Properties

Label 112.10.i.b.65.2
Level $112$
Weight $10$
Character 112.65
Analytic conductor $57.684$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,233] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1116x^{4} - 3085x^{3} + 1245325x^{2} - 2341500x + 4410000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.2
Root \(0.943118 - 1.63353i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.10.i.b.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-6.98734 - 12.1024i) q^{3} +(859.469 - 1488.64i) q^{5} +(-1802.93 - 6091.23i) q^{7} +(9743.85 - 16876.9i) q^{9} +(-35661.7 - 61767.9i) q^{11} +156547. q^{13} -24021.6 q^{15} +(-255856. - 443155. i) q^{17} +(-97247.0 + 168437. i) q^{19} +(-61120.9 + 64381.3i) q^{21} +(-54078.1 + 93666.0i) q^{23} +(-500810. - 867429. i) q^{25} -547398. q^{27} +4.21769e6 q^{29} +(1.58367e6 + 2.74299e6i) q^{31} +(-498361. + 863187. i) q^{33} +(-1.06172e7 - 2.55130e6i) q^{35} +(-7.20686e6 + 1.24827e7i) q^{37} +(-1.09385e6 - 1.89460e6i) q^{39} +7.69007e6 q^{41} +3.64544e7 q^{43} +(-1.67491e7 - 2.90102e7i) q^{45} +(9.11895e6 - 1.57945e7i) q^{47} +(-3.38525e7 + 2.19641e7i) q^{49} +(-3.57550e6 + 6.19295e6i) q^{51} +(-2.26037e7 - 3.91507e7i) q^{53} -1.22601e8 q^{55} +2.71799e6 q^{57} +(-4.89074e7 - 8.47100e7i) q^{59} +(-5.73352e7 + 9.93075e7i) q^{61} +(-1.20368e8 - 2.89242e7i) q^{63} +(1.34547e8 - 2.33042e8i) q^{65} +(1.00808e8 + 1.74605e8i) q^{67} +1.51145e6 q^{69} -2.08831e7 q^{71} +(-4.42392e6 - 7.66245e6i) q^{73} +(-6.99866e6 + 1.21220e7i) q^{75} +(-3.11947e8 + 3.28587e8i) q^{77} +(1.92244e7 - 3.32976e7i) q^{79} +(-1.87963e8 - 3.25562e8i) q^{81} -5.55300e8 q^{83} -8.79600e8 q^{85} +(-2.94704e7 - 5.10443e7i) q^{87} +(8.24594e7 - 1.42824e8i) q^{89} +(-2.82243e8 - 9.53562e8i) q^{91} +(2.21312e7 - 3.83324e7i) q^{93} +(1.67162e8 + 2.89532e8i) q^{95} +1.57025e8 q^{97} -1.38993e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 233 q^{3} - 733 q^{5} - 5012 q^{7} - 15058 q^{9} - 7339 q^{11} + 197036 q^{13} - 738238 q^{15} - 306665 q^{17} + 377991 q^{19} - 1585927 q^{21} + 2267255 q^{23} - 142612 q^{25} - 21348358 q^{27} - 13085956 q^{29}+ \cdots + 1256218868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.98734 12.1024i −0.0498042 0.0862634i 0.840049 0.542511i \(-0.182526\pi\)
−0.889853 + 0.456248i \(0.849193\pi\)
\(4\) 0 0
\(5\) 859.469 1488.64i 0.614986 1.06519i −0.375401 0.926862i \(-0.622495\pi\)
0.990387 0.138324i \(-0.0441716\pi\)
\(6\) 0 0
\(7\) −1802.93 6091.23i −0.283817 0.958878i
\(8\) 0 0
\(9\) 9743.85 16876.9i 0.495039 0.857433i
\(10\) 0 0
\(11\) −35661.7 61767.9i −0.734404 1.27203i −0.954984 0.296657i \(-0.904128\pi\)
0.220580 0.975369i \(-0.429205\pi\)
\(12\) 0 0
\(13\) 156547. 1.52019 0.760097 0.649809i \(-0.225151\pi\)
0.760097 + 0.649809i \(0.225151\pi\)
\(14\) 0 0
\(15\) −24021.6 −0.122516
\(16\) 0 0
\(17\) −255856. 443155.i −0.742976 1.28687i −0.951134 0.308778i \(-0.900080\pi\)
0.208158 0.978095i \(-0.433253\pi\)
\(18\) 0 0
\(19\) −97247.0 + 168437.i −0.171193 + 0.296514i −0.938837 0.344362i \(-0.888095\pi\)
0.767644 + 0.640876i \(0.221429\pi\)
\(20\) 0 0
\(21\) −61120.9 + 64381.3i −0.0685809 + 0.0722392i
\(22\) 0 0
\(23\) −54078.1 + 93666.0i −0.0402945 + 0.0697922i −0.885469 0.464698i \(-0.846163\pi\)
0.845175 + 0.534490i \(0.179496\pi\)
\(24\) 0 0
\(25\) −500810. 867429.i −0.256415 0.444124i
\(26\) 0 0
\(27\) −547398. −0.198229
\(28\) 0 0
\(29\) 4.21769e6 1.10735 0.553674 0.832734i \(-0.313226\pi\)
0.553674 + 0.832734i \(0.313226\pi\)
\(30\) 0 0
\(31\) 1.58367e6 + 2.74299e6i 0.307990 + 0.533454i 0.977922 0.208968i \(-0.0670105\pi\)
−0.669933 + 0.742422i \(0.733677\pi\)
\(32\) 0 0
\(33\) −498361. + 863187.i −0.0731529 + 0.126704i
\(34\) 0 0
\(35\) −1.06172e7 2.55130e6i −1.19593 0.287379i
\(36\) 0 0
\(37\) −7.20686e6 + 1.24827e7i −0.632177 + 1.09496i 0.354929 + 0.934893i \(0.384505\pi\)
−0.987106 + 0.160069i \(0.948828\pi\)
\(38\) 0 0
\(39\) −1.09385e6 1.89460e6i −0.0757121 0.131137i
\(40\) 0 0
\(41\) 7.69007e6 0.425014 0.212507 0.977160i \(-0.431837\pi\)
0.212507 + 0.977160i \(0.431837\pi\)
\(42\) 0 0
\(43\) 3.64544e7 1.62608 0.813040 0.582208i \(-0.197811\pi\)
0.813040 + 0.582208i \(0.197811\pi\)
\(44\) 0 0
\(45\) −1.67491e7 2.90102e7i −0.608884 1.05462i
\(46\) 0 0
\(47\) 9.11895e6 1.57945e7i 0.272587 0.472134i −0.696937 0.717132i \(-0.745454\pi\)
0.969523 + 0.244999i \(0.0787876\pi\)
\(48\) 0 0
\(49\) −3.38525e7 + 2.19641e7i −0.838896 + 0.544292i
\(50\) 0 0
\(51\) −3.57550e6 + 6.19295e6i −0.0740067 + 0.128183i
\(52\) 0 0
\(53\) −2.26037e7 3.91507e7i −0.393494 0.681551i 0.599414 0.800439i \(-0.295400\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(54\) 0 0
\(55\) −1.22601e8 −1.80659
\(56\) 0 0
\(57\) 2.71799e6 0.0341045
\(58\) 0 0
\(59\) −4.89074e7 8.47100e7i −0.525461 0.910124i −0.999560 0.0296532i \(-0.990560\pi\)
0.474100 0.880471i \(-0.342774\pi\)
\(60\) 0 0
\(61\) −5.73352e7 + 9.93075e7i −0.530197 + 0.918328i 0.469182 + 0.883101i \(0.344549\pi\)
−0.999379 + 0.0352269i \(0.988785\pi\)
\(62\) 0 0
\(63\) −1.20368e8 2.89242e7i −0.962674 0.231328i
\(64\) 0 0
\(65\) 1.34547e8 2.33042e8i 0.934898 1.61929i
\(66\) 0 0
\(67\) 1.00808e8 + 1.74605e8i 0.611166 + 1.05857i 0.991044 + 0.133534i \(0.0426325\pi\)
−0.379878 + 0.925036i \(0.624034\pi\)
\(68\) 0 0
\(69\) 1.51145e6 0.00802735
\(70\) 0 0
\(71\) −2.08831e7 −0.0975288 −0.0487644 0.998810i \(-0.515528\pi\)
−0.0487644 + 0.998810i \(0.515528\pi\)
\(72\) 0 0
\(73\) −4.42392e6 7.66245e6i −0.0182328 0.0315802i 0.856765 0.515707i \(-0.172471\pi\)
−0.874998 + 0.484127i \(0.839137\pi\)
\(74\) 0 0
