Properties

Label 1083.2.a.p.1.4
Level $1083$
Weight $2$
Character 1083.1
Self dual yes
Analytic conductor $8.648$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1083,2,Mod(1,1083)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1083.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1083, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.64779853890\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6357609.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - x^{3} + 18x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.842316\) of defining polynomial
Character \(\chi\) \(=\) 1083.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.842316 q^{2} -1.00000 q^{3} -1.29050 q^{4} +1.70747 q^{5} -0.842316 q^{6} +3.93033 q^{7} -2.77164 q^{8} +1.00000 q^{9} +1.43823 q^{10} +4.42535 q^{11} +1.29050 q^{12} -1.82462 q^{13} +3.31058 q^{14} -1.70747 q^{15} +0.246406 q^{16} -5.02644 q^{17} +0.842316 q^{18} -2.20349 q^{20} -3.93033 q^{21} +3.72755 q^{22} +3.45831 q^{23} +2.77164 q^{24} -2.08456 q^{25} -1.53691 q^{26} -1.00000 q^{27} -5.07211 q^{28} +1.45022 q^{29} -1.43823 q^{30} +2.86943 q^{31} +5.75084 q^{32} -4.42535 q^{33} -4.23385 q^{34} +6.71091 q^{35} -1.29050 q^{36} +4.83123 q^{37} +1.82462 q^{39} -4.73249 q^{40} +8.80804 q^{41} -3.31058 q^{42} +10.1017 q^{43} -5.71093 q^{44} +1.70747 q^{45} +2.91299 q^{46} +3.43531 q^{47} -0.246406 q^{48} +8.44752 q^{49} -1.75586 q^{50} +5.02644 q^{51} +2.35468 q^{52} +2.11234 q^{53} -0.842316 q^{54} +7.55614 q^{55} -10.8935 q^{56} +1.22154 q^{58} -6.40598 q^{59} +2.20349 q^{60} +0.0766957 q^{61} +2.41696 q^{62} +3.93033 q^{63} +4.35121 q^{64} -3.11548 q^{65} -3.72755 q^{66} +1.04715 q^{67} +6.48664 q^{68} -3.45831 q^{69} +5.65271 q^{70} +13.5488 q^{71} -2.77164 q^{72} +4.01120 q^{73} +4.06942 q^{74} +2.08456 q^{75} +17.3931 q^{77} +1.53691 q^{78} -16.9649 q^{79} +0.420729 q^{80} +1.00000 q^{81} +7.41916 q^{82} -13.0252 q^{83} +5.07211 q^{84} -8.58248 q^{85} +8.50883 q^{86} -1.45022 q^{87} -12.2655 q^{88} -12.3638 q^{89} +1.43823 q^{90} -7.17137 q^{91} -4.46296 q^{92} -2.86943 q^{93} +2.89362 q^{94} -5.75084 q^{96} -0.175254 q^{97} +7.11548 q^{98} +4.42535 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{4} + 9 q^{5} + 9 q^{7} + 3 q^{8} + 6 q^{9} - 6 q^{10} + 9 q^{11} - 6 q^{12} - 3 q^{13} + 6 q^{14} - 9 q^{15} + 6 q^{16} + 15 q^{17} - 9 q^{20} - 9 q^{21} + 21 q^{22} + 6 q^{23} - 3 q^{24}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.842316 0.595608 0.297804 0.954627i \(-0.403746\pi\)
0.297804 + 0.954627i \(0.403746\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.29050 −0.645252
\(5\) 1.70747 0.763602 0.381801 0.924244i \(-0.375304\pi\)
0.381801 + 0.924244i \(0.375304\pi\)
\(6\) −0.842316 −0.343874
\(7\) 3.93033 1.48553 0.742763 0.669554i \(-0.233515\pi\)
0.742763 + 0.669554i \(0.233515\pi\)
\(8\) −2.77164 −0.979924
\(9\) 1.00000 0.333333
\(10\) 1.43823 0.454807
\(11\) 4.42535 1.33429 0.667147 0.744926i \(-0.267515\pi\)
0.667147 + 0.744926i \(0.267515\pi\)
\(12\) 1.29050 0.372536
\(13\) −1.82462 −0.506059 −0.253030 0.967459i \(-0.581427\pi\)
−0.253030 + 0.967459i \(0.581427\pi\)
\(14\) 3.31058 0.884791
\(15\) −1.70747 −0.440866
\(16\) 0.246406 0.0616014
\(17\) −5.02644 −1.21909 −0.609545 0.792751i \(-0.708648\pi\)
−0.609545 + 0.792751i \(0.708648\pi\)
\(18\) 0.842316 0.198536
\(19\) 0 0
\(20\) −2.20349 −0.492716
\(21\) −3.93033 −0.857669
\(22\) 3.72755 0.794716
\(23\) 3.45831 0.721107 0.360553 0.932739i \(-0.382588\pi\)
0.360553 + 0.932739i \(0.382588\pi\)
\(24\) 2.77164 0.565760
\(25\) −2.08456 −0.416912
\(26\) −1.53691 −0.301413
\(27\) −1.00000 −0.192450
\(28\) −5.07211 −0.958538
\(29\) 1.45022 0.269299 0.134649 0.990893i \(-0.457009\pi\)
0.134649 + 0.990893i \(0.457009\pi\)
\(30\) −1.43823 −0.262583
\(31\) 2.86943 0.515364 0.257682 0.966230i \(-0.417041\pi\)
0.257682 + 0.966230i \(0.417041\pi\)
\(32\) 5.75084 1.01661
\(33\) −4.42535 −0.770355
\(34\) −4.23385 −0.726100
\(35\) 6.71091 1.13435
\(36\) −1.29050 −0.215084
\(37\) 4.83123 0.794249 0.397124 0.917765i \(-0.370008\pi\)
0.397124 + 0.917765i \(0.370008\pi\)
\(38\) 0 0
\(39\) 1.82462 0.292173
\(40\) −4.73249 −0.748272
\(41\) 8.80804 1.37559 0.687793 0.725907i \(-0.258580\pi\)
0.687793 + 0.725907i \(0.258580\pi\)
\(42\) −3.31058 −0.510834
\(43\) 10.1017 1.54050 0.770248 0.637745i \(-0.220132\pi\)
0.770248 + 0.637745i \(0.220132\pi\)
\(44\) −5.71093 −0.860956
\(45\) 1.70747 0.254534
\(46\) 2.91299 0.429497
\(47\) 3.43531 0.501092 0.250546 0.968105i \(-0.419390\pi\)
0.250546 + 0.968105i \(0.419390\pi\)
\(48\) −0.246406 −0.0355656
\(49\) 8.44752 1.20679
\(50\) −1.75586 −0.248316
\(51\) 5.02644 0.703842
\(52\) 2.35468 0.326536
\(53\) 2.11234 0.290152 0.145076 0.989421i \(-0.453657\pi\)
0.145076 + 0.989421i \(0.453657\pi\)
\(54\) −0.842316 −0.114625
\(55\) 7.55614 1.01887
\(56\) −10.8935 −1.45570
\(57\) 0 0
\(58\) 1.22154 0.160396
\(59\) −6.40598 −0.833988 −0.416994 0.908909i \(-0.636916\pi\)
−0.416994 + 0.908909i \(0.636916\pi\)
\(60\) 2.20349 0.284470
\(61\) 0.0766957 0.00981988 0.00490994 0.999988i \(-0.498437\pi\)
0.00490994 + 0.999988i \(0.498437\pi\)
\(62\) 2.41696 0.306955
