Properties

Label 3249.2.a.bg.1.3
Level $3249$
Weight $2$
Character 3249.1
Self dual yes
Analytic conductor $25.943$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3249,2,Mod(1,3249)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3249.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3249, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3249 = 3^{2} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3249.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,6,-9,0,9,-3,0,-6,-9,0,-3,-6,0,6,-15,0,0,9,0,21,-6,0,15, 0,0,-3,-15,0,0,-21,0,-33,3,0,6,0,0,-39,6,0,15,6,0,27,-9,0,9,-9,0,-18,-6, 0,-6,-39,0,-12,-15,0,3,-27,0,21,-21,0,18,-21,0,-9,-15,0,-6,-9,0,0,-48, 0,-21,21,0,-15,3,0,42,-30,0,42,-24,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9433956167\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.6357609.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - x^{3} + 18x^{2} - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.842316\) of defining polynomial
Character \(\chi\) \(=\) 3249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.842316 q^{2} -1.29050 q^{4} -1.70747 q^{5} +3.93033 q^{7} +2.77164 q^{8} +1.43823 q^{10} -4.42535 q^{11} -1.82462 q^{13} -3.31058 q^{14} +0.246406 q^{16} +5.02644 q^{17} +2.20349 q^{20} +3.72755 q^{22} -3.45831 q^{23} -2.08456 q^{25} +1.53691 q^{26} -5.07211 q^{28} -1.45022 q^{29} +2.86943 q^{31} -5.75084 q^{32} -4.23385 q^{34} -6.71091 q^{35} +4.83123 q^{37} -4.73249 q^{40} -8.80804 q^{41} +10.1017 q^{43} +5.71093 q^{44} +2.91299 q^{46} -3.43531 q^{47} +8.44752 q^{49} +1.75586 q^{50} +2.35468 q^{52} -2.11234 q^{53} +7.55614 q^{55} +10.8935 q^{56} +1.22154 q^{58} +6.40598 q^{59} +0.0766957 q^{61} -2.41696 q^{62} +4.35121 q^{64} +3.11548 q^{65} +1.04715 q^{67} -6.48664 q^{68} +5.65271 q^{70} -13.5488 q^{71} +4.01120 q^{73} -4.06942 q^{74} -17.3931 q^{77} -16.9649 q^{79} -0.420729 q^{80} +7.41916 q^{82} +13.0252 q^{83} -8.58248 q^{85} -8.50883 q^{86} -12.2655 q^{88} +12.3638 q^{89} -7.17137 q^{91} +4.46296 q^{92} +2.89362 q^{94} -0.175254 q^{97} -7.11548 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{4} - 9 q^{5} + 9 q^{7} - 3 q^{8} - 6 q^{10} - 9 q^{11} - 3 q^{13} - 6 q^{14} + 6 q^{16} - 15 q^{17} + 9 q^{20} + 21 q^{22} - 6 q^{23} + 15 q^{25} - 3 q^{28} - 15 q^{29} - 21 q^{32} - 33 q^{34}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.842316 −0.595608 −0.297804 0.954627i \(-0.596254\pi\)
−0.297804 + 0.954627i \(0.596254\pi\)
\(3\) 0 0
\(4\) −1.29050 −0.645252
\(5\) −1.70747 −0.763602 −0.381801 0.924244i \(-0.624696\pi\)
−0.381801 + 0.924244i \(0.624696\pi\)