\(75\) −6.99866e6 + 1.21220e7i −0.0255411 + 0.0442385i
\(76\) 0 0
\(77\) −3.11947e8 + 3.28587e8i −1.01128 + 1.06523i
\(78\) 0 0
\(79\) 1.92244e7 3.32976e7i 0.0555304 0.0961814i −0.836924 0.547319i \(-0.815648\pi\)
0.892454 + 0.451138i \(0.148982\pi\)
\(80\) 0 0
\(81\) −1.87963e8 3.25562e8i −0.485166 0.840333i
\(82\) 0 0
\(83\) −5.55300e8 −1.28433 −0.642164 0.766567i \(-0.721963\pi\)
−0.642164 + 0.766567i \(0.721963\pi\)
\(84\) 0 0
\(85\) −8.79600e8 −1.82768
\(86\) 0 0
\(87\) −2.94704e7 5.10443e7i −0.0551506 0.0955236i
\(88\) 0 0
\(89\) 8.24594e7 1.42824e8i 0.139311 0.241294i −0.787925 0.615771i \(-0.788845\pi\)
0.927236 + 0.374478i \(0.122178\pi\)
\(90\) 0 0
\(91\) −2.82243e8 9.53562e8i −0.431457 1.45768i
\(92\) 0 0
\(93\) 2.21312e7 3.83324e7i 0.0306784 0.0531365i
\(94\) 0 0
\(95\) 1.67162e8 + 2.89532e8i 0.210562 + 0.364704i
\(96\) 0 0
\(97\) 1.57025e8 0.180093 0.0900466 0.995938i \(-0.471298\pi\)
0.0900466 + 0.995938i \(0.471298\pi\)
\(98\) 0 0
\(99\) −1.38993e9 −1.45424
\(100\) 0 0
\(101\) −8.13868e7 1.40966e8i −0.0778230 0.134793i 0.824487 0.565880i \(-0.191464\pi\)
−0.902310 + 0.431087i \(0.858130\pi\)
\(102\) 0 0
\(103\) 6.77028e8 1.17265e9i 0.592705 1.02660i −0.401161 0.916008i \(-0.631393\pi\)
0.993866 0.110588i \(-0.0352735\pi\)
\(104\) 0 0
\(105\) 4.33093e7 + 1.46321e8i 0.0347720 + 0.117478i
\(106\) 0 0
\(107\) 4.39302e6 7.60893e6i 0.00323993 0.00561173i −0.864401 0.502803i \(-0.832302\pi\)
0.867641 + 0.497192i \(0.165635\pi\)
\(108\) 0 0
\(109\) −3.61434e8 6.26023e8i −0.245251 0.424787i 0.716951 0.697123i \(-0.245537\pi\)
−0.962202 + 0.272337i \(0.912204\pi\)
\(110\) 0 0
\(111\) 2.01427e8 0.125940
\(112\) 0 0
\(113\) −2.94124e9 −1.69698 −0.848492 0.529209i \(-0.822489\pi\)
−0.848492 + 0.529209i \(0.822489\pi\)
\(114\) 0 0
\(115\) 9.29568e7 + 1.61006e8i 0.0495611 + 0.0858424i
\(116\) 0 0
\(117\) 1.52537e9 2.64202e9i 0.752556 1.30346i
\(118\) 0 0
\(119\) −2.23807e9 + 2.35745e9i −1.02309 + 1.07766i
\(120\) 0 0
\(121\) −1.36454e9 + 2.36346e9i −0.578699 + 1.00234i
\(122\) 0 0
\(123\) −5.37331e7 9.30685e7i −0.0211675 0.0366631i
\(124\) 0 0
\(125\) 1.63558e9 0.599205
\(126\) 0 0
\(127\) 6.47761e8 0.220952 0.110476 0.993879i \(-0.464762\pi\)
0.110476 + 0.993879i \(0.464762\pi\)
\(128\) 0 0
\(129\) −2.54719e8 4.41187e8i −0.0809857 0.140271i
\(130\) 0 0
\(131\) −1.47377e9 + 2.55264e9i −0.437228 + 0.757301i −0.997475 0.0710247i \(-0.977373\pi\)
0.560246 + 0.828326i \(0.310706\pi\)
\(132\) 0 0
\(133\) 1.20132e9 + 2.88674e8i 0.332909 + 0.0799972i
\(134\) 0 0
\(135\) −4.70472e8 + 8.14881e8i −0.121908 + 0.211150i
\(136\) 0 0
\(137\) 3.85668e9 + 6.67997e9i 0.935344 + 1.62006i 0.774019 + 0.633162i \(0.218243\pi\)
0.161325 + 0.986901i \(0.448423\pi\)
\(138\) 0 0
\(139\) 5.40626e9 1.22837 0.614187 0.789161i \(-0.289484\pi\)
0.614187 + 0.789161i \(0.289484\pi\)
\(140\) 0 0
\(141\) −2.54869e8 −0.0543038
\(142\) 0 0
\(143\) −5.58273e9 9.66957e9i −1.11644 1.93373i
\(144\) 0 0
\(145\) 3.62497e9 6.27864e9i 0.681003 1.17953i
\(146\) 0 0
\(147\) 5.02358e8 + 2.56226e8i 0.0887331 + 0.0452580i
\(148\) 0 0
\(149\) −1.55301e7 + 2.68989e7i −0.00258129 + 0.00447092i −0.867313 0.497763i \(-0.834155\pi\)
0.864732 + 0.502234i \(0.167488\pi\)
\(150\) 0 0
\(151\) 4.08350e9 + 7.07283e9i 0.639199 + 1.10713i 0.985609 + 0.169043i \(0.0540675\pi\)
−0.346409 + 0.938083i \(0.612599\pi\)
\(152\) 0 0
\(153\) −9.97208e9 −1.47121
\(154\) 0 0
\(155\) 5.44445e9 0.757637
\(156\) 0 0
\(157\) −7.72057e7 1.33724e8i −0.0101415 0.0175655i 0.860910 0.508757i \(-0.169895\pi\)
−0.871052 + 0.491192i \(0.836562\pi\)
\(158\) 0 0
\(159\) −3.15879e8 + 5.47119e8i −0.0391953 + 0.0678882i
\(160\) 0 0
\(161\) 6.68040e8 + 1.60528e8i 0.0783585 + 0.0188294i
\(162\) 0 0
\(163\) 5.72335e9 9.91314e9i 0.635048 1.09994i −0.351457 0.936204i \(-0.614314\pi\)
0.986505 0.163731i \(-0.0523529\pi\)
\(164\) 0 0
\(165\) 8.56652e8 + 1.48376e9i 0.0899759 + 0.155843i
\(166\) 0 0
\(167\) 1.71056e10 1.70182 0.850911 0.525310i \(-0.176051\pi\)
0.850911 + 0.525310i \(0.176051\pi\)
\(168\) 0 0
\(169\) 1.39024e10 1.31099
\(170\) 0 0
\(171\) 1.89512e9 + 3.28245e9i 0.169494 + 0.293572i
\(172\) 0 0
\(173\) 9.09679e8 1.57561e9i 0.0772113 0.133734i −0.824834 0.565374i \(-0.808732\pi\)
0.902046 + 0.431640i \(0.142065\pi\)
\(174\) 0 0
\(175\) −4.38078e9 + 4.61447e9i −0.353086 + 0.371921i
\(176\) 0 0
\(177\) −6.83465e8 + 1.18380e9i −0.0523403 + 0.0906561i
\(178\) 0 0
\(179\) −1.18157e9 2.04654e9i −0.0860241 0.148998i 0.819803 0.572646i \(-0.194083\pi\)
−0.905827 + 0.423647i \(0.860750\pi\)
\(180\) 0 0
\(181\) 1.65554e10 1.14653 0.573265 0.819370i \(-0.305677\pi\)
0.573265 + 0.819370i \(0.305677\pi\)
\(182\) 0 0
\(183\) 1.60248e9 0.105624
\(184\) 0 0
\(185\) 1.23881e10 + 2.14569e10i 0.777559 + 1.34677i
\(186\) 0 0
\(187\) −1.82485e10 + 3.16073e10i −1.09129 + 1.89017i
\(188\) 0 0
\(189\) 9.86922e8 + 3.33433e9i 0.0562606 + 0.190077i
\(190\) 0 0
\(191\) −1.68265e9 + 2.91443e9i −0.0914835 + 0.158454i −0.908136 0.418676i \(-0.862494\pi\)
0.816652 + 0.577130i \(0.195828\pi\)
\(192\) 0 0
\(193\) 2.36192e9 + 4.09097e9i 0.122534 + 0.212236i 0.920766 0.390114i \(-0.127564\pi\)
−0.798232 + 0.602350i \(0.794231\pi\)
\(194\) 0 0
\(195\) −3.76051e9 −0.186248
\(196\) 0 0
\(197\) −1.66982e10 −0.789897 −0.394949 0.918703i \(-0.629238\pi\)
−0.394949 + 0.918703i \(0.629238\pi\)
\(198\) 0 0
\(199\) 1.30913e10 + 2.26748e10i 0.591759 + 1.02496i 0.993996 + 0.109421i \(0.0348996\pi\)
−0.402237 + 0.915536i \(0.631767\pi\)
\(200\) 0 0
\(201\) 1.40876e9 2.44005e9i 0.0608773 0.105443i
\(202\) 0 0
\(203\) −7.60421e9 2.56909e10i −0.314284 1.06181i