\(63\) 3.93033 0.495175
\(64\) 4.35121 0.543902
\(65\) −3.11548 −0.386428
\(66\) −3.72755 −0.458829
\(67\) 1.04715 0.127930 0.0639650 0.997952i \(-0.479625\pi\)
0.0639650 + 0.997952i \(0.479625\pi\)
\(68\) 6.48664 0.786620
\(69\) −3.45831 −0.416331
\(70\) 5.65271 0.675628
\(71\) 13.5488 1.60794 0.803971 0.594668i \(-0.202717\pi\)
0.803971 + 0.594668i \(0.202717\pi\)
\(72\) −2.77164 −0.326641
\(73\) 4.01120 0.469475 0.234738 0.972059i \(-0.424577\pi\)
0.234738 + 0.972059i \(0.424577\pi\)
\(74\) 4.06942 0.473061
\(75\) 2.08456 0.240704
\(76\) 0 0
\(77\) 17.3931 1.98213
\(78\) 1.53691 0.174021
\(79\) −16.9649 −1.90870 −0.954348 0.298697i \(-0.903448\pi\)
−0.954348 + 0.298697i \(0.903448\pi\)
\(80\) 0.420729 0.0470390
\(81\) 1.00000 0.111111
\(82\) 7.41916 0.819309
\(83\) −13.0252 −1.42970 −0.714850 0.699278i \(-0.753505\pi\)
−0.714850 + 0.699278i \(0.753505\pi\)
\(84\) 5.07211 0.553412
\(85\) −8.58248 −0.930900
\(86\) 8.50883 0.917531
\(87\) −1.45022 −0.155480
\(88\) −12.2655 −1.30751
\(89\) −12.3638 −1.31056 −0.655279 0.755387i \(-0.727449\pi\)
−0.655279 + 0.755387i \(0.727449\pi\)
\(90\) 1.43823 0.151602
\(91\) −7.17137 −0.751764
\(92\) −4.46296 −0.465295
\(93\) −2.86943 −0.297546
\(94\) 2.89362 0.298454
\(95\) 0 0
\(96\) −5.75084 −0.586943
\(97\) −0.175254 −0.0177944 −0.00889718 0.999960i \(-0.502832\pi\)
−0.00889718 + 0.999960i \(0.502832\pi\)
\(98\) 7.11548 0.718772
\(99\) 4.42535 0.444765
\(100\) 2.69013 0.269013
\(101\) −11.2135 −1.11578 −0.557891 0.829914i \(-0.688389\pi\)
−0.557891 + 0.829914i \(0.688389\pi\)
\(102\) 4.23385 0.419214
\(103\) −9.52010 −0.938043 −0.469022 0.883187i \(-0.655393\pi\)
−0.469022 + 0.883187i \(0.655393\pi\)
\(104\) 5.05720 0.495900
\(105\) −6.71091 −0.654918
\(106\) 1.77925 0.172816
\(107\) 10.2690 0.992742 0.496371 0.868111i \(-0.334666\pi\)
0.496371 + 0.868111i \(0.334666\pi\)
\(108\) 1.29050 0.124179
\(109\) 2.04164 0.195554 0.0977770 0.995208i \(-0.468827\pi\)
0.0977770 + 0.995208i \(0.468827\pi\)
\(110\) 6.36466 0.606847
\(111\) −4.83123 −0.458560
\(112\) 0.968456 0.0915105
\(113\) 13.9973 1.31675 0.658375 0.752690i \(-0.271244\pi\)
0.658375 + 0.752690i \(0.271244\pi\)
\(114\) 0 0
\(115\) 5.90494 0.550639
\(116\) −1.87151 −0.173765
\(117\) −1.82462 −0.168686
\(118\) −5.39587 −0.496730
\(119\) −19.7556 −1.81099
\(120\) 4.73249 0.432015
\(121\) 8.58375 0.780341
\(122\) 0.0646020 0.00584879
\(123\) −8.80804 −0.794195
\(124\) −3.70300 −0.332539
\(125\) −12.0966 −1.08196
\(126\) 3.31058 0.294930
\(127\) −1.95928 −0.173858 −0.0869288 0.996215i \(-0.527705\pi\)
−0.0869288 + 0.996215i \(0.527705\pi\)
\(128\) −7.83658 −0.692662
\(129\) −10.1017 −0.889406
\(130\) −2.62422 −0.230159
\(131\) −1.56004 −0.136302 −0.0681508 0.997675i \(-0.521710\pi\)
−0.0681508 + 0.997675i \(0.521710\pi\)
\(132\) 5.71093 0.497073
\(133\) 0 0
\(134\) 0.882034 0.0761961
\(135\) −1.70747 −0.146955
\(136\) 13.9315 1.19462
\(137\) 15.3618 1.31244 0.656222 0.754568i \(-0.272154\pi\)
0.656222 + 0.754568i \(0.272154\pi\)
\(138\) −2.91299 −0.247970
\(139\) 9.30803 0.789496 0.394748 0.918789i \(-0.370832\pi\)
0.394748 + 0.918789i \(0.370832\pi\)
\(140\) −8.66046 −0.731942
\(141\) −3.43531 −0.289306
\(142\) 11.4123 0.957703
\(143\) −8.07460 −0.675232
\(144\) 0.246406 0.0205338
\(145\) 2.47620 0.205637
\(146\) 3.37870 0.279623
\(147\) −8.44752 −0.696740
\(148\) −6.23472 −0.512490
\(149\) 5.18414 0.424702 0.212351 0.977194i \(-0.431888\pi\)
0.212351 + 0.977194i \(0.431888\pi\)
\(150\) 1.75586 0.143365
\(151\) −13.0922 −1.06543 −0.532713 0.846296i \(-0.678827\pi\)
−0.532713 + 0.846296i \(0.678827\pi\)
\(152\) 0 0
\(153\) −5.02644 −0.406364
\(154\) 14.6505 1.18057
\(155\) 4.89945 0.393533
\(156\) −2.35468 −0.188525
\(157\) −7.36968 −0.588164 −0.294082 0.955780i \(-0.595014\pi\)
−0.294082 + 0.955780i \(0.595014\pi\)
\(158\) −14.2898 −1.13683
\(159\) −2.11234 −0.167519
\(160\) 9.81937 0.776289
\(161\) 13.5923 1.07122
\(162\) 0.842316 0.0661786
\(163\) −16.0281 −1.25542 −0.627708 0.778449i \(-0.716007\pi\)
−0.627708 + 0.778449i \(0.716007\pi\)
\(164\) −11.3668 −0.887599
\(165\) −7.55614 −0.588245
\(166\) −10.9713 −0.851540
\(167\) 13.1273 1.01582 0.507911 0.861409i \(-0.330418\pi\)
0.507911 + 0.861409i \(0.330418\pi\)
\(168\) 10.8935 0.840451
\(169\) −9.67075 −0.743904
\(170\) −7.22916 −0.554451
\(171\) 0 0
\(172\) −13.0363 −0.994007
\(173\) 18.4720 1.40440 0.702201 0.711978i \(-0.252201\pi\)
0.702201 + 0.711978i \(0.252201\pi\)
\(174\) −1.22154 −0.0926048
\(175\) −8.19301 −0.619333
\(176\) 1.09043 0.0821944
\(177\) 6.40598 0.481503
\(178\) −10.4142 −0.780578
\(179\) −11.8588 −0.886370 −0.443185 0.896430i \(-0.646151\pi\)
−0.443185 + 0.896430i \(0.646151\pi\)
\(180\) −2.20349 −0.164239
\(181\) −0.273724 −0.0203457 −0.0101729 0.999948i \(-0.503238\pi\)
−0.0101729 + 0.999948i \(0.503238\pi\)
\(182\) −6.04056 −0.447756
\(183\) −0.0766957 −0.00566951
\(184\) −9.58520 −0.706630
\(185\) 8.24916 0.606490
\(186\) −2.41696 −0.177220
\(187\) −22.2438 −1.62663
\(188\) −4.43328 −0.323330
\(189\) −3.93033 −0.285890
\(190\) 0 0
\(191\) −12.1649 −0.880218 −0.440109 0.897944i \(-0.645060\pi\)
