Defining parameters
Level: | \( N \) | = | \( 1083 = 3 \cdot 19^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(173280\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1083))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44328 | 32779 | 11549 |
Cusp forms | 42313 | 31843 | 10470 |
Eisenstein series | 2015 | 936 | 1079 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1083))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1083.2.a | \(\chi_{1083}(1, \cdot)\) | 1083.2.a.a | 1 | 1 |
1083.2.a.b | 1 | |||
1083.2.a.c | 1 | |||
1083.2.a.d | 1 | |||
1083.2.a.e | 1 | |||
1083.2.a.f | 2 | |||
1083.2.a.g | 2 | |||
1083.2.a.h | 2 | |||
1083.2.a.i | 2 | |||
1083.2.a.j | 2 | |||
1083.2.a.k | 2 | |||
1083.2.a.l | 3 | |||
1083.2.a.m | 3 | |||
1083.2.a.n | 3 | |||
1083.2.a.o | 3 | |||
1083.2.a.p | 6 | |||
1083.2.a.q | 6 | |||
1083.2.a.r | 8 | |||
1083.2.a.s | 8 | |||
1083.2.d | \(\chi_{1083}(1082, \cdot)\) | 1083.2.d.a | 6 | 1 |
1083.2.d.b | 8 | |||
1083.2.d.c | 12 | |||
1083.2.d.d | 24 | |||
1083.2.d.e | 48 | |||
1083.2.e | \(\chi_{1083}(292, \cdot)\) | n/a | 112 | 2 |
1083.2.f | \(\chi_{1083}(293, \cdot)\) | n/a | 196 | 2 |
1083.2.i | \(\chi_{1083}(28, \cdot)\) | n/a | 342 | 6 |
1083.2.j | \(\chi_{1083}(116, \cdot)\) | n/a | 582 | 6 |
1083.2.m | \(\chi_{1083}(58, \cdot)\) | n/a | 1152 | 18 |
1083.2.n | \(\chi_{1083}(56, \cdot)\) | n/a | 2232 | 18 |
1083.2.q | \(\chi_{1083}(7, \cdot)\) | n/a | 2304 | 36 |
1083.2.t | \(\chi_{1083}(8, \cdot)\) | n/a | 4464 | 36 |
1083.2.u | \(\chi_{1083}(4, \cdot)\) | n/a | 6804 | 108 |
1083.2.x | \(\chi_{1083}(2, \cdot)\) | n/a | 13500 | 108 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1083))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1083)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(361))\)\(^{\oplus 2}\)