Properties

Label 1083.2
Level 1083
Weight 2
Dimension 31843
Nonzero newspaces 12
Sturm bound 173280
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(173280\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1083))\).

Total New Old
Modular forms 44328 32779 11549
Cusp forms 42313 31843 10470
Eisenstein series 2015 936 1079

Trace form

\( 31843 q + 3 q^{2} - 152 q^{3} - 299 q^{4} + 6 q^{5} - 150 q^{6} - 298 q^{7} + 15 q^{8} - 152 q^{9} - 288 q^{10} + 12 q^{11} - 170 q^{12} - 340 q^{13} - 48 q^{14} - 183 q^{15} - 419 q^{16} - 18 q^{17} - 168 q^{18}+ \cdots - 159 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1083))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1083.2.a \(\chi_{1083}(1, \cdot)\) 1083.2.a.a 1 1
1083.2.a.b 1
1083.2.a.c 1
1083.2.a.d 1
1083.2.a.e 1
1083.2.a.f 2
1083.2.a.g 2
1083.2.a.h 2
1083.2.a.i 2
1083.2.a.j 2
1083.2.a.k 2
1083.2.a.l 3
1083.2.a.m 3
1083.2.a.n 3
1083.2.a.o 3
1083.2.a.p 6
1083.2.a.q 6
1083.2.a.r 8
1083.2.a.s 8
1083.2.d \(\chi_{1083}(1082, \cdot)\) 1083.2.d.a 6 1
1083.2.d.b 8
1083.2.d.c 12
1083.2.d.d 24
1083.2.d.e 48
1083.2.e \(\chi_{1083}(292, \cdot)\) n/a 112 2
1083.2.f \(\chi_{1083}(293, \cdot)\) n/a 196 2
1083.2.i \(\chi_{1083}(28, \cdot)\) n/a 342 6
1083.2.j \(\chi_{1083}(116, \cdot)\) n/a 582 6
1083.2.m \(\chi_{1083}(58, \cdot)\) n/a 1152 18
1083.2.n \(\chi_{1083}(56, \cdot)\) n/a 2232 18
1083.2.q \(\chi_{1083}(7, \cdot)\) n/a 2304 36
1083.2.t \(\chi_{1083}(8, \cdot)\) n/a 4464 36
1083.2.u \(\chi_{1083}(4, \cdot)\) n/a 6804 108
1083.2.x \(\chi_{1083}(2, \cdot)\) n/a 13500 108

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1083))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1083)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(361))\)\(^{\oplus 2}\)