\(204\) 0 0
\(205\) 6.60937e9 1.14478e10i 0.261377 0.452719i
\(206\) 0 0
\(207\) 1.05386e9 + 1.82534e9i 0.0398947 + 0.0690997i
\(208\) 0 0
\(209\) 1.38720e10 0.502898
\(210\) 0 0
\(211\) 3.90431e10 1.35604 0.678021 0.735042i \(-0.262838\pi\)
0.678021 + 0.735042i \(0.262838\pi\)
\(212\) 0 0
\(213\) 1.45917e8 + 2.52736e8i 0.00485734 + 0.00841317i
\(214\) 0 0
\(215\) 3.13314e10 5.42676e10i 1.00002 1.73208i
\(216\) 0 0
\(217\) 1.38529e10 1.45919e10i 0.424104 0.446728i
\(218\) 0 0
\(219\) −6.18228e7 + 1.07080e8i −0.00181614 + 0.00314565i
\(220\) 0 0
\(221\) −4.00534e10 6.93745e10i −1.12947 1.95630i
\(222\) 0 0
\(223\) −4.53210e10 −1.22723 −0.613617 0.789603i \(-0.710286\pi\)
−0.613617 + 0.789603i \(0.710286\pi\)
\(224\) 0 0
\(225\) −1.95193e10 −0.507742
\(226\) 0 0
\(227\) 3.75422e9 + 6.50249e9i 0.0938432 + 0.162541i 0.909125 0.416523i \(-0.136751\pi\)
−0.815282 + 0.579064i \(0.803418\pi\)
\(228\) 0 0
\(229\) −2.09237e10 + 3.62409e10i −0.502781 + 0.870842i 0.497214 + 0.867628i \(0.334356\pi\)
−0.999995 + 0.00321410i \(0.998977\pi\)
\(230\) 0 0
\(231\) 6.15638e9 + 1.47936e9i 0.142256 + 0.0341838i
\(232\) 0 0
\(233\) −1.52461e10 + 2.64070e10i −0.338888 + 0.586971i −0.984224 0.176928i \(-0.943384\pi\)
0.645336 + 0.763899i \(0.276717\pi\)
\(234\) 0 0
\(235\) −1.56749e10 2.71497e10i −0.335274 0.580711i
\(236\) 0 0
\(237\) −5.37309e8 −0.0110626
\(238\) 0 0
\(239\) −4.29290e10 −0.851060 −0.425530 0.904944i \(-0.639912\pi\)
−0.425530 + 0.904944i \(0.639912\pi\)
\(240\) 0 0
\(241\) 4.20533e9 + 7.28385e9i 0.0803015 + 0.139086i 0.903379 0.428842i \(-0.141078\pi\)
−0.823078 + 0.567928i \(0.807745\pi\)
\(242\) 0 0
\(243\) −8.01395e9 + 1.38806e10i −0.147441 + 0.255375i
\(244\) 0 0
\(245\) 3.60163e9 + 6.92718e10i 0.0638633 + 1.22831i
\(246\) 0 0
\(247\) −1.52237e10 + 2.63682e10i −0.260246 + 0.450760i
\(248\) 0 0
\(249\) 3.88007e9 + 6.72047e9i 0.0639650 + 0.110791i
\(250\) 0 0
\(251\) −8.14744e10 −1.29566 −0.647828 0.761787i \(-0.724322\pi\)
−0.647828 + 0.761787i \(0.724322\pi\)
\(252\) 0 0
\(253\) 7.71407e9 0.118370
\(254\) 0 0
\(255\) 6.14606e9 + 1.06453e10i 0.0910262 + 0.157662i
\(256\) 0 0
\(257\) −1.90519e10 + 3.29988e10i −0.272420 + 0.471845i −0.969481 0.245167i \(-0.921157\pi\)
0.697061 + 0.717012i \(0.254491\pi\)
\(258\) 0 0
\(259\) 8.90281e10 + 2.13933e10i 1.22936 + 0.295412i
\(260\) 0 0
\(261\) 4.10966e10 7.11813e10i 0.548180 0.949476i
\(262\) 0 0
\(263\) −2.83241e10 4.90588e10i −0.365053 0.632290i 0.623732 0.781638i \(-0.285616\pi\)
−0.988785 + 0.149349i \(0.952282\pi\)
\(264\) 0 0
\(265\) −7.77086e10 −0.967972
\(266\) 0 0
\(267\) −2.30469e9 −0.0277531
\(268\) 0 0
\(269\) −7.10675e10 1.23092e11i −0.827534 1.43333i −0.899967 0.435957i \(-0.856410\pi\)
0.0724338 0.997373i \(-0.476923\pi\)
\(270\) 0 0
\(271\) −1.86332e10 + 3.22737e10i −0.209859 + 0.363486i −0.951670 0.307123i \(-0.900634\pi\)
0.741811 + 0.670609i \(0.233967\pi\)
\(272\) 0 0
\(273\) −9.56829e9 + 1.00787e10i −0.104256 + 0.109818i
\(274\) 0 0
\(275\) −3.57195e10 + 6.18680e10i −0.376624 + 0.652333i
\(276\) 0 0
\(277\) −7.86972e10 1.36308e11i −0.803157 1.39111i −0.917528 0.397671i \(-0.869819\pi\)
0.114371 0.993438i \(-0.463515\pi\)
\(278\) 0 0
\(279\) 6.17240e10 0.609867
\(280\) 0 0
\(281\) 9.66888e10 0.925119 0.462560 0.886588i \(-0.346931\pi\)
0.462560 + 0.886588i \(0.346931\pi\)
\(282\) 0 0
\(283\) −9.95631e10 1.72448e11i −0.922698 1.59816i −0.795223 0.606318i \(-0.792646\pi\)
−0.127475 0.991842i \(-0.540687\pi\)
\(284\) 0 0
\(285\) 2.33603e9 4.04612e9i 0.0209738 0.0363276i
\(286\) 0 0
\(287\) −1.38647e10 4.68420e10i −0.120626 0.407536i
\(288\) 0 0
\(289\) −7.16304e10 + 1.24067e11i −0.604028 + 1.04621i
\(290\) 0 0
\(291\) −1.09719e9 1.90039e9i −0.00896940 0.0155355i
\(292\) 0 0
\(293\) 7.28364e10 0.577357 0.288679 0.957426i \(-0.406784\pi\)
0.288679 + 0.957426i \(0.406784\pi\)
\(294\) 0 0
\(295\) −1.68137e11 −1.29260
\(296\) 0 0
\(297\) 1.95212e10 + 3.38116e10i 0.145580 + 0.252152i
\(298\) 0 0
\(299\) −8.46575e9 + 1.46631e10i −0.0612555 + 0.106098i
\(300\) 0 0
\(301\) −6.57248e10 2.22052e11i −0.461509 1.55921i
\(302\) 0 0
\(303\) −1.13735e9 + 1.96996e9i −0.00775183 + 0.0134266i
\(304\) 0 0
\(305\) 9.85557e10 + 1.70703e11i 0.652127 + 1.12952i
\(306\) 0 0
\(307\) 1.17824e11 0.757027 0.378514 0.925596i \(-0.376435\pi\)
0.378514 + 0.925596i \(0.376435\pi\)
\(308\) 0 0
\(309\) −1.89225e10 −0.118077
\(310\) 0 0
\(311\) 9.06944e10 + 1.57087e11i 0.549742 + 0.952180i 0.998292 + 0.0584227i \(0.0186071\pi\)
−0.448550 + 0.893758i \(0.648060\pi\)
\(312\) 0 0
\(313\) −1.42218e11 + 2.46328e11i −0.837537 + 1.45066i 0.0544112 + 0.998519i \(0.482672\pi\)
−0.891948 + 0.452138i \(0.850662\pi\)
\(314\) 0 0
\(315\) −1.46511e11 + 1.54326e11i −0.838439 + 0.883164i
\(316\) 0 0
\(317\) 5.08743e10 8.81169e10i 0.282964 0.490109i −0.689149 0.724620i \(-0.742016\pi\)
0.972114 + 0.234511i \(0.0753488\pi\)
\(318\) 0 0
\(319\) −1.50410e11 2.60518e11i −0.813241 1.40857i
\(320\) 0 0
\(321\) −1.22782e8 −0.000645449
\(322\) 0 0
\(323\) 9.95248e10 0.508768
\(324\) 0 0
\(325\) −7.84003e10 1.35793e11i −0.389801 0.675154i
\(326\) 0 0
\(327\) −5.05093e9 + 8.74846e9i −0.0244290 + 0.0423123i
\(328\) 0 0
\(329\) −1.12649e11 2.70692e10i −0.530084 0.127378i
\(330\) 0 0
\(331\) 1.51983e11 2.63242e11i 0.695935 1.20540i −0.273929 0.961750i \(-0.588323\pi\)
0.969864 0.243645i \(-0.0783432\pi\)
\(332\) 0 0
\(333\) 1.40445e11 + 2.43258e11i 0.625904 + 1.08410i
\(334\) 0 0
\(335\) 3.46566e11 1.50343
\(336\) 0 0
\(337\) −1.72473e10 −0.0728427 −0.0364213 0.999337i \(-0.511596\pi\)