−0.440109 + 0.897944i \(0.645060\pi\)
\(192\) −4.35121 −0.314022
\(193\) −23.0762 −1.66106 −0.830532 0.556970i \(-0.811964\pi\)
−0.830532 + 0.556970i \(0.811964\pi\)
\(194\) −0.147619 −0.0105985
\(195\) 3.11548 0.223104
\(196\) −10.9016 −0.778682
\(197\) 6.46873 0.460878 0.230439 0.973087i \(-0.425984\pi\)
0.230439 + 0.973087i \(0.425984\pi\)
\(198\) 3.72755 0.264905
\(199\) 0.307088 0.0217689 0.0108845 0.999941i \(-0.496535\pi\)
0.0108845 + 0.999941i \(0.496535\pi\)
\(200\) 5.77765 0.408542
\(201\) −1.04715 −0.0738605
\(202\) −9.44529 −0.664569
\(203\) 5.69984 0.400050
\(204\) −6.48664 −0.454155
\(205\) 15.0394 1.05040
\(206\) −8.01893 −0.558706
\(207\) 3.45831 0.240369
\(208\) −0.449597 −0.0311740
\(209\) 0 0
\(210\) −5.65271 −0.390074
\(211\) −10.5856 −0.728741 −0.364371 0.931254i \(-0.618716\pi\)
−0.364371 + 0.931254i \(0.618716\pi\)
\(212\) −2.72598 −0.187221
\(213\) −13.5488 −0.928346
\(214\) 8.64975 0.591284
\(215\) 17.2483 1.17633
\(216\) 2.77164 0.188587
\(217\) 11.2778 0.765587
\(218\) 1.71971 0.116473
\(219\) −4.01120 −0.271052
\(220\) −9.75123 −0.657428
\(221\) 9.17135 0.616932
\(222\) −4.06942 −0.273122
\(223\) −7.43507 −0.497889 −0.248944 0.968518i \(-0.580084\pi\)
−0.248944 + 0.968518i \(0.580084\pi\)
\(224\) 22.6027 1.51021
\(225\) −2.08456 −0.138971
\(226\) 11.7901 0.784267
\(227\) −3.54389 −0.235216 −0.117608 0.993060i \(-0.537523\pi\)
−0.117608 + 0.993060i \(0.537523\pi\)
\(228\) 0 0
\(229\) −11.3492 −0.749973 −0.374987 0.927030i \(-0.622353\pi\)
−0.374987 + 0.927030i \(0.622353\pi\)
\(230\) 4.97383 0.327965
\(231\) −17.3931 −1.14438
\(232\) −4.01949 −0.263892
\(233\) −5.92767 −0.388335 −0.194167 0.980968i \(-0.562200\pi\)
−0.194167 + 0.980968i \(0.562200\pi\)
\(234\) −1.53691 −0.100471
\(235\) 5.86568 0.382635
\(236\) 8.26695 0.538132
\(237\) 16.9649 1.10199
\(238\) −16.6404 −1.07864
\(239\) 15.1684 0.981165 0.490583 0.871395i \(-0.336784\pi\)
0.490583 + 0.871395i \(0.336784\pi\)
\(240\) −0.420729 −0.0271580
\(241\) −8.86254 −0.570887 −0.285443 0.958396i \(-0.592141\pi\)
−0.285443 + 0.958396i \(0.592141\pi\)
\(242\) 7.23023 0.464777
\(243\) −1.00000 −0.0641500
\(244\) −0.0989760 −0.00633629
\(245\) 14.4239 0.921506
\(246\) −7.41916 −0.473028
\(247\) 0 0
\(248\) −7.95303 −0.505018
\(249\) 13.0252 0.825438
\(250\) −10.1892 −0.644422
\(251\) 11.7071 0.738948 0.369474 0.929241i \(-0.379538\pi\)
0.369474 + 0.929241i \(0.379538\pi\)
\(252\) −5.07211 −0.319513
\(253\) 15.3042 0.962169
\(254\) −1.65033 −0.103551
\(255\) 8.58248 0.537456
\(256\) −15.3033 −0.956457
\(257\) 9.91597 0.618541 0.309271 0.950974i \(-0.399915\pi\)
0.309271 + 0.950974i \(0.399915\pi\)
\(258\) −8.50883 −0.529737
\(259\) 18.9883 1.17988
\(260\) 4.02054 0.249343
\(261\) 1.45022 0.0897662
\(262\) −1.31405 −0.0811823
\(263\) −6.73892 −0.415540 −0.207770 0.978178i \(-0.566621\pi\)
−0.207770 + 0.978178i \(0.566621\pi\)
\(264\) 12.2655 0.754890
\(265\) 3.60674 0.221560
\(266\) 0 0
\(267\) 12.3638 0.756651
\(268\) −1.35135 −0.0825471
\(269\) −0.718290 −0.0437949 −0.0218975 0.999760i \(-0.506971\pi\)
−0.0218975 + 0.999760i \(0.506971\pi\)
\(270\) −1.43823 −0.0875277
\(271\) −28.8411 −1.75197 −0.875985 0.482339i \(-0.839787\pi\)
−0.875985 + 0.482339i \(0.839787\pi\)
\(272\) −1.23854 −0.0750977
\(273\) 7.17137 0.434031
\(274\) 12.9395 0.781701
\(275\) −9.22490 −0.556283
\(276\) 4.46296 0.268638
\(277\) −3.83134 −0.230203 −0.115101 0.993354i \(-0.536719\pi\)
−0.115101 + 0.993354i \(0.536719\pi\)
\(278\) 7.84030 0.470230
\(279\) 2.86943 0.171788
\(280\) −18.6003 −1.11158
\(281\) 22.0921 1.31791 0.658953 0.752184i \(-0.271000\pi\)
0.658953 + 0.752184i \(0.271000\pi\)
\(282\) −2.89362 −0.172313
\(283\) −25.1465 −1.49481 −0.747403 0.664371i \(-0.768699\pi\)
−0.747403 + 0.664371i \(0.768699\pi\)
\(284\) −17.4847 −1.03753
\(285\) 0 0
\(286\) −6.80136 −0.402173
\(287\) 34.6185 2.04347
\(288\) 5.75084 0.338872
\(289\) 8.26510 0.486182
\(290\) 2.08574 0.122479
\(291\) 0.175254 0.0102736
\(292\) −5.17647 −0.302930
\(293\) 5.92712 0.346266 0.173133 0.984898i \(-0.444611\pi\)
0.173133 + 0.984898i \(0.444611\pi\)
\(294\) −7.11548 −0.414983
\(295\) −10.9380 −0.636835
\(296\) −13.3904 −0.778304
\(297\) −4.42535 −0.256785
\(298\) 4.36669 0.252955
\(299\) −6.31010 −0.364923
\(300\) −2.69013 −0.155315
\(301\) 39.7031 2.28845
\(302\) −11.0277 −0.634575
\(303\) 11.2135 0.644197
\(304\) 0 0
\(305\) 0.130955 0.00749848
\(306\) −4.23385 −0.242033
\(307\) 17.5842 1.00359 0.501793 0.864988i \(-0.332674\pi\)
0.501793 + 0.864988i \(0.332674\pi\)
\(308\) −22.4459 −1.27897
\(309\) 9.52010 0.541579
\(310\) 4.12688 0.234391
\(311\) −6.02866 −0.341854 −0.170927 0.985284i \(-0.554676\pi\)
−0.170927 + 0.985284i \(0.554676\pi\)
\(312\) −5.05720 −0.286308
\(313\) 16.6980 0.943829 0.471914 0.881644i \(-0.343563\pi\)
0.471914 + 0.881644i \(0.343563\pi\)
\(314\) −6.20760 −0.350315
\(315\) 6.71091 0.378117
\(316\) 21.8932 1.23159
\(317\) 2.19305 0.123174 0.0615870 0.998102i \(-0.480384\pi\)
0.0615870 + 0.998102i \(0.480384\pi\)
\(318\) −1.77925 −0.0997756
\(319\) 6.41772 0.359323
\(320\) 7.42955 0.415325
\(321\) −10.2690 −0.573160
\(322\) 11.4490 0.638029
\(323\) 0 0
