Properties

Label 112.10
Level 112
Weight 10
Dimension 1841
Nonzero newspaces 8
Sturm bound 7680
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(7680\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(112))\).

Total New Old
Modular forms 3540 1885 1655
Cusp forms 3372 1841 1531
Eisenstein series 168 44 124

Trace form

\( 1841 q - 8 q^{2} + 155 q^{3} - 348 q^{4} + 709 q^{5} + 4372 q^{6} - 1385 q^{7} + 1408 q^{8} - 11627 q^{9} - 9380 q^{10} - 109741 q^{11} - 434324 q^{12} + 86146 q^{13} + 133528 q^{14} - 930906 q^{15} + 1634500 q^{16}+ \cdots + 6210596644 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(112))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
112.10.a \(\chi_{112}(1, \cdot)\) 112.10.a.a 1 1
112.10.a.b 1
112.10.a.c 2
112.10.a.d 2
112.10.a.e 2
112.10.a.f 2
112.10.a.g 3
112.10.a.h 3
112.10.a.i 3
112.10.a.j 4
112.10.a.k 4
112.10.b \(\chi_{112}(57, \cdot)\) None 0 1
112.10.e \(\chi_{112}(55, \cdot)\) None 0 1
112.10.f \(\chi_{112}(111, \cdot)\) 112.10.f.a 12 1
112.10.f.b 24
112.10.i \(\chi_{112}(65, \cdot)\) 112.10.i.a 6 2
112.10.i.b 6
112.10.i.c 10
112.10.i.d 12
112.10.i.e 18
112.10.i.f 18
112.10.j \(\chi_{112}(27, \cdot)\) n/a 284 2
112.10.m \(\chi_{112}(29, \cdot)\) n/a 216 2
112.10.p \(\chi_{112}(31, \cdot)\) 112.10.p.a 24 2
112.10.p.b 24
112.10.p.c 24
112.10.q \(\chi_{112}(87, \cdot)\) None 0 2
112.10.t \(\chi_{112}(9, \cdot)\) None 0 2
112.10.v \(\chi_{112}(3, \cdot)\) n/a 568 4
112.10.w \(\chi_{112}(37, \cdot)\) n/a 568 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(112))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(112)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)