\(6\) 0 0
\(7\) 3.93033 1.48553 0.742763 0.669554i \(-0.233515\pi\)
0.742763 + 0.669554i \(0.233515\pi\)
\(8\) 2.77164 0.979924
\(9\) 0 0
\(10\) 1.43823 0.454807
\(11\) −4.42535 −1.33429 −0.667147 0.744926i \(-0.732485\pi\)
−0.667147 + 0.744926i \(0.732485\pi\)
\(12\) 0 0
\(13\) −1.82462 −0.506059 −0.253030 0.967459i \(-0.581427\pi\)
−0.253030 + 0.967459i \(0.581427\pi\)
\(14\) −3.31058 −0.884791
\(15\) 0 0
\(16\) 0.246406 0.0616014
\(17\) 5.02644 1.21909 0.609545 0.792751i \(-0.291352\pi\)
0.609545 + 0.792751i \(0.291352\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 2.20349 0.492716
\(21\) 0 0
\(22\) 3.72755 0.794716
\(23\) −3.45831 −0.721107 −0.360553 0.932739i \(-0.617412\pi\)
−0.360553 + 0.932739i \(0.617412\pi\)
\(24\) 0 0
\(25\) −2.08456 −0.416912
\(26\) 1.53691 0.301413
\(27\) 0 0
\(28\) −5.07211 −0.958538
\(29\) −1.45022 −0.269299 −0.134649 0.990893i \(-0.542991\pi\)
−0.134649 + 0.990893i \(0.542991\pi\)
\(30\) 0 0
\(31\) 2.86943 0.515364 0.257682 0.966230i \(-0.417041\pi\)
0.257682 + 0.966230i \(0.417041\pi\)
\(32\) −5.75084 −1.01661
\(33\) 0 0
\(34\) −4.23385 −0.726100
\(35\) −6.71091 −1.13435
\(36\) 0 0
\(37\) 4.83123 0.794249 0.397124 0.917765i \(-0.370008\pi\)
0.397124 + 0.917765i \(0.370008\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −4.73249 −0.748272
\(41\) −8.80804 −1.37559 −0.687793 0.725907i \(-0.741420\pi\)
−0.687793 + 0.725907i \(0.741420\pi\)
\(42\) 0 0
\(43\) 10.1017 1.54050 0.770248 0.637745i \(-0.220132\pi\)
0.770248 + 0.637745i \(0.220132\pi\)
\(44\) 5.71093 0.860956
\(45\) 0 0
\(46\) 2.91299 0.429497
\(47\) −3.43531 −0.501092 −0.250546 0.968105i \(-0.580610\pi\)
−0.250546 + 0.968105i \(0.580610\pi\)
\(48\) 0 0
\(49\) 8.44752 1.20679
\(50\) 1.75586 0.248316
\(51\) 0 0
\(52\) 2.35468 0.326536
\(53\) −2.11234 −0.290152 −0.145076 0.989421i \(-0.546343\pi\)
−0.145076 + 0.989421i \(0.546343\pi\)
\(54\) 0 0
\(55\) 7.55614 1.01887
\(56\) 10.8935 1.45570
\(57\) 0 0
\(58\) 1.22154 0.160396
\(59\) 6.40598 0.833988 0.416994 0.908909i \(-0.363084\pi\)
0.416994 + 0.908909i \(0.363084\pi\)
\(60\) 0 0
\(61\) 0.0766957 0.00981988 0.00490994 0.999988i \(-0.498437\pi\)
0.00490994 + 0.999988i \(0.498437\pi\)
\(62\) −2.41696 −0.306955
\(63\) 0 0
\(64\) 4.35121 0.543902
\(65\) 3.11548 0.386428
\(66\) 0 0
\(67\) 1.04715 0.127930 0.0639650 0.997952i \(-0.479625\pi\)
0.0639650 + 0.997952i \(0.479625\pi\)
\(68\) −6.48664 −0.786620
\(69\) 0 0
\(70\) 5.65271 0.675628
\(71\) −13.5488 −1.60794 −0.803971 0.594668i \(-0.797283\pi\)
−0.803971 + 0.594668i \(0.797283\pi\)
\(72\) 0 0