−0.0364213 + 0.999337i \(0.511596\pi\)
\(338\) 0 0
\(339\) 2.05514e10 + 3.55961e10i 0.0845169 + 0.146388i
\(340\) 0 0
\(341\) 1.12953e11 1.95639e11i 0.452378 0.783541i
\(342\) 0 0
\(343\) 1.94822e11 + 1.66603e11i 0.760003 + 0.649920i
\(344\) 0 0
\(345\) 1.29904e9 2.25001e9i 0.00493671 0.00855062i
\(346\) 0 0
\(347\) 1.58417e11 + 2.74386e11i 0.586569 + 1.01597i 0.994678 + 0.103034i \(0.0328551\pi\)
−0.408109 + 0.912933i \(0.633812\pi\)
\(348\) 0 0
\(349\) 9.59821e10 0.346318 0.173159 0.984894i \(-0.444602\pi\)
0.173159 + 0.984894i \(0.444602\pi\)
\(350\) 0 0
\(351\) −8.56934e10 −0.301346
\(352\) 0 0
\(353\) 1.31095e11 + 2.27063e11i 0.449365 + 0.778324i 0.998345 0.0575122i \(-0.0183168\pi\)
−0.548979 + 0.835836i \(0.684983\pi\)
\(354\) 0 0
\(355\) −1.79484e10 + 3.10875e10i −0.0599788 + 0.103886i
\(356\) 0 0
\(357\) 4.41691e10 + 1.06137e10i 0.143917 + 0.0345828i
\(358\) 0 0
\(359\) −5.42664e10 + 9.39922e10i −0.172427 + 0.298653i −0.939268 0.343185i \(-0.888494\pi\)
0.766841 + 0.641838i \(0.221828\pi\)
\(360\) 0 0
\(361\) 1.42430e11 + 2.46696e11i 0.441386 + 0.764503i
\(362\) 0 0
\(363\) 3.81381e10 0.115287
\(364\) 0 0
\(365\) −1.52089e10 −0.0448517
\(366\) 0 0
\(367\) 1.06268e11 + 1.84061e11i 0.305777 + 0.529621i 0.977434 0.211241i \(-0.0677505\pi\)
−0.671657 + 0.740862i \(0.734417\pi\)
\(368\) 0 0
\(369\) 7.49309e10 1.29784e11i 0.210398 0.364421i
\(370\) 0 0
\(371\) −1.97723e11 + 2.08270e11i −0.541844 + 0.570748i
\(372\) 0 0
\(373\) 1.58915e11 2.75249e11i 0.425085 0.736269i −0.571343 0.820711i \(-0.693577\pi\)
0.996428 + 0.0844421i \(0.0269108\pi\)
\(374\) 0 0
\(375\) −1.14283e10 1.97944e10i −0.0298430 0.0516895i
\(376\) 0 0
\(377\) 6.60266e11 1.68338
\(378\) 0 0
\(379\) −6.09315e11 −1.51693 −0.758465 0.651714i \(-0.774050\pi\)
−0.758465 + 0.651714i \(0.774050\pi\)
\(380\) 0 0
\(381\) −4.52613e9 7.83948e9i −0.0110043 0.0190601i
\(382\) 0 0
\(383\) 1.70032e11 2.94503e11i 0.403771 0.699352i −0.590407 0.807106i \(-0.701033\pi\)
0.994178 + 0.107754i \(0.0343659\pi\)
\(384\) 0 0
\(385\) 2.21040e11 + 7.46788e11i 0.512742 + 1.73230i
\(386\) 0 0
\(387\) 3.55206e11 6.15236e11i 0.804973 1.39425i
\(388\) 0 0
\(389\) −3.77442e11 6.53749e11i −0.835751 1.44756i −0.893417 0.449227i \(-0.851699\pi\)
0.0576663 0.998336i \(-0.481634\pi\)
\(390\) 0 0
\(391\) 5.53447e10 0.119751
\(392\) 0 0
\(393\) 4.11908e10 0.0871032
\(394\) 0 0
\(395\) −3.30455e10 5.72365e10i −0.0683008 0.118300i
\(396\) 0 0
\(397\) 1.34694e11 2.33297e11i 0.272140 0.471360i −0.697270 0.716809i \(-0.745602\pi\)
0.969409 + 0.245449i \(0.0789354\pi\)
\(398\) 0 0
\(399\) −4.90036e9 1.65559e10i −0.00967942 0.0327020i
\(400\) 0 0
\(401\) 1.78083e11 3.08449e11i 0.343932 0.595708i −0.641227 0.767351i \(-0.721574\pi\)
0.985159 + 0.171643i \(0.0549076\pi\)
\(402\) 0 0
\(403\) 2.47918e11 + 4.29406e11i 0.468204 + 0.810953i
\(404\) 0 0
\(405\) −6.46195e11 −1.19348
\(406\) 0 0
\(407\) 1.02804e12 1.85709
\(408\) 0 0
\(409\) 4.37201e10 + 7.57254e10i 0.0772549 + 0.133809i 0.902065 0.431601i \(-0.142051\pi\)
−0.824810 + 0.565410i \(0.808718\pi\)
\(410\) 0 0
\(411\) 5.38959e10 9.33505e10i 0.0931682 0.161372i
\(412\) 0 0
\(413\) −4.27811e11 + 4.50632e11i −0.723564 + 0.762162i
\(414\) 0 0
\(415\) −4.77263e11 + 8.26643e11i −0.789843 + 1.36805i
\(416\) 0 0
\(417\) −3.77754e10 6.54289e10i −0.0611782 0.105964i
\(418\) 0 0
\(419\) −4.46048e9 −0.00706999 −0.00353499 0.999994i \(-0.501125\pi\)
−0.00353499 + 0.999994i \(0.501125\pi\)
\(420\) 0 0
\(421\) −9.34684e10 −0.145009 −0.0725046 0.997368i \(-0.523099\pi\)
−0.0725046 + 0.997368i \(0.523099\pi\)
\(422\) 0 0
\(423\) −1.77707e11 3.07798e11i −0.269882 0.467449i
\(424\) 0 0
\(425\) −2.56270e11 + 4.43873e11i −0.381020 + 0.659947i
\(426\) 0 0
\(427\) 7.08276e11 + 1.70197e11i 1.03104 + 0.247757i
\(428\) 0 0
\(429\) −7.80169e10 + 1.35129e11i −0.111207 + 0.192616i
\(430\) 0 0
\(431\) −2.49562e11 4.32254e11i −0.348362 0.603381i 0.637597 0.770370i \(-0.279929\pi\)
−0.985959 + 0.166990i \(0.946595\pi\)
\(432\) 0 0
\(433\) 1.04168e12 1.42410 0.712049 0.702130i \(-0.247768\pi\)
0.712049 + 0.702130i \(0.247768\pi\)
\(434\) 0 0
\(435\) −1.01316e11 −0.135667
\(436\) 0 0
\(437\) −1.05179e10 1.82175e10i −0.0137963 0.0238958i
\(438\) 0 0
\(439\) −1.00140e11 + 1.73447e11i −0.128681 + 0.222883i −0.923166 0.384402i \(-0.874408\pi\)
0.794485 + 0.607284i \(0.207741\pi\)
\(440\) 0 0
\(441\) 4.08319e10 + 7.85339e11i 0.0514074 + 0.988743i
\(442\) 0 0
\(443\) 1.13051e11 1.95810e11i 0.139463 0.241556i −0.787831 0.615892i \(-0.788796\pi\)
0.927293 + 0.374335i \(0.122129\pi\)
\(444\) 0 0
\(445\) −1.41743e11 2.45505e11i −0.171349 0.296784i
\(446\) 0 0
\(447\) 4.34056e8 0.000514236
\(448\) 0 0
\(449\) −1.20089e12 −1.39443 −0.697213 0.716864i \(-0.745577\pi\)
−0.697213 + 0.716864i \(0.745577\pi\)
\(450\) 0 0
\(451\) −2.74241e11 4.74999e11i −0.312132 0.540628i
\(452\) 0 0
\(453\) 5.70656e10 9.88405e10i 0.0636697 0.110279i
\(454\) 0 0
\(455\) −1.66209e12 3.99397e11i −1.81804 0.436872i
\(456\) 0 0
\(457\) −1.64864e11 + 2.85552e11i −0.176808 + 0.306241i −0.940786 0.339002i \(-0.889911\pi\)
0.763977 + 0.645243i \(0.223244\pi\)
\(458\) 0 0
\(459\) 1.40055e11 + 2.42582e11i 0.147279 + 0.255095i
\(460\) 0 0
\(461\) 1.38928e12 1.43263 0.716317 0.697775i \(-0.245827\pi\)
0.716317 + 0.697775i \(0.245827\pi\)
\(462\) 0 0
\(463\) 6.88123e7 6.95908e−5 3.47954e−5 1.00000i \(-0.499989\pi\)
3.47954e−5 1.00000i \(0.499989\pi\)
\(464\) 0 0
\(465\) −3.80422e10 6.58910e10i −0.0377335 0.0653564i
\(466\) 0 0
\(467\) −5.39451e11 + 9.34356e11i −0.524839 + 0.909048i 0.474743 + 0.880125i \(0.342541\pi\)
