.371117 + 0.642794i
\(935\) 3.13680e13 + 5.43311e13i 1.34226 + 2.32485i
\(936\) 0 0
\(937\) 4.36868e13 1.85149 0.925747 0.378143i \(-0.123437\pi\)
0.925747 + 0.378143i \(0.123437\pi\)
\(938\) −5.81601e12 1.96495e13i −0.245308 0.828777i
\(939\) 0 0
\(940\) 4.01277e12 6.95033e12i 0.167637 0.290356i
\(941\) 3.20352e12 + 5.54866e12i 0.133191 + 0.230693i 0.924905 0.380199i \(-0.124144\pi\)
−0.791714 + 0.610892i \(0.790811\pi\)
\(942\) 0 0
\(943\) 4.15864e11 7.20298e11i 0.0171257 0.0296626i
\(944\) 6.41039e12 0.262730
\(945\) 0 0
\(946\) 4.16009e13 1.68885
\(947\) −5.20865e12 + 9.02164e12i −0.210451 + 0.364511i −0.951856 0.306547i \(-0.900826\pi\)
0.741405 + 0.671058i \(0.234160\pi\)
\(948\) 0 0
\(949\) −6.92550e11 1.19953e12i −0.0277175 0.0480080i
\(950\) −1.55847e12 + 2.69936e12i −0.0620788 + 0.107524i
\(951\) 0 0
\(952\) 9.16713e12 9.65613e12i 0.361715 0.381010i
\(953\) −6.40900e12 −0.251694 −0.125847 0.992050i \(-0.540165\pi\)
−0.125847 + 0.992050i \(0.540165\pi\)
\(954\) 0 0
\(955\) −2.89236e12 5.00972e12i −0.112522 0.194894i
\(956\) 5.49491e12 + 9.51746e12i 0.212765 + 0.368520i
\(957\) 0 0
\(958\) −9.98096e12 −0.382849
\(959\) 3.37359e13 3.55355e13i 1.28798 1.35668i
\(960\) 0 0
\(961\) 8.20382e12 1.42094e13i 0.310285 0.537429i
\(962\) 1.80514e13 + 3.12659e13i 0.679552 + 1.17702i
\(963\) 0 0
\(964\) 1.07657e12 1.86467e12i 0.0401507 0.0695431i
\(965\) −8.12000e12 −0.301428
\(966\) 0 0
\(967\) 1.24456e12 0.0457718 0.0228859 0.999738i \(-0.492715\pi\)
0.0228859 + 0.999738i \(0.492715\pi\)
\(968\) 5.58917e12 9.68072e12i 0.204601 0.354380i
\(969\) 0 0
\(970\) 2.15933e12 + 3.74008e12i 0.0783154 + 0.135646i
\(971\) 1.88913e13 3.27208e13i 0.681988 1.18124i −0.292386 0.956300i \(-0.594449\pi\)
0.974373 0.224937i \(-0.0722175\pi\)
\(972\) 0 0
\(973\) −9.74713e12 3.29308e13i −0.348633 1.17786i
\(974\) 2.39508e13 0.852717
\(975\) 0 0
\(976\) −3.75752e12 6.50822e12i −0.132549 0.229582i
\(977\) −6.39041e12 1.10685e13i −0.224390 0.388655i 0.731746 0.681577i \(-0.238706\pi\)
−0.956136 + 0.292922i \(0.905372\pi\)
\(978\) 0 0
\(979\) 1.17626e13 0.409242
\(980\) −1.48967e13 + 9.66527e12i −0.515909 + 0.334732i
\(981\) 0 0
\(982\) −5.52840e12 + 9.57547e12i −0.189713 + 0.328593i
\(983\) −1.14746e13 1.98746e13i −0.391964 0.678902i 0.600744 0.799441i \(-0.294871\pi\)
−0.992709 + 0.120539i \(0.961538\pi\)
\(984\) 0 0
\(985\) −1.43515e13 + 2.48576e13i −0.485776 + 0.841388i
\(986\) −3.45319e13 −1.16352
\(987\) 0 0
\(988\) −7.79454e12 −0.260246
\(989\) 1.97138e12 3.41454e12i 0.0655221 0.113488i
\(990\) 0 0
\(991\) −1.37595e13 2.38322e13i −0.453182 0.784934i 0.545400 0.838176i \(-0.316378\pi\)
−0.998582 + 0.0532423i \(0.983044\pi\)
\(992\) 1.66059e12 2.87623e12i 0.0544454 0.0943022i
\(993\) 0 0
\(994\) −2.06379e12 4.95925e11i −0.0670544 0.0161130i
\(995\) 4.50063e13 1.45569
\(996\) 0 0
\(997\) −1.41861e13 2.45711e13i −0.454712 0.787583i 0.543960 0.839111i \(-0.316924\pi\)
−0.998672 + 0.0515277i \(0.983591\pi\)
\(998\) 1.09993e13 + 1.90514e13i 0.350978 + 0.607911i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.10.g.f.37.1 6
3.2 odd 2 14.10.c.a.9.2 6
7.4 even 3 inner 126.10.g.f.109.1 6
12.11 even 2 112.10.i.b.65.2 6
21.2 odd 6 98.10.a.j.1.2 3
21.5 even 6 98.10.a.i.1.2 3
21.11 odd 6 14.10.c.a.11.2 yes 6
21.17 even 6 98.10.c.k.67.2 6
21.20 even 2 98.10.c.k.79.2 6
84.11 even 6 112.10.i.b.81.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.2 6 3.2 odd 2
14.10.c.a.11.2 yes 6 21.11 odd 6
98.10.a.i.1.2 3 21.5 even 6
98.10.a.j.1.2 3 21.2 odd 6
98.10.c.k.67.2 6 21.17 even 6
98.10.c.k.79.2 6 21.20 even 2
112.10.i.b.65.2 6 12.11 even 2
112.10.i.b.81.2 6 84.11 even 6
126.10.g.f.37.1 6 1.1 even 1 trivial
126.10.g.f.109.1 6 7.4 even 3 inner