\(324\) −1.29050 −0.0716946
\(325\) 3.80353 0.210982
\(326\) −13.5007 −0.747735
\(327\) −2.04164 −0.112903
\(328\) −24.4128 −1.34797
\(329\) 13.5019 0.744385
\(330\) −6.36466 −0.350363
\(331\) −15.5408 −0.854199 −0.427099 0.904205i \(-0.640465\pi\)
−0.427099 + 0.904205i \(0.640465\pi\)
\(332\) 16.8091 0.922516
\(333\) 4.83123 0.264750
\(334\) 11.0574 0.605032
\(335\) 1.78798 0.0976877
\(336\) −0.968456 −0.0528336
\(337\) −12.3767 −0.674200 −0.337100 0.941469i \(-0.609446\pi\)
−0.337100 + 0.941469i \(0.609446\pi\)
\(338\) −8.14583 −0.443075
\(339\) −13.9973 −0.760226
\(340\) 11.0757 0.600665
\(341\) 12.6982 0.687647
\(342\) 0 0
\(343\) 5.68923 0.307189
\(344\) −27.9983 −1.50957
\(345\) −5.90494 −0.317911
\(346\) 15.5593 0.836473
\(347\) −22.2056 −1.19206 −0.596030 0.802962i \(-0.703256\pi\)
−0.596030 + 0.802962i \(0.703256\pi\)
\(348\) 1.87151 0.100323
\(349\) −19.9292 −1.06679 −0.533393 0.845867i \(-0.679083\pi\)
−0.533393 + 0.845867i \(0.679083\pi\)
\(350\) −6.90110 −0.368879
\(351\) 1.82462 0.0973911
\(352\) 25.4495 1.35646
\(353\) −5.20604 −0.277089 −0.138545 0.990356i \(-0.544242\pi\)
−0.138545 + 0.990356i \(0.544242\pi\)
\(354\) 5.39587 0.286787
\(355\) 23.1341 1.22783
\(356\) 15.9555 0.845640
\(357\) 19.7556 1.04558
\(358\) −9.98887 −0.527928
\(359\) −5.16826 −0.272771 −0.136385 0.990656i \(-0.543549\pi\)
−0.136385 + 0.990656i \(0.543549\pi\)
\(360\) −4.73249 −0.249424
\(361\) 0 0
\(362\) −0.230562 −0.0121181
\(363\) −8.58375 −0.450530
\(364\) 9.25468 0.485077
\(365\) 6.84899 0.358493
\(366\) −0.0646020 −0.00337680
\(367\) −6.06224 −0.316447 −0.158223 0.987403i \(-0.550577\pi\)
−0.158223 + 0.987403i \(0.550577\pi\)
\(368\) 0.852146 0.0444212
\(369\) 8.80804 0.458528
\(370\) 6.94840 0.361230
\(371\) 8.30218 0.431028
\(372\) 3.70300 0.191992
\(373\) −9.98545 −0.517027 −0.258514 0.966008i \(-0.583233\pi\)
−0.258514 + 0.966008i \(0.583233\pi\)
\(374\) −18.7363 −0.968830
\(375\) 12.0966 0.624668
\(376\) −9.52147 −0.491032
\(377\) −2.64610 −0.136281
\(378\) −3.31058 −0.170278
\(379\) 13.7799 0.707826 0.353913 0.935278i \(-0.384851\pi\)
0.353913 + 0.935278i \(0.384851\pi\)
\(380\) 0 0
\(381\) 1.95928 0.100377
\(382\) −10.2467 −0.524265
\(383\) −16.3124 −0.833524 −0.416762 0.909016i \(-0.636835\pi\)
−0.416762 + 0.909016i \(0.636835\pi\)
\(384\) 7.83658 0.399909
\(385\) 29.6982 1.51356
\(386\) −19.4375 −0.989343
\(387\) 10.1017 0.513499
\(388\) 0.226166 0.0114818
\(389\) −11.4713 −0.581617 −0.290808 0.956781i \(-0.593924\pi\)
−0.290808 + 0.956781i \(0.593924\pi\)
\(390\) 2.62422 0.132883
\(391\) −17.3830 −0.879095
\(392\) −23.4135 −1.18256
\(393\) 1.56004 0.0786938
\(394\) 5.44871 0.274502
\(395\) −28.9669 −1.45748
\(396\) −5.71093 −0.286985
\(397\) −0.448109 −0.0224899 −0.0112450 0.999937i \(-0.503579\pi\)
−0.0112450 + 0.999937i \(0.503579\pi\)
\(398\) 0.258665 0.0129657
\(399\) 0 0
\(400\) −0.513647 −0.0256823
\(401\) −14.5064 −0.724416 −0.362208 0.932097i \(-0.617977\pi\)
−0.362208 + 0.932097i \(0.617977\pi\)
\(402\) −0.882034 −0.0439919
\(403\) −5.23562 −0.260805
\(404\) 14.4710 0.719961
\(405\) 1.70747 0.0848447
\(406\) 4.80106 0.238273
\(407\) 21.3799 1.05976
\(408\) −13.9315 −0.689712
\(409\) 13.1990 0.652647 0.326323 0.945258i \(-0.394190\pi\)
0.326323 + 0.945258i \(0.394190\pi\)
\(410\) 12.6680 0.625626
\(411\) −15.3618 −0.757739
\(412\) 12.2857 0.605274
\(413\) −25.1777 −1.23891
\(414\) 2.91299 0.143166
\(415\) −22.2401 −1.09172
\(416\) −10.4931 −0.514467
\(417\) −9.30803 −0.455816
\(418\) 0 0
\(419\) 11.4229 0.558047 0.279024 0.960284i \(-0.409989\pi\)
0.279024 + 0.960284i \(0.409989\pi\)
\(420\) 8.66046 0.422587
\(421\) 16.5837 0.808240 0.404120 0.914706i \(-0.367578\pi\)
0.404120 + 0.914706i \(0.367578\pi\)
\(422\) −8.91641 −0.434044
\(423\) 3.43531 0.167031
\(424\) −5.85464 −0.284327
\(425\) 10.4779 0.508253
\(426\) −11.4123 −0.552930
\(427\) 0.301440 0.0145877
\(428\) −13.2522 −0.640568
\(429\) 8.07460 0.389845
\(430\) 14.5285 0.700629
\(431\) −28.4987 −1.37274 −0.686368 0.727255i \(-0.740796\pi\)
−0.686368 + 0.727255i \(0.740796\pi\)
\(432\) −0.246406 −0.0118552
\(433\) −13.9975 −0.672677 −0.336339 0.941741i \(-0.609189\pi\)
−0.336339 + 0.941741i \(0.609189\pi\)
\(434\) 9.49947 0.455989
\(435\) −2.47620 −0.118725
\(436\) −2.63475 −0.126182
\(437\) 0 0
\(438\) −3.37870 −0.161440
\(439\) 26.8291 1.28048 0.640242 0.768174i \(-0.278834\pi\)
0.640242 + 0.768174i \(0.278834\pi\)
\(440\) −20.9429 −0.998416
\(441\) 8.44752 0.402263
\(442\) 7.72518 0.367449
\(443\) −13.9183 −0.661277 −0.330638 0.943758i \(-0.607264\pi\)
−0.330638 + 0.943758i \(0.607264\pi\)
\(444\) 6.23472 0.295886
\(445\) −21.1107 −1.00075
\(446\) −6.26268 −0.296546
\(447\) −5.18414 −0.245202
\(448\) 17.1017 0.807981
\(449\) −21.2841 −1.00446 −0.502229 0.864735i \(-0.667487\pi\)
−0.502229 + 0.864735i \(0.667487\pi\)
\(450\) −1.75586 −0.0827719
\(451\) 38.9787 1.83544
\(452\) −18.0635 −0.849636
\(453\) 13.0922 0.615124
\(454\) −2.98507 −0.140097
\(455\) −12.2449 −0.574049
\(456\) 0 0
\(457\) −0.745738 −0.0348842 −0.0174421 0.999848i \(-0.505552\pi\)
−0.0174421 + 0.999848i \(0.505552\pi\)
\(458\) −9.55958 −0.446690