−0.999582 + 0.0289230i \(0.990792\pi\)
\(468\) 0 0
\(469\) 8.81808e11 9.28846e11i 0.841581 0.886474i
\(470\) 0 0
\(471\) −1.07893e9 + 1.86875e9i −0.00101018 + 0.00174968i
\(472\) 0 0
\(473\) −1.30003e12 2.25171e12i −1.19420 2.06842i
\(474\) 0 0
\(475\) 1.94809e11 0.175585
\(476\) 0 0
\(477\) −8.80988e11 −0.779179
\(478\) 0 0
\(479\) −3.11905e11 5.40235e11i −0.270715 0.468892i 0.698330 0.715776i \(-0.253927\pi\)
−0.969045 + 0.246884i \(0.920593\pi\)
\(480\) 0 0
\(481\) −1.12821e12 + 1.95412e12i −0.961032 + 1.66456i
\(482\) 0 0
\(483\) −2.72504e9 9.20657e9i −0.00227830 0.00769725i
\(484\) 0 0
\(485\) 1.34958e11 2.33755e11i 0.110755 0.191833i
\(486\) 0 0
\(487\) −7.48463e11 1.29638e12i −0.602962 1.04436i −0.992370 0.123295i \(-0.960654\pi\)
0.389408 0.921065i \(-0.372679\pi\)
\(488\) 0 0
\(489\) −1.59964e11 −0.126512
\(490\) 0 0
\(491\) −6.91050e11 −0.536590 −0.268295 0.963337i \(-0.586460\pi\)
−0.268295 + 0.963337i \(0.586460\pi\)
\(492\) 0 0
\(493\) −1.07912e12 1.86909e12i −0.822733 1.42501i
\(494\) 0 0
\(495\) −1.19460e12 + 2.06911e12i −0.894334 + 1.54903i
\(496\) 0 0
\(497\) 3.76508e10 + 1.27204e11i 0.0276803 + 0.0935182i
\(498\) 0 0
\(499\) 6.87459e11 1.19071e12i 0.496357 0.859716i −0.503634 0.863917i \(-0.668004\pi\)
0.999991 + 0.00420123i \(0.00133730\pi\)
\(500\) 0 0
\(501\) −1.19523e11 2.07019e11i −0.0847579 0.146805i
\(502\) 0 0
\(503\) 2.02197e12 1.40837 0.704187 0.710015i \(-0.251312\pi\)
0.704187 + 0.710015i \(0.251312\pi\)
\(504\) 0 0
\(505\) −2.79798e11 −0.191440
\(506\) 0 0
\(507\) −9.71409e10 1.68253e11i −0.0652930 0.113091i
\(508\) 0 0
\(509\) 5.74038e11 9.94263e11i 0.379062 0.656555i −0.611864 0.790963i \(-0.709580\pi\)
0.990926 + 0.134408i \(0.0429133\pi\)
\(510\) 0 0
\(511\) −3.86977e10 + 4.07620e10i −0.0251068 + 0.0264461i
\(512\) 0 0
\(513\) 5.32328e10 9.22020e10i 0.0339353 0.0587776i
\(514\) 0 0
\(515\) −1.16377e12 2.01571e12i −0.729011 1.26268i
\(516\) 0 0
\(517\) −1.30079e12 −0.800755
\(518\) 0 0
\(519\) −2.54250e10 −0.0153818
\(520\) 0 0
\(521\) 6.50321e11 + 1.12639e12i 0.386686 + 0.669759i 0.992002 0.126226i \(-0.0402865\pi\)
−0.605316 + 0.795985i \(0.706953\pi\)
\(522\) 0 0
\(523\) −1.12086e12 + 1.94139e12i −0.655079 + 1.13463i 0.326794 + 0.945095i \(0.394032\pi\)
−0.981874 + 0.189535i \(0.939302\pi\)
\(524\) 0 0
\(525\) 8.64562e10 + 2.07752e10i 0.0496683 + 0.0119352i
\(526\) 0 0
\(527\) 8.10380e11 1.40362e12i 0.457658 0.792687i
\(528\) 0 0
\(529\) 8.94727e11 + 1.54971e12i 0.496753 + 0.860401i
\(530\) 0 0
\(531\) −1.90618e12 −1.04049
\(532\) 0 0
\(533\) 1.20386e12 0.646104
\(534\) 0 0
\(535\) −7.55132e9 1.30793e10i −0.00398502 0.00690227i
\(536\) 0 0
\(537\) −1.65120e10 + 2.85997e10i −0.00856873 + 0.0148415i
\(538\) 0 0
\(539\) 2.56392e12 + 1.30772e12i 1.30844 + 0.667367i
\(540\) 0 0
\(541\) 5.81162e10 1.00660e11i 0.0291682 0.0505208i −0.851073 0.525048i \(-0.824047\pi\)
0.880241 + 0.474527i \(0.157381\pi\)
\(542\) 0 0
\(543\) −1.15678e11 2.00360e11i −0.0571021 0.0989037i
\(544\) 0 0
\(545\) −1.24257e12 −0.603303
\(546\) 0 0
\(547\) −1.58473e12 −0.756854 −0.378427 0.925631i \(-0.623535\pi\)
−0.378427 + 0.925631i \(0.623535\pi\)
\(548\) 0 0
\(549\) 1.11733e12 + 1.93528e12i 0.524937 + 0.909217i
\(550\) 0 0
\(551\) −4.10158e11 + 7.10414e11i −0.189570 + 0.328344i
\(552\) 0 0
\(553\) −2.37484e11 5.70667e10i −0.107987 0.0259490i
\(554\) 0 0
\(555\) 1.73120e11 2.99853e11i 0.0774515 0.134150i
\(556\) 0 0
\(557\) −7.55286e11 1.30819e12i −0.332478 0.575869i 0.650519 0.759490i \(-0.274551\pi\)
−0.982997 + 0.183621i \(0.941218\pi\)
\(558\) 0 0
\(559\) 5.70682e12 2.47196
\(560\) 0 0
\(561\) 5.10034e11 0.217403
\(562\) 0 0
\(563\) −3.03012e11 5.24832e11i −0.127108 0.220157i 0.795447 0.606023i \(-0.207236\pi\)
−0.922555 + 0.385866i \(0.873903\pi\)
\(564\) 0 0
\(565\) −2.52790e12 + 4.37846e12i −1.04362 + 1.80760i
\(566\) 0 0
\(567\) −1.64419e12 + 1.73189e12i −0.668079 + 0.703716i
\(568\) 0 0
\(569\) 1.60132e11 2.77356e11i 0.0640431 0.110926i −0.832226 0.554436i \(-0.812934\pi\)
0.896269 + 0.443511i \(0.146267\pi\)
\(570\) 0 0
\(571\) −1.52614e12 2.64335e12i −0.600802 1.04062i −0.992700 0.120611i \(-0.961515\pi\)
0.391898 0.920009i \(-0.371819\pi\)
\(572\) 0 0
\(573\) 4.70289e10 0.0182251
\(574\) 0 0
\(575\) 1.08331e11 0.0413285
\(576\) 0 0
\(577\) −1.41483e12 2.45055e12i −0.531389 0.920392i −0.999329 0.0366320i \(-0.988337\pi\)
0.467940 0.883760i \(-0.344996\pi\)
\(578\) 0 0
\(579\) 3.30071e10 5.71700e10i 0.0122055 0.0211405i
\(580\) 0 0
\(581\) 1.00117e12 + 3.38246e12i 0.364514 + 1.23151i
\(582\) 0 0
\(583\) −1.61217e12 + 2.79236e12i −0.577967 + 1.00107i
\(584\) 0 0
\(585\) −2.62201e12 4.54146e12i −0.925622 1.60322i
\(586\) 0 0
\(587\) 2.10206e12 0.730756 0.365378 0.930859i \(-0.380940\pi\)
0.365378 + 0.930859i \(0.380940\pi\)
\(588\) 0 0
\(589\) −6.16027e11 −0.210902
\(590\) 0 0
\(591\) 1.16676e11 + 2.02088e11i 0.0393402 + 0.0681393i
\(592\) 0 0
\(593\) 2.96534e12 5.13612e12i 0.984756 1.70565i 0.341742 0.939794i \(-0.388983\pi\)
0.643014 0.765854i \(-0.277684\pi\)
\(594\) 0 0
\(595\) 1.58586e12 + 5.35784e12i 0.518726 + 1.75252i
\(596\) 0 0
\(597\) 1.82947e11 3.16874e11i 0.0589442 0.102094i
\(598\) 0 0
\(599\) −1.57607e12 2.72984e12i −0.500213 0.866395i −1.00000 0.000246421i \(-0.999922\pi\)
0.499787 0.866149i \(-0.333412\pi\)
\(600\) 0 0
\(601\) 6.20966e12 1.94148 0.970740 0.240132i \(-0.0771909\pi\)
0.970740 + 0.240132i \(0.0771909\pi\)
\(602\) 0 0
\(603\) 3.92904e12 1.21020
\(604\) 0 0
\(605\) 2.34556e12 + 4.06264e12i 0.711784 + 1.23285i
\(606\) 0 0