\(459\) 5.02644 0.234614
\(460\) −7.62035 −0.355301
\(461\) 28.1942 1.31314 0.656568 0.754267i \(-0.272007\pi\)
0.656568 + 0.754267i \(0.272007\pi\)
\(462\) −14.6505 −0.681603
\(463\) 8.85705 0.411622 0.205811 0.978592i \(-0.434017\pi\)
0.205811 + 0.978592i \(0.434017\pi\)
\(464\) 0.357342 0.0165892
\(465\) −4.89945 −0.227206
\(466\) −4.99298 −0.231295
\(467\) 37.2776 1.72500 0.862500 0.506057i \(-0.168898\pi\)
0.862500 + 0.506057i \(0.168898\pi\)
\(468\) 2.35468 0.108845
\(469\) 4.11566 0.190044
\(470\) 4.94076 0.227900
\(471\) 7.36968 0.339577
\(472\) 17.7551 0.817245
\(473\) 44.7036 2.05547
\(474\) 14.2898 0.656351
\(475\) 0 0
\(476\) 25.4946 1.16855
\(477\) 2.11234 0.0967172
\(478\) 12.7766 0.584389
\(479\) −29.8552 −1.36412 −0.682059 0.731297i \(-0.738915\pi\)
−0.682059 + 0.731297i \(0.738915\pi\)
\(480\) −9.81937 −0.448191
\(481\) −8.81517 −0.401937
\(482\) −7.46506 −0.340024
\(483\) −13.5923 −0.618471
\(484\) −11.0774 −0.503516
\(485\) −0.299241 −0.0135878
\(486\) −0.842316 −0.0382082
\(487\) −30.8808 −1.39934 −0.699671 0.714465i \(-0.746670\pi\)
−0.699671 + 0.714465i \(0.746670\pi\)
\(488\) −0.212573 −0.00962273
\(489\) 16.0281 0.724815
\(490\) 12.1494 0.548856
\(491\) 10.1276 0.457051 0.228525 0.973538i \(-0.426610\pi\)
0.228525 + 0.973538i \(0.426610\pi\)
\(492\) 11.3668 0.512455
\(493\) −7.28943 −0.328299
\(494\) 0 0
\(495\) 7.55614 0.339623
\(496\) 0.707042 0.0317471
\(497\) 53.2512 2.38864
\(498\) 10.9713 0.491637
\(499\) 8.59460 0.384747 0.192374 0.981322i \(-0.438381\pi\)
0.192374 + 0.981322i \(0.438381\pi\)
\(500\) 15.6108 0.698135
\(501\) −13.1273 −0.586486
\(502\) 9.86111 0.440123
\(503\) −18.0671 −0.805570 −0.402785 0.915295i \(-0.631958\pi\)
−0.402785 + 0.915295i \(0.631958\pi\)
\(504\) −10.8935 −0.485234
\(505\) −19.1466 −0.852014
\(506\) 12.8910 0.573075
\(507\) 9.67075 0.429493
\(508\) 2.52845 0.112182
\(509\) −31.4464 −1.39384 −0.696919 0.717150i \(-0.745446\pi\)
−0.696919 + 0.717150i \(0.745446\pi\)
\(510\) 7.22916 0.320113
\(511\) 15.7654 0.697418
\(512\) 2.78294 0.122990
\(513\) 0 0
\(514\) 8.35239 0.368408
\(515\) −16.2553 −0.716292
\(516\) 13.0363 0.573890
\(517\) 15.2025 0.668604
\(518\) 15.9942 0.702744
\(519\) −18.4720 −0.810832
\(520\) 8.63501 0.378670
\(521\) −19.9501 −0.874030 −0.437015 0.899454i \(-0.643964\pi\)
−0.437015 + 0.899454i \(0.643964\pi\)
\(522\) 1.22154 0.0534654
\(523\) −3.16211 −0.138269 −0.0691346 0.997607i \(-0.522024\pi\)
−0.0691346 + 0.997607i \(0.522024\pi\)
\(524\) 2.01324 0.0879488
\(525\) 8.19301 0.357572
\(526\) −5.67630 −0.247499
\(527\) −14.4230 −0.628275
\(528\) −1.09043 −0.0474550
\(529\) −11.0401 −0.480005
\(530\) 3.03802 0.131963
\(531\) −6.40598 −0.277996
\(532\) 0 0
\(533\) −16.0714 −0.696128
\(534\) 10.4142 0.450667
\(535\) 17.5340 0.758060
\(536\) −2.90234 −0.125362
\(537\) 11.8588 0.511746
\(538\) −0.605028 −0.0260846
\(539\) 37.3832 1.61021
\(540\) 2.20349 0.0948232
\(541\) 0.594406 0.0255555 0.0127778 0.999918i \(-0.495933\pi\)
0.0127778 + 0.999918i \(0.495933\pi\)
\(542\) −24.2933 −1.04349
\(543\) 0.273724 0.0117466
\(544\) −28.9063 −1.23935
\(545\) 3.48604 0.149325
\(546\) 6.04056 0.258512
\(547\) −26.5738 −1.13622 −0.568108 0.822954i \(-0.692324\pi\)
−0.568108 + 0.822954i \(0.692324\pi\)
\(548\) −19.8244 −0.846856
\(549\) 0.0766957 0.00327329
\(550\) −7.77029 −0.331326
\(551\) 0 0
\(552\) 9.58520 0.407973
\(553\) −66.6776 −2.83542
\(554\) −3.22720 −0.137111
\(555\) −8.24916 −0.350157
\(556\) −12.0120 −0.509424
\(557\) 34.1718 1.44791 0.723953 0.689849i \(-0.242323\pi\)
0.723953 + 0.689849i \(0.242323\pi\)
\(558\) 2.41696 0.102318
\(559\) −18.4318 −0.779582
\(560\) 1.65361 0.0698776
\(561\) 22.2438 0.939133
\(562\) 18.6086 0.784955
\(563\) 30.0716 1.26737 0.633683 0.773593i \(-0.281543\pi\)
0.633683 + 0.773593i \(0.281543\pi\)
\(564\) 4.43328 0.186675
\(565\) 23.8998 1.00547
\(566\) −21.1813 −0.890317
\(567\) 3.93033 0.165058
\(568\) −37.5524 −1.57566
\(569\) 24.7511 1.03762 0.518809 0.854890i \(-0.326376\pi\)
0.518809 + 0.854890i \(0.326376\pi\)
\(570\) 0 0
\(571\) 31.5869 1.32187 0.660934 0.750444i \(-0.270160\pi\)
0.660934 + 0.750444i \(0.270160\pi\)
\(572\) 10.4203 0.435694
\(573\) 12.1649 0.508194
\(574\) 29.1598 1.21711
\(575\) −7.20904 −0.300638
\(576\) 4.35121 0.181301
\(577\) −30.8109 −1.28267 −0.641337 0.767260i \(-0.721620\pi\)
−0.641337 + 0.767260i \(0.721620\pi\)
\(578\) 6.96182 0.289574
\(579\) 23.0762 0.959016
\(580\) −3.19554 −0.132688
\(581\) −51.1933 −2.12386
\(582\) 0.147619 0.00611902
\(583\) 9.34783 0.387148
\(584\) −11.1176 −0.460050
\(585\) −3.11548 −0.128809
\(586\) 4.99251 0.206239
\(587\) −14.1246 −0.582986 −0.291493 0.956573i \(-0.594152\pi\)
−0.291493 + 0.956573i \(0.594152\pi\)
\(588\) 10.9016 0.449572
\(589\) 0 0
\(590\) −9.21326 −0.379304
\(591\) −6.46873 −0.266088
\(592\) 1.19044 0.0489268
\(593\) 37.7151 1.54877 0.774387 0.632712i \(-0.218058\pi\)
0.774387 + 0.632712i \(0.218058\pi\)
\(594\) −3.72755 −0.152943
\(595\) −33.7320 −1.38288
\(596\) −6.69015 −0.274039
\(597\) −0.307088 −0.0125683
\(598\) −5.31510 −0.217351
\(599\) −0.0927993 −0.00379167 −0.00189584 0.999998i \(-0.500603\pi\)
−0.00189584 + 0.999998i \(0.500603\pi\)
\(600\) −5.77765 −0.235872
\(601\) 23.0380 0.939740 0.469870 0.882736i \(-0.344301\pi\)
0.469870 + 0.882736i \(0.344301\pi\)
\(602\) 33.4425 1.36302
\(603\) 1.04715 0.0426434
\(604\) 16.8955 0.687468
\(605\) 14.6565 0.595870
\(606\) 9.44529 0.383689
\(607\) −31.9363 −1.29625 −0.648127 0.761532i \(-0.724447\pi\)
−0.648127 + 0.761532i \(0.724447\pi\)
\(608\) 0 0
\(609\) −5.69984 −0.230969
\(610\) 0.110306 0.00446615
\(611\) −6.26815 −0.253582
\(612\) 6.48664 0.262207
\(613\) 43.7113 1.76548 0.882741 0.469859i \(-0.155695\pi\)
0.882741 + 0.469859i \(0.155695\pi\)
\(614\) 14.8115 0.597743
\(615\) −15.0394 −0.606449
\(616\) −48.2075 −1.94234
\(617\) −13.4123 −0.539957 −0.269978 0.962866i \(-0.587017\pi\)
−0.269978 + 0.962866i \(0.587017\pi\)
\(618\) 8.01893 0.322569
\(619\) 22.9340 0.921797 0.460899 0.887453i \(-0.347527\pi\)
0.460899 + 0.887453i \(0.347527\pi\)
\(620\) −6.32275 −0.253928
\(621\) −3.45831 −0.138777
\(622\) −5.07804 −0.203611
\(623\) −48.5938 −1.94687
\(624\) 0.449597 0.0179983
\(625\) −10.2318 −0.409273
\(626\) 14.0650 0.562152
\(627\) 0 0
\(628\) 9.51059 0.379514
\(629\) −24.2839 −0.968261
\(630\) 5.65271 0.225209
\(631\) −21.3573 −0.850219 −0.425109 0.905142i \(-0.639764\pi\)
−0.425109 + 0.905142i \(0.639764\pi\)
\(632\) 47.0206 1.87038
\(633\) 10.5856 0.420739
\(634\) 1.84724 0.0733634
\(635\) −3.34540 −0.132758
\(636\) 2.72598 0.108092
\(637\) −15.4135 −0.610706
\(638\) 5.40575 0.214016
\(639\) 13.5488 0.535981
\(640\) −13.3807 −0.528919
\(641\) 29.5018 1.16525 0.582625 0.812741i \(-0.302026\pi\)
0.582625 + 0.812741i \(0.302026\pi\)
\(642\) −8.64975 −0.341378
\(643\) 6.83309 0.269471 0.134735 0.990882i \(-0.456982\pi\)
0.134735 + 0.990882i \(0.456982\pi\)
\(644\) −17.5409 −0.691209
\(645\) −17.2483 −0.679152
\(646\) 0 0
\(647\) −18.9452 −0.744812 −0.372406 0.928070i \(-0.621467\pi\)
−0.372406 + 0.928070i \(0.621467\pi\)
\(648\) −2.77164 −0.108880
\(649\) −28.3487 −1.11279
\(650\) 3.20378 0.125662
\(651\) −11.2778 −0.442012
\(652\) 20.6843 0.810060
\(653\) 27.1399 1.06207 0.531033 0.847351i \(-0.321804\pi\)
0.531033 + 0.847351i \(0.321804\pi\)
\(654\) −1.71971 −0.0672460
\(655\) −2.66372 −0.104080
\(656\) 2.17035 0.0847380
\(657\) 4.01120 0.156492
\(658\) 11.3729 0.443361
\(659\) 39.9075 1.55457 0.777287 0.629146i \(-0.216595\pi\)
0.777287 + 0.629146i \(0.216595\pi\)
\(660\) 9.75123 0.379566
\(661\) 50.3466 1.95826 0.979129 0.203241i \(-0.0651476\pi\)
0.979129 + 0.203241i \(0.0651476\pi\)
\(662\) −13.0903 −0.508767
\(663\) −9.17135 −0.356186
\(664\) 36.1012 1.40100
\(665\) 0 0
\(666\) 4.06942 0.157687
\(667\) 5.01530 0.194193
\(668\) −16.9409 −0.655461
\(669\) 7.43507 0.287456
\(670\) 1.50604 0.0581835
\(671\) 0.339405 0.0131026
\(672\) −22.6027 −0.871919
\(673\) 47.8104 1.84295 0.921477 0.388432i \(-0.126983\pi\)
0.921477 + 0.388432i \(0.126983\pi\)
\(674\) −10.4251 −0.401559
\(675\) 2.08456 0.0802347
\(676\) 12.4801 0.480005
\(677\) −41.2610 −1.58579 −0.792894 0.609359i \(-0.791427\pi\)
−0.792894 + 0.609359i \(0.791427\pi\)
\(678\) −11.7901 −0.452797
\(679\) −0.688807 −0.0264340
\(680\) 23.7876 0.912212
\(681\) 3.54389 0.135802
\(682\) 10.6959 0.409568
\(683\) 17.8805 0.684178 0.342089 0.939668i \(-0.388866\pi\)
0.342089 + 0.939668i \(0.388866\pi\)
\(684\) 0 0
\(685\) 26.2297 1.00218
\(686\) 4.79213 0.182964
\(687\) 11.3492 0.432997
\(688\) 2.48912 0.0948967
\(689\) −3.85421 −0.146834
\(690\) −4.97383 −0.189350
\(691\) −11.3331 −0.431132 −0.215566 0.976489i \(-0.569160\pi\)
−0.215566 + 0.976489i \(0.569160\pi\)
\(692\) −23.8382 −0.906193
\(693\) 17.3931 0.660710
\(694\) −18.7042 −0.710000
\(695\) 15.8931 0.602861
\(696\) 4.01949 0.152358
\(697\) −44.2731 −1.67696
\(698\) −16.7867 −0.635386
\(699\) 5.92767 0.224205
\(700\) 10.5731 0.399626
\(701\) 6.89362 0.260368 0.130184 0.991490i \(-0.458443\pi\)
0.130184 + 0.991490i \(0.458443\pi\)
\(702\) 1.53691 0.0580069
\(703\) 0 0
\(704\) 19.2557 0.725725
\(705\) −5.86568 −0.220914
\(706\) −4.38513 −0.165037
\(707\) −44.0727 −1.65752
\(708\) −8.26695 −0.310691
\(709\) −50.6485 −1.90214 −0.951072 0.308971i \(-0.900015\pi\)
−0.951072 + 0.308971i \(0.900015\pi\)
\(710\) 19.4862 0.731304
\(711\) −16.9649 −0.636232
\(712\) 34.2680 1.28425
\(713\) 9.92335 0.371632
\(714\) 16.6404 0.622753
\(715\) −13.7871 −0.515609
\(716\) 15.3038 0.571931
\(717\) −15.1684 −0.566476
\(718\) −4.35331 −0.162464
\(719\) 19.6429 0.732556 0.366278 0.930505i \(-0.380632\pi\)
0.366278 + 0.930505i \(0.380632\pi\)
\(720\) 0.420729 0.0156797
\(721\) −37.4172 −1.39349
\(722\) 0 0
\(723\) 8.86254 0.329602
\(724\) 0.353242 0.0131281
\(725\) −3.02306 −0.112274
\(726\) −7.23023 −0.268339
\(727\) −17.8693 −0.662734 −0.331367 0.943502i \(-0.607510\pi\)
−0.331367 + 0.943502i \(0.607510\pi\)
\(728\) 19.8765 0.736672
\(729\) 1.00000 0.0370370
\(730\) 5.76902 0.213521
\(731\) −50.7756 −1.87800
\(732\) 0.0989760 0.00365826
\(733\) 39.1472 1.44594 0.722968 0.690882i \(-0.242777\pi\)
0.722968 + 0.690882i \(0.242777\pi\)
\(734\) −5.10633 −0.188478
\(735\) −14.4239 −0.532032
\(736\) 19.8882 0.733088
\(737\) 4.63402 0.170696
\(738\) 7.41916 0.273103