\(607\) 2.27519e12 3.94075e12i 0.680251 1.17823i −0.294653 0.955604i \(-0.595204\pi\)
0.974904 0.222625i \(-0.0714627\pi\)
\(608\) 0 0
\(609\) −2.57789e11 + 2.71541e11i −0.0759428 + 0.0799939i
\(610\) 0 0
\(611\) 1.42754e12 2.47258e12i 0.414385 0.717735i
\(612\) 0 0
\(613\) 3.48631e11 + 6.03847e11i 0.0997227 + 0.172725i 0.911570 0.411145i \(-0.134871\pi\)
−0.811847 + 0.583870i \(0.801538\pi\)
\(614\) 0 0
\(615\) −1.84728e11 −0.0520708
\(616\) 0 0
\(617\) 3.02922e12 0.841488 0.420744 0.907179i \(-0.361769\pi\)
0.420744 + 0.907179i \(0.361769\pi\)
\(618\) 0 0
\(619\) 1.58193e12 + 2.73998e12i 0.433090 + 0.750135i 0.997138 0.0756079i \(-0.0240897\pi\)
−0.564047 + 0.825743i \(0.690756\pi\)
\(620\) 0 0
\(621\) 2.96022e10 5.12726e10i 0.00798753 0.0138348i
\(622\) 0 0
\(623\) −1.01864e12 2.44777e11i −0.270910 0.0650991i
\(624\) 0 0
\(625\) 2.38387e12 4.12899e12i 0.624918 1.08239i
\(626\) 0 0
\(627\) −9.69283e10 1.67885e11i −0.0250465 0.0433818i
\(628\) 0 0
\(629\) 7.37567e12 1.87877
\(630\) 0 0
\(631\) −6.97874e12 −1.75245 −0.876223 0.481906i \(-0.839945\pi\)
−0.876223 + 0.481906i \(0.839945\pi\)
\(632\) 0 0
\(633\) −2.72807e11 4.72516e11i −0.0675367 0.116977i
\(634\) 0 0
\(635\) 5.56730e11 9.64285e11i 0.135882 0.235355i
\(636\) 0 0
\(637\) −5.29950e12 + 3.43842e12i −1.27529 + 0.827430i
\(638\) 0 0
\(639\) −2.03482e11 + 3.52441e11i −0.0482805 + 0.0836244i
\(640\) 0 0
\(641\) 1.49724e12 + 2.59330e12i 0.350293 + 0.606725i 0.986301 0.164958i \(-0.0527488\pi\)
−0.636008 + 0.771682i \(0.719415\pi\)
\(642\) 0 0
\(643\) −1.46030e12 −0.336894 −0.168447 0.985711i \(-0.553875\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(644\) 0 0
\(645\) −8.75693e11 −0.199220
\(646\) 0 0
\(647\) 2.07950e12 + 3.60181e12i 0.466542 + 0.808074i 0.999270 0.0382124i \(-0.0121663\pi\)
−0.532728 + 0.846287i \(0.678833\pi\)
\(648\) 0 0
\(649\) −3.48824e12 + 6.04181e12i −0.771801 + 1.33680i
\(650\) 0 0
\(651\) −2.73392e11 6.56956e10i −0.0596585 0.0143358i
\(652\) 0 0
\(653\) −7.92472e11 + 1.37260e12i −0.170559 + 0.295417i −0.938615 0.344965i \(-0.887891\pi\)
0.768056 + 0.640382i \(0.221224\pi\)
\(654\) 0 0
\(655\) 2.53331e12 + 4.38783e12i 0.537778 + 0.931459i
\(656\) 0 0
\(657\) −1.72424e11 −0.0361039
\(658\) 0 0
\(659\) 3.00036e12 0.619711 0.309855 0.950784i \(-0.399719\pi\)
0.309855 + 0.950784i \(0.399719\pi\)
\(660\) 0 0
\(661\) −3.44920e12 5.97419e12i −0.702768 1.21723i −0.967491 0.252905i \(-0.918614\pi\)
0.264723 0.964325i \(-0.414719\pi\)
\(662\) 0 0
\(663\) −5.59733e11 + 9.69487e11i −0.112505 + 0.194864i
\(664\) 0 0
\(665\) 1.46223e12 1.54023e12i 0.289946 0.305413i
\(666\) 0 0
\(667\) −2.28085e11 + 3.95054e11i −0.0446200 + 0.0772841i
\(668\) 0 0
\(669\) 3.16673e11 + 5.48494e11i 0.0611215 + 0.105866i
\(670\) 0 0
\(671\) 8.17869e12 1.55752
\(672\) 0 0
\(673\) −4.53756e12 −0.852618 −0.426309 0.904578i \(-0.640186\pi\)
−0.426309 + 0.904578i \(0.640186\pi\)
\(674\) 0 0
\(675\) 2.74143e11 + 4.74829e11i 0.0508288 + 0.0880380i
\(676\) 0 0
\(677\) −5.21397e12 + 9.03085e12i −0.953936 + 1.65227i −0.217151 + 0.976138i \(0.569676\pi\)
−0.736785 + 0.676127i \(0.763657\pi\)
\(678\) 0 0
\(679\) −2.83106e11 9.56477e11i −0.0511135 0.172687i
\(680\) 0 0
\(681\) 5.24640e10 9.08703e10i 0.00934758 0.0161905i
\(682\) 0 0
\(683\) 2.01247e12 + 3.48569e12i 0.353863 + 0.612909i 0.986923 0.161194i \(-0.0515346\pi\)
−0.633060 + 0.774103i \(0.718201\pi\)
\(684\) 0 0
\(685\) 1.32588e13 2.30089
\(686\) 0 0
\(687\) 5.84804e11 0.100162
\(688\) 0 0
\(689\) −3.53853e12 6.12892e12i −0.598187 1.03609i
\(690\) 0 0
\(691\) 2.02863e12 3.51369e12i 0.338494 0.586289i −0.645655 0.763629i \(-0.723416\pi\)
0.984150 + 0.177339i \(0.0567491\pi\)
\(692\) 0 0
\(693\) 2.50595e12 + 8.46638e12i 0.412737 + 1.39443i
\(694\) 0 0
\(695\) 4.64651e12 8.04800e12i 0.755432 1.30845i
\(696\) 0 0
\(697\) −1.96755e12 3.40789e12i −0.315775 0.546938i
\(698\) 0 0
\(699\) 4.26118e11 0.0675122
\(700\) 0 0
\(701\) 2.14575e11 0.0335621 0.0167810 0.999859i \(-0.494658\pi\)
0.0167810 + 0.999859i \(0.494658\pi\)
\(702\) 0 0
\(703\) −1.40169e12 2.42780e12i −0.216448 0.374899i
\(704\) 0 0
\(705\) −2.19052e11 + 3.79409e11i −0.0333961 + 0.0578437i
\(706\) 0 0
\(707\) −7.11922e11 + 7.49898e11i −0.107163 + 0.112879i
\(708\) 0 0
\(709\) 4.27735e12 7.40859e12i 0.635721 1.10110i −0.350640 0.936510i \(-0.614036\pi\)
0.986362 0.164592i \(-0.0526306\pi\)
\(710\) 0 0
\(711\) −3.74639e11 6.48894e11i −0.0549794 0.0952271i
\(712\) 0 0
\(713\) −3.42566e11 −0.0496412
\(714\) 0 0
\(715\) −1.91927e13 −2.74637
\(716\) 0 0
\(717\) 2.99959e11 + 5.19545e11i 0.0423864 + 0.0734153i
\(718\) 0 0
\(719\) −3.24741e12 + 5.62468e12i −0.453166 + 0.784906i −0.998581 0.0532602i \(-0.983039\pi\)
0.545415 + 0.838166i \(0.316372\pi\)
\(720\) 0 0
\(721\) −8.36349e12 2.00973e12i −1.15260 0.276967i
\(722\) 0 0
\(723\) 5.87682e10 1.01789e11i 0.00799871 0.0138542i
\(724\) 0 0
\(725\) −2.11226e12 3.65855e12i −0.283940 0.491799i
\(726\) 0 0
\(727\) −5.36028e12 −0.711677 −0.355838 0.934548i \(-0.615805\pi\)
−0.355838 + 0.934548i \(0.615805\pi\)
\(728\) 0 0
\(729\) −7.17538e12 −0.940960
\(730\) 0 0
\(731\) −9.32707e12 1.61550e13i −1.20814 2.09256i
\(732\) 0 0
\(733\) −1.73332e12 + 3.00220e12i −0.221774 + 0.384124i −0.955347 0.295487i \(-0.904518\pi\)
0.733573 + 0.679611i \(0.237851\pi\)
\(734\) 0 0
\(735\) 8.13191e11 5.27614e11i 0.102778 0.0666842i
\(736\) 0 0
\(737\) 7.18999e12 1.24534e13i 0.897686 1.55484i
\(738\) 0 0
\(739\) −2.12046e12 3.67275e12i −0.261536 0.452993i 0.705115 0.709093i \(-0.250896\pi\)
−0.966650 + 0.256100i \(0.917562\pi\)
\(740\) 0 0
\(741\) 4.25493e11 0.0518454