\(739\) 30.9676 1.13916 0.569581 0.821935i \(-0.307105\pi\)
0.569581 + 0.821935i \(0.307105\pi\)
\(740\) −10.6456 −0.391339
\(741\) 0 0
\(742\) 6.99306 0.256723
\(743\) 12.2426 0.449136 0.224568 0.974458i \(-0.427903\pi\)
0.224568 + 0.974458i \(0.427903\pi\)
\(744\) 7.95303 0.291572
\(745\) 8.85175 0.324303
\(746\) −8.41091 −0.307945
\(747\) −13.0252 −0.476567
\(748\) 28.7057 1.04958
\(749\) 40.3606 1.47474
\(750\) 10.1892 0.372057
\(751\) 44.9133 1.63891 0.819455 0.573143i \(-0.194276\pi\)
0.819455 + 0.573143i \(0.194276\pi\)
\(752\) 0.846480 0.0308680
\(753\) −11.7071 −0.426632
\(754\) −2.22885 −0.0811700
\(755\) −22.3544 −0.813561
\(756\) 5.07211 0.184471
\(757\) −15.2301 −0.553549 −0.276775 0.960935i \(-0.589266\pi\)
−0.276775 + 0.960935i \(0.589266\pi\)
\(758\) 11.6070 0.421587
\(759\) −15.3042 −0.555508
\(760\) 0 0
\(761\) −32.2300 −1.16834 −0.584169 0.811632i \(-0.698579\pi\)
−0.584169 + 0.811632i \(0.698579\pi\)
\(762\) 1.65033 0.0597851
\(763\) 8.02434 0.290501
\(764\) 15.6988 0.567962
\(765\) −8.58248 −0.310300
\(766\) −13.7402 −0.496453
\(767\) 11.6885 0.422047
\(768\) 15.3033 0.552211
\(769\) 10.7275 0.386843 0.193422 0.981116i \(-0.438041\pi\)
0.193422 + 0.981116i \(0.438041\pi\)
\(770\) 25.0152 0.901487
\(771\) −9.91597 −0.357115
\(772\) 29.7800 1.07180
\(773\) −0.826686 −0.0297338 −0.0148669 0.999889i \(-0.504732\pi\)
−0.0148669 + 0.999889i \(0.504732\pi\)
\(774\) 8.50883 0.305844
\(775\) −5.98148 −0.214861
\(776\) 0.485742 0.0174371
\(777\) −18.9883 −0.681203
\(778\) −9.66244 −0.346415
\(779\) 0 0
\(780\) −4.02054 −0.143958
\(781\) 59.9581 2.14547
\(782\) −14.6420 −0.523595
\(783\) −1.45022 −0.0518265
\(784\) 2.08152 0.0743398
\(785\) −12.5835 −0.449124
\(786\) 1.31405 0.0468706
\(787\) 13.0266 0.464348 0.232174 0.972674i \(-0.425416\pi\)
0.232174 + 0.972674i \(0.425416\pi\)
\(788\) −8.34791 −0.297382
\(789\) 6.73892 0.239912
\(790\) −24.3993 −0.868089
\(791\) 55.0139 1.95607
\(792\) −12.2655 −0.435836
\(793\) −0.139941 −0.00496944
\(794\) −0.377449 −0.0133952
\(795\) −3.60674 −0.127918
\(796\) −0.396298 −0.0140464
\(797\) 47.0808 1.66769 0.833844 0.552000i \(-0.186135\pi\)
0.833844 + 0.552000i \(0.186135\pi\)
\(798\) 0 0
\(799\) −17.2674 −0.610877
\(800\) −11.9880 −0.423838
\(801\) −12.3638 −0.436853
\(802\) −12.2190 −0.431468
\(803\) 17.7510 0.626418
\(804\) 1.35135 0.0476586
\(805\) 23.2084 0.817988
\(806\) −4.41004 −0.155337
\(807\) 0.718290 0.0252850
\(808\) 31.0798 1.09338
\(809\) −10.0150 −0.352107 −0.176053 0.984381i \(-0.556333\pi\)
−0.176053 + 0.984381i \(0.556333\pi\)
\(810\) 1.43823 0.0505341
\(811\) 31.5550 1.10804 0.554022 0.832502i \(-0.313092\pi\)
0.554022 + 0.832502i \(0.313092\pi\)
\(812\) −7.35566 −0.258133
\(813\) 28.8411 1.01150
\(814\) 18.0086 0.631202
\(815\) −27.3674 −0.958639
\(816\) 1.23854 0.0433577
\(817\) 0 0
\(818\) 11.1177 0.388721
\(819\) −7.17137 −0.250588
\(820\) −19.4085 −0.677772
\(821\) −38.3465 −1.33830 −0.669151 0.743126i \(-0.733342\pi\)
−0.669151 + 0.743126i \(0.733342\pi\)
\(822\) −12.9395 −0.451315
\(823\) 49.1374 1.71282 0.856410 0.516296i \(-0.172689\pi\)
0.856410 + 0.516296i \(0.172689\pi\)
\(824\) 26.3863 0.919211
\(825\) 9.22490 0.321170
\(826\) −21.2075 −0.737905
\(827\) −16.0238 −0.557201 −0.278600 0.960407i \(-0.589870\pi\)
−0.278600 + 0.960407i \(0.589870\pi\)
\(828\) −4.46296 −0.155098
\(829\) −34.4952 −1.19807 −0.599033 0.800724i \(-0.704448\pi\)
−0.599033 + 0.800724i \(0.704448\pi\)
\(830\) −18.7332 −0.650238
\(831\) 3.83134 0.132908
\(832\) −7.93932 −0.275247
\(833\) −42.4609 −1.47118
\(834\) −7.84030 −0.271487
\(835\) 22.4145 0.775685
\(836\) 0 0
\(837\) −2.86943 −0.0991818
\(838\) 9.62173 0.332377
\(839\) 17.0321 0.588013 0.294007 0.955803i \(-0.405011\pi\)
0.294007 + 0.955803i \(0.405011\pi\)
\(840\) 18.6003 0.641770
\(841\) −26.8969 −0.927478
\(842\) 13.9687 0.481394
\(843\) −22.0921 −0.760894
\(844\) 13.6607 0.470222
\(845\) −16.5125 −0.568047
\(846\) 2.89362 0.0994847
\(847\) 33.7370 1.15922
\(848\) 0.520491 0.0178737
\(849\) 25.1465 0.863026
\(850\) 8.82571 0.302719
\(851\) 16.7079 0.572738
\(852\) 17.4847 0.599017
\(853\) 34.2140 1.17146 0.585732 0.810505i \(-0.300807\pi\)
0.585732 + 0.810505i \(0.300807\pi\)
\(854\) 0.253907 0.00868853
\(855\) 0 0
\(856\) −28.4620 −0.972812
\(857\) −8.26690 −0.282392 −0.141196 0.989982i \(-0.545095\pi\)
−0.141196 + 0.989982i \(0.545095\pi\)
\(858\) 6.80136 0.232195
\(859\) −50.4943 −1.72284 −0.861421 0.507891i \(-0.830425\pi\)
−0.861421 + 0.507891i \(0.830425\pi\)
\(860\) −22.2590 −0.759026
\(861\) −34.6185 −1.17980
\(862\) −24.0049 −0.817611
\(863\) 33.0070 1.12357 0.561785 0.827283i \(-0.310115\pi\)
0.561785 + 0.827283i \(0.310115\pi\)
\(864\) −5.75084 −0.195648
\(865\) 31.5404 1.07241
\(866\) −11.7903 −0.400652
\(867\) −8.26510 −0.280697
\(868\) −14.5540 −0.493996
\(869\) −75.0755 −2.54676
\(870\) −2.08574 −0.0707133
\(871\) −1.91066 −0.0647402
\(872\) −5.65871 −0.191628
\(873\) −0.175254 −0.00593145
\(874\) 0 0
\(875\) −47.5438 −1.60728
\(876\) 5.17647 0.174897
\(877\) −2.11604 −0.0714535 −0.0357267 0.999362i \(-0.511375\pi\)
−0.0357267 + 0.999362i \(0.511375\pi\)
\(878\) 22.5986 0.762666
\(879\) −5.92712 −0.199917
\(880\) 1.86188 0.0627638
\(881\) −53.0406 −1.78698 −0.893492 0.449080i \(-0.851752\pi\)
−0.893492 + 0.449080i \(0.851752\pi\)
\(882\) 7.11548 0.239591
\(883\) 17.1836 0.578275 0.289137 0.957288i \(-0.406632\pi\)
0.289137 + 0.957288i \(0.406632\pi\)
\(884\) −11.8357 −0.398076
\(885\) 10.9380 0.367677
\(886\) −11.7236 −0.393861
\(887\) 3.89561 0.130802 0.0654008 0.997859i \(-0.479167\pi\)
0.0654008 + 0.997859i \(0.479167\pi\)
\(888\) 13.3904 0.449354
\(889\) −7.70060 −0.258270
\(890\) −17.7819 −0.596051
\(891\) 4.42535 0.148255
\(892\) 9.59498 0.321264
\(893\) 0 0
\(894\) −4.36669 −0.146044
\(895\) −20.2485 −0.676834
\(896\) −30.8004 −1.02897
\(897\) 6.31010 0.210688
\(898\) −17.9279 −0.598263
\(899\) 4.16129 0.138787
\(900\) 2.69013 0.0896710
\(901\) −10.6175 −0.353721
\(902\) 32.8324 1.09320
\(903\) −39.7031 −1.32124
\(904\) −38.7954 −1.29032
\(905\) −0.467375 −0.0155361
\(906\) 11.0277 0.366372
\(907\) 8.84164 0.293582 0.146791 0.989168i \(-0.453106\pi\)
0.146791 + 0.989168i \(0.453106\pi\)
\(908\) 4.57340 0.151774
\(909\) −11.2135 −0.371928
\(910\) −10.3141 −0.341908
\(911\) −18.4416 −0.610997 −0.305498 0.952193i \(-0.598823\pi\)
−0.305498 + 0.952193i \(0.598823\pi\)
\(912\) 0 0
\(913\) −57.6411 −1.90764
\(914\) −0.628147 −0.0207773
\(915\) −0.130955 −0.00432925
\(916\) 14.6461 0.483922
\(917\) −6.13149 −0.202480
\(918\) 4.23385 0.139738
\(919\) −45.5362 −1.50210 −0.751051 0.660245i \(-0.770453\pi\)
−0.751051 + 0.660245i \(0.770453\pi\)
\(920\) −16.3664 −0.539584
\(921\) −17.5842 −0.579421
\(922\) 23.7485 0.782114
\(923\) −24.7214 −0.813714
\(924\) 22.4459 0.738415
\(925\) −10.0710 −0.331132
\(926\) 7.46044 0.245165
\(927\) −9.52010 −0.312681
\(928\) 8.33997 0.273773
\(929\) −1.51634 −0.0497494 −0.0248747 0.999691i \(-0.507919\pi\)
−0.0248747 + 0.999691i \(0.507919\pi\)
\(930\) −4.12688 −0.135326
\(931\) 0 0
\(932\) 7.64968 0.250574
\(933\) 6.02866 0.197370
\(934\) 31.3995 1.02742
\(935\) −37.9805 −1.24209
\(936\) 5.05720 0.165300
\(937\) 7.13697 0.233155 0.116577 0.993182i \(-0.462808\pi\)
0.116577 + 0.993182i \(0.462808\pi\)
\(938\) 3.46669 0.113191
\(939\) −16.6980 −0.544920
\(940\) −7.56968 −0.246896
\(941\) −49.7958 −1.62330 −0.811648 0.584147i \(-0.801429\pi\)
−0.811648 + 0.584147i \(0.801429\pi\)
\(942\) 6.20760 0.202254
\(943\) 30.4609 0.991944
\(944\) −1.57847 −0.0513748
\(945\) −6.71091 −0.218306
\(946\) 37.6546 1.22426
\(947\) −0.349552 −0.0113589 −0.00567945 0.999984i \(-0.501808\pi\)
−0.00567945 + 0.999984i \(0.501808\pi\)
\(948\) −21.8932 −0.711058
\(949\) −7.31892 −0.237582
\(950\) 0 0
\(951\) −2.19305 −0.0711146
\(952\) 54.7554 1.77463
\(953\) −21.0086 −0.680534 −0.340267 0.940329i \(-0.610517\pi\)
−0.340267 + 0.940329i \(0.610517\pi\)
\(954\) 1.77925 0.0576055
\(955\) −20.7711 −0.672137
\(956\) −19.5749 −0.633099
\(957\) −6.41772 −0.207456
\(958\) −25.1475 −0.812479
\(959\) 60.3768 1.94967
\(960\) −7.42955 −0.239788
\(961\) −22.7664 −0.734400
\(962\) −7.42516 −0.239397
\(963\) 10.2690 0.330914
\(964\) 11.4371 0.368366
\(965\) −39.4019 −1.26839
\(966\) −11.4490 −0.368366
\(967\) −36.8410 −1.18473 −0.592364 0.805670i \(-0.701805\pi\)
−0.592364 + 0.805670i \(0.701805\pi\)
\(968\) −23.7911 −0.764675
\(969\) 0 0
\(970\) −0.252055 −0.00809300
\(971\) −5.39119 −0.173012 −0.0865058 0.996251i \(-0.527570\pi\)
−0.0865058 + 0.996251i \(0.527570\pi\)
\(972\) 1.29050 0.0413929
\(973\) 36.5836 1.17282
\(974\) −26.0114 −0.833459
\(975\) −3.80353 −0.121810
\(976\) 0.0188982 0.000604918 0
\(977\) 40.7182 1.30269 0.651345 0.758782i \(-0.274205\pi\)
0.651345 + 0.758782i \(0.274205\pi\)
\(978\) 13.5007 0.431705
\(979\) −54.7141 −1.74867
\(980\) −18.6140 −0.594603
\(981\) 2.04164 0.0651847
\(982\) 8.53061 0.272223
\(983\) −43.9907 −1.40309 −0.701543 0.712627i \(-0.747505\pi\)
−0.701543 + 0.712627i \(0.747505\pi\)
\(984\) 24.4128 0.778251
\(985\) 11.0451 0.351927
\(986\) −6.14000 −0.195538
\(987\) −13.5019 −0.429771
\(988\) 0 0
\(989\) 34.9348 1.11086
\(990\) 6.36466 0.202282
\(991\) −33.2649 −1.05669 −0.528347 0.849029i \(-0.677188\pi\)
−0.528347 + 0.849029i \(0.677188\pi\)
\(992\) 16.5016 0.523926
\(993\) 15.5408 0.493172
\(994\) 44.8543 1.42269
\(995\) 0.524343 0.0166228
\(996\) −16.8091 −0.532615
\(997\) 27.0800 0.857633 0.428817 0.903392i \(-0.358931\pi\)
0.428817 + 0.903392i \(0.358931\pi\)
\(998\) 7.23937 0.229158
\(999\) −4.83123 −0.152853
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.2.a.p.1.4 6
3.2 odd 2 3249.2.a.bg.1.3 6
19.2 odd 18 57.2.i.b.4.2 12
19.10 odd 18 57.2.i.b.43.2 yes 12
19.18 odd 2 1083.2.a.q.1.3 6
57.2 even 18 171.2.u.e.118.1 12
57.29 even 18 171.2.u.e.100.1 12
57.56 even 2 3249.2.a.bh.1.4 6
76.59 even 18 912.2.bo.j.289.1 12
76.67 even 18 912.2.bo.j.385.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.b.4.2 12 19.2 odd 18
57.2.i.b.43.2 yes 12 19.10 odd 18
171.2.u.e.100.1 12 57.29 even 18
171.2.u.e.118.1 12 57.2 even 18
912.2.bo.j.289.1 12 76.59 even 18
912.2.bo.j.385.1 12 76.67 even 18
1083.2.a.p.1.4 6 1.1 even 1 trivial
1083.2.a.q.1.3 6 19.18 odd 2
3249.2.a.bg.1.3 6 3.2 odd 2
3249.2.a.bh.1.4 6 57.56 even 2