\(742\) 0 0
\(743\) 7.87489e12 0.947970 0.473985 0.880533i \(-0.342815\pi\)
0.473985 + 0.880533i \(0.342815\pi\)
\(744\) 0 0
\(745\) 2.66953e10 + 4.62376e10i 0.00317491 + 0.00549910i
\(746\) 0 0
\(747\) −5.41076e12 + 9.37171e12i −0.635793 + 1.10123i
\(748\) 0 0
\(749\) −5.42680e10 1.30405e10i −0.00630051 0.00151400i
\(750\) 0 0
\(751\) −5.52671e12 + 9.57254e12i −0.633997 + 1.09811i 0.352730 + 0.935725i \(0.385253\pi\)
−0.986727 + 0.162389i \(0.948080\pi\)
\(752\) 0 0
\(753\) 5.69290e11 + 9.86038e11i 0.0645291 + 0.111768i
\(754\) 0 0
\(755\) 1.40386e13 1.57239
\(756\) 0 0
\(757\) −3.02707e12 −0.335035 −0.167518 0.985869i \(-0.553575\pi\)
−0.167518 + 0.985869i \(0.553575\pi\)
\(758\) 0 0
\(759\) −5.39008e10 9.33590e10i −0.00589532 0.0102110i
\(760\) 0 0
\(761\) 6.58247e12 1.14012e13i 0.711472 1.23231i −0.252832 0.967510i \(-0.581362\pi\)
0.964304 0.264796i \(-0.0853047\pi\)
\(762\) 0 0
\(763\) −3.16160e12 + 3.33025e12i −0.337712 + 0.355727i
\(764\) 0 0
\(765\) −8.57069e12 + 1.48449e13i −0.904773 + 1.56711i
\(766\) 0 0
\(767\) −7.65629e12 1.32611e13i −0.798802 1.38357i
\(768\) 0 0
\(769\) −5.52244e12 −0.569460 −0.284730 0.958608i \(-0.591904\pi\)
−0.284730 + 0.958608i \(0.591904\pi\)
\(770\) 0 0
\(771\) 5.32487e11 0.0542706
\(772\) 0 0
\(773\) 9.92941e11 + 1.71982e12i 0.100027 + 0.173251i 0.911695 0.410867i \(-0.134774\pi\)
−0.811669 + 0.584118i \(0.801441\pi\)
\(774\) 0 0
\(775\) 1.58623e12 2.74744e12i 0.157946 0.273571i
\(776\) 0 0
\(777\) −3.63160e11 1.22694e12i −0.0357440 0.120761i
\(778\) 0 0
\(779\) −7.47836e11 + 1.29529e12i −0.0727592 + 0.126023i
\(780\) 0 0
\(781\) 7.44728e11 + 1.28991e12i 0.0716255 + 0.124059i
\(782\) 0 0
\(783\) −2.30876e12 −0.219508
\(784\) 0 0
\(785\) −2.65424e11 −0.0249474
\(786\) 0 0
\(787\) 7.05480e12 + 1.22193e13i 0.655538 + 1.13543i 0.981759 + 0.190132i \(0.0608916\pi\)
−0.326220 + 0.945294i \(0.605775\pi\)
\(788\) 0 0
\(789\) −3.95820e11 + 6.85581e11i −0.0363623 + 0.0629814i
\(790\) 0 0
\(791\) 5.30286e12 + 1.79158e13i 0.481632 + 1.62720i
\(792\) 0 0
\(793\) −8.97565e12 + 1.55463e13i −0.806003 + 1.39604i
\(794\) 0 0
\(795\) 5.42976e11 + 9.40463e11i 0.0482091 + 0.0835006i
\(796\) 0 0
\(797\) −9.54651e12 −0.838074 −0.419037 0.907969i \(-0.637632\pi\)
−0.419037 + 0.907969i \(0.637632\pi\)
\(798\) 0 0
\(799\) −9.33254e12 −0.810101
\(800\) 0 0
\(801\) −1.60695e12 2.78331e12i −0.137929 0.238900i
\(802\) 0 0
\(803\) −3.15529e11 + 5.46512e11i −0.0267805 + 0.0463852i
\(804\) 0 0
\(805\) 8.13129e11 8.56504e11i 0.0682461 0.0718866i
\(806\) 0 0
\(807\) −9.93145e11 + 1.72018e12i −0.0824293 + 0.142772i
\(808\) 0 0
\(809\) −9.23775e12 1.60003e13i −0.758225 1.31328i −0.943755 0.330645i \(-0.892734\pi\)
0.185531 0.982639i \(-0.440600\pi\)
\(810\) 0 0
\(811\) 1.08163e13 0.877981 0.438991 0.898492i \(-0.355336\pi\)
0.438991 + 0.898492i \(0.355336\pi\)
\(812\) 0 0
\(813\) 5.20787e11 0.0418074
\(814\) 0 0
\(815\) −9.83809e12 1.70401e13i −0.781091 1.35289i
\(816\) 0 0
\(817\) −3.54508e12 + 6.14026e12i −0.278373 + 0.482156i
\(818\) 0 0
\(819\) −1.88433e13 4.52799e12i −1.46345 0.351664i
\(820\) 0 0
\(821\) 4.49231e12 7.78092e12i 0.345085 0.597704i −0.640284 0.768138i \(-0.721183\pi\)
0.985369 + 0.170434i \(0.0545168\pi\)
\(822\) 0 0
\(823\) −1.04734e13 1.81404e13i −0.795770 1.37831i −0.922349 0.386357i \(-0.873733\pi\)
0.126579 0.991957i \(-0.459600\pi\)
\(824\) 0 0
\(825\) 9.98338e11 0.0750300
\(826\) 0 0
\(827\) 7.58139e12 0.563604 0.281802 0.959473i \(-0.409068\pi\)
0.281802 + 0.959473i \(0.409068\pi\)
\(828\) 0 0
\(829\) 6.64524e12 + 1.15099e13i 0.488670 + 0.846401i 0.999915 0.0130340i \(-0.00414896\pi\)
−0.511245 + 0.859435i \(0.670816\pi\)
\(830\) 0 0
\(831\) −1.09977e12 + 1.90485e12i −0.0800012 + 0.138566i
\(832\) 0 0
\(833\) 1.83949e13 + 9.38225e12i 1.32371 + 0.675156i
\(834\) 0 0
\(835\) 1.47017e13 2.54641e13i 1.04660 1.81276i
\(836\) 0 0
\(837\) −8.66896e11 1.50151e12i −0.0610523 0.105746i
\(838\) 0 0
\(839\) −6.44356e12 −0.448949 −0.224474 0.974480i \(-0.572067\pi\)
−0.224474 + 0.974480i \(0.572067\pi\)
\(840\) 0 0
\(841\) 3.28177e12 0.226218
\(842\) 0 0
\(843\) −6.75597e11 1.17017e12i −0.0460748 0.0798040i
\(844\) 0 0
\(845\) 1.19487e13 2.06957e13i 0.806242 1.39645i
\(846\) 0 0
\(847\) 1.68565e13 + 4.05059e12i 1.12536 + 0.270422i
\(848\) 0 0
\(849\) −1.39136e12 + 2.40991e12i −0.0919085 + 0.159190i
\(850\) 0 0
\(851\) −7.79466e11 1.35008e12i −0.0509465 0.0882419i
\(852\) 0 0
\(853\) −1.11447e13 −0.720769 −0.360384 0.932804i \(-0.617354\pi\)
−0.360384 + 0.932804i \(0.617354\pi\)
\(854\) 0 0
\(855\) 6.51519e12 0.416946
\(856\) 0 0
\(857\) −2.95516e12 5.11849e12i −0.187140 0.324137i 0.757155 0.653235i \(-0.226589\pi\)
−0.944296 + 0.329098i \(0.893255\pi\)
\(858\) 0 0
\(859\) −8.90380e12 + 1.54218e13i −0.557964 + 0.966422i 0.439702 + 0.898144i \(0.355084\pi\)
−0.997666 + 0.0682787i \(0.978249\pi\)
\(860\) 0 0
\(861\) −4.70024e11 + 4.95097e11i −0.0291478 + 0.0307027i
\(862\) 0 0
\(863\) 7.15238e12 1.23883e13i 0.438937 0.760261i −0.558671 0.829389i \(-0.688689\pi\)
0.997608 + 0.0691286i \(0.0220219\pi\)
\(864\) 0 0
\(865\) −1.56368e12 2.70838e12i −0.0949677 0.164489i
\(866\) 0 0
\(867\) 2.00202e12 0.120333
\(868\) 0 0
\(869\) −2.74230e12 −0.163127
\(870\) 0 0
\(871\) 1.57812e13 + 2.73338e13i 0.929091 + 1.60923i
\(872\) 0 0
\(873\) 1.53003e12 2.65009e12i 0.0891531 0.154418i
\(874\) 0 0
\(875\) −2.94883e12 9.96267e12i −0.170065 0.574565i
\(876\) 0 0
\(877\) −3.01728e12 + 5.22608e12i −0.172233 + 0.298317i −0.939200 0.343370i \(-0.888432\pi\)
0.766967 + 0.641687i \(0.221765\pi\)
\(878\) 0 0
\(879\) −5.08933e11 8.81498e11i −0.0287548 0.0498048i
\(880\) 0 0
\(881\) 1.54875e12 0.0866142 0.0433071 0.999062i \(-0.486211\pi\)
0.0433071 + 0.999062i \(0.486211\pi\)
\(882\) 0 0
\(883\) 2.01052e13 1.11297 0.556487 0.830857i \(-0.312149\pi\)
0.556487 + 0.830857i \(0.312149\pi\)
\(884\) 0 0
\(885\) 1.17483e12 + 2.03487e12i 0.0643771 + 0.111504i
\(886\) 0 0
\(887\) −1.07813e13 + 1.86737e13i −0.584809 + 1.01292i 0.410091 + 0.912045i \(0.365497\pi\)
−0.994899 + 0.100873i \(0.967836\pi\)
\(888\) 0 0
\(889\) −1.16787e12 3.94566e12i −0.0627099 0.211866i
\(890\) 0 0
\(891\) −1.34062e13 + 2.32202e13i −0.712617 + 1.23429i
\(892\) 0 0
\(893\) 1.77358e12 + 3.07193e12i 0.0933296 + 0.161652i
\(894\) 0 0
\(895\) −4.06208e12 −0.211614
\(896\) 0 0
\(897\) 2.36612e11 0.0122031
\(898\) 0 0
\(899\) 6.67941e12 + 1.15691e13i 0.341051 + 0.590718i
\(900\) 0 0
\(901\) −1.15666e13 + 2.00339e13i −0.584713 + 1.01275i
\(902\) 0 0
\(903\) −2.22813e12 + 2.34698e12i −0.111518 + 0.117467i
\(904\) 0 0
\(905\) 1.42288e13 2.46451e13i 0.705100 1.22127i
\(906\) 0 0
\(907\) −1.10527e12 1.91438e12i −0.0542295 0.0939283i 0.837636 0.546228i \(-0.183937\pi\)
−0.891866 + 0.452300i \(0.850604\pi\)
\(908\) 0 0
\(909\) −3.17208e12 −0.154102
\(910\) 0 0
\(911\) −7.06459e11 −0.0339824 −0.0169912 0.999856i \(-0.505409\pi\)
−0.0169912 + 0.999856i \(0.505409\pi\)
\(912\) 0 0
\(913\) 1.98029e13 + 3.42997e13i 0.943216 + 1.63370i
\(914\) 0 0
\(915\) 1.37728e12 2.38553e12i 0.0649574 0.112509i
\(916\) 0 0
\(917\) 1.82058e13 + 4.37481e12i 0.850253 + 0.204314i
\(918\) 0 0
\(919\) 8.29830e12 1.43731e13i 0.383768 0.664706i −0.607829 0.794068i \(-0.707959\pi\)
0.991597 + 0.129362i \(0.0412928\pi\)
\(920\) 0 0
\(921\) −8.23277e11 1.42596e12i −0.0377032 0.0653038i
\(922\) 0 0
\(923\) −3.26919e12 −0.148263
\(924\) 0 0
\(925\) 1.44371e13 0.648398
\(926\) 0 0
\(927\) −1.31937e13 2.28522e13i −0.586825 1.01641i
\(928\) 0 0
\(929\) −8.93907e12 + 1.54829e13i −0.393751 + 0.681996i −0.992941 0.118610i \(-0.962156\pi\)
0.599190 + 0.800607i \(0.295489\pi\)
\(930\) 0 0
\(931\) −4.07516e11 7.83795e12i −0.0177775 0.341923i
\(932\) 0 0
\(933\) 1.26742e12 2.19524e12i 0.0547589 0.0948452i
\(934\) 0 0
\(935\) 3.13680e13 + 5.43311e13i 1.34226 + 2.32485i
\(936\) 0 0
\(937\) 4.36868e13 1.85149 0.925747 0.378143i \(-0.123437\pi\)
0.925747 + 0.378143i \(0.123437\pi\)
\(938\) 0 0
\(939\) 3.97489e12 0.166852
\(940\) 0 0
\(941\) −3.20352e12 5.54866e12i −0.133191 0.230693i 0.791714 0.610892i \(-0.209189\pi\)
−0.924905 + 0.380199i \(0.875856\pi\)
\(942\) 0 0
\(943\) −4.15864e11 + 7.20298e11i −0.0171257 + 0.0296626i
\(944\) 0 0
\(945\) 5.81185e12 + 1.39657e12i 0.237067 + 0.0569667i
\(946\) 0 0
\(947\) −5.20865e12 + 9.02164e12i −0.210451 + 0.364511i −0.951856 0.306547i \(-0.900826\pi\)
0.741405 + 0.671058i \(0.234160\pi\)
\(948\) 0 0
\(949\) −6.92550e11 1.19953e12i −0.0277175 0.0480080i
\(950\) 0 0
\(951\) −1.42190e12 −0.0563713
\(952\) 0 0
\(953\) 6.40900e12 0.251694 0.125847 0.992050i \(-0.459835\pi\)
0.125847 + 0.992050i \(0.459835\pi\)
\(954\) 0 0
\(955\) 2.89236e12 + 5.00972e12i 0.112522 + 0.194894i
\(956\) 0 0
\(957\) −2.10193e12 + 3.64066e12i −0.0810056 + 0.140306i
\(958\) 0 0
\(959\) 3.37359e13 3.55355e13i 1.28798 1.35668i
\(960\) 0 0
\(961\) 8.20382e12 1.42094e13i 0.310285 0.537429i
\(962\) 0 0
\(963\) −8.56099e10 1.48281e11i −0.00320779 0.00555605i
\(964\) 0 0
\(965\) 8.12000e12 0.301428
\(966\) 0 0
\(967\) −1.24456e12 −0.0457718 −0.0228859 0.999738i \(-0.507285\pi\)
−0.0228859 + 0.999738i \(0.507285\pi\)
\(968\) 0 0
\(969\) −6.95414e11 1.20449e12i −0.0253388 0.0438881i
\(970\) 0 0
\(971\) 1.88913e13 3.27208e13i 0.681988 1.18124i −0.292386 0.956300i \(-0.594449\pi\)
0.974373 0.224937i \(-0.0722175\pi\)
\(972\) 0 0
\(973\) −9.74713e12 3.29308e13i −0.348633 1.17786i
\(974\) 0 0
\(975\) −1.09562e12 + 1.89767e12i −0.0388274 + 0.0672511i
\(976\) 0 0
\(977\) 6.39041e12 + 1.10685e13i 0.224390 + 0.388655i 0.956136 0.292922i \(-0.0946278\pi\)
−0.731746 + 0.681577i \(0.761294\pi\)
\(978\) 0 0
\(979\) −1.17626e13 −0.409242
\(980\) 0 0
\(981\) −1.40871e13 −0.485635
\(982\) 0 0
\(983\) −1.14746e13 1.98746e13i −0.391964 0.678902i 0.600744 0.799441i \(-0.294871\pi\)
−0.992709 + 0.120539i \(0.961538\pi\)
\(984\) 0 0
\(985\) −1.43515e13 + 2.48576e13i −0.485776 + 0.841388i
\(986\) 0 0
\(987\) 4.59511e11 + 1.55246e12i 0.0154123 + 0.0520708i
\(988\) 0 0
\(989\) −1.97138e12 + 3.41454e12i −0.0655221 + 0.113488i
\(990\) 0 0
\(991\) 1.37595e13 + 2.38322e13i 0.453182 + 0.784934i 0.998582 0.0532423i \(-0.0169556\pi\)
−0.545400 + 0.838176i \(0.683622\pi\)
\(992\) 0 0
\(993\) −4.24782e12 −0.138642
\(994\) 0 0
\(995\) 4.50063e13 1.45569
\(996\) 0 0
\(997\) −1.41861e13 2.45711e13i −0.454712 0.787583i 0.543960 0.839111i \(-0.316924\pi\)
−0.998672 + 0.0515277i \(0.983591\pi\)
\(998\) 0 0
\(999\) 3.94502e12 6.83298e12i 0.125315 0.217053i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.b.65.2 6
4.3 odd 2 14.10.c.a.9.2 6
7.4 even 3 inner 112.10.i.b.81.2 6
12.11 even 2 126.10.g.f.37.1 6
28.3 even 6 98.10.c.k.67.2 6
28.11 odd 6 14.10.c.a.11.2 yes 6
28.19 even 6 98.10.a.i.1.2 3
28.23 odd 6 98.10.a.j.1.2 3
28.27 even 2 98.10.c.k.79.2 6
84.11 even 6 126.10.g.f.109.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.2 6 4.3 odd 2
14.10.c.a.11.2 yes 6 28.11 odd 6
98.10.a.i.1.2 3 28.19 even 6
98.10.a.j.1.2 3 28.23 odd 6
98.10.c.k.67.2 6 28.3 even 6
98.10.c.k.79.2 6 28.27 even 2
112.10.i.b.65.2 6 1.1 even 1 trivial
112.10.i.b.81.2 6 7.4 even 3 inner
126.10.g.f.37.1 6 12.11 even 2
126.10.g.f.109.1 6 84.11 even 6