\(73\) 4.01120 0.469475 0.234738 0.972059i \(-0.424577\pi\)
0.234738 + 0.972059i \(0.424577\pi\)
\(74\) −4.06942 −0.473061
\(75\) 0 0
\(76\) 0 0
\(77\) −17.3931 −1.98213
\(78\) 0 0
\(79\) −16.9649 −1.90870 −0.954348 0.298697i \(-0.903448\pi\)
−0.954348 + 0.298697i \(0.903448\pi\)
\(80\) −0.420729 −0.0470390
\(81\) 0 0
\(82\) 7.41916 0.819309
\(83\) 13.0252 1.42970 0.714850 0.699278i \(-0.246495\pi\)
0.714850 + 0.699278i \(0.246495\pi\)
\(84\) 0 0
\(85\) −8.58248 −0.930900
\(86\) −8.50883 −0.917531
\(87\) 0 0
\(88\) −12.2655 −1.30751
\(89\) 12.3638 1.31056 0.655279 0.755387i \(-0.272551\pi\)
0.655279 + 0.755387i \(0.272551\pi\)
\(90\) 0 0
\(91\) −7.17137 −0.751764
\(92\) 4.46296 0.465295
\(93\) 0 0
\(94\) 2.89362 0.298454
\(95\) 0 0
\(96\) 0 0
\(97\) −0.175254 −0.0177944 −0.00889718 0.999960i \(-0.502832\pi\)
−0.00889718 + 0.999960i \(0.502832\pi\)
\(98\) −7.11548 −0.718772
\(99\) 0 0
\(100\) 2.69013 0.269013
\(101\) 11.2135 1.11578 0.557891 0.829914i \(-0.311611\pi\)
0.557891 + 0.829914i \(0.311611\pi\)
\(102\) 0 0
\(103\) −9.52010 −0.938043 −0.469022 0.883187i \(-0.655393\pi\)
−0.469022 + 0.883187i \(0.655393\pi\)
\(104\) −5.05720 −0.495900
\(105\) 0 0
\(106\) 1.77925 0.172816
\(107\) −10.2690 −0.992742 −0.496371 0.868111i \(-0.665334\pi\)
−0.496371 + 0.868111i \(0.665334\pi\)
\(108\) 0 0
\(109\) 2.04164 0.195554 0.0977770 0.995208i \(-0.468827\pi\)
0.0977770 + 0.995208i \(0.468827\pi\)
\(110\) −6.36466 −0.606847
\(111\) 0 0
\(112\) 0.968456 0.0915105
\(113\) −13.9973 −1.31675 −0.658375 0.752690i \(-0.728756\pi\)
−0.658375 + 0.752690i \(0.728756\pi\)
\(114\) 0 0
\(115\) 5.90494 0.550639
\(116\) 1.87151 0.173765
\(117\) 0 0
\(118\) −5.39587 −0.496730
\(119\) 19.7556 1.81099
\(120\) 0 0
\(121\) 8.58375 0.780341
\(122\) −0.0646020 −0.00584879
\(123\) 0 0
\(124\) −3.70300 −0.332539
\(125\) 12.0966 1.08196
\(126\) 0 0
\(127\) −1.95928 −0.173858 −0.0869288 0.996215i \(-0.527705\pi\)
−0.0869288 + 0.996215i \(0.527705\pi\)
\(128\) 7.83658 0.692662
\(129\) 0 0
\(130\) −2.62422 −0.230159
\(131\) 1.56004 0.136302 0.0681508 0.997675i \(-0.478290\pi\)
0.0681508 + 0.997675i \(0.478290\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.882034 −0.0761961
\(135\) 0 0
\(136\) 13.9315 1.19462
\(137\) −15.3618 −1.31244 −0.656222 0.754568i \(-0.727846\pi\)
−0.656222 + 0.754568i \(0.727846\pi\)
\(138\) 0 0
\(139\) 9.30803 0.789496 0.394748 0.918789i \(-0.370832\pi\)
0.394748 + 0.918789i \(0.370832\pi\)
\(140\) 8.66046 0.731942
\(141\) 0 0
\(142\) 11.4123 0.957703
\(143\) 8.07460 0.675232
\(144\) 0 0
\(145\) 2.47620 0.205637
\(146\) −3.37870 −0.279623
\(147\) 0 0
\(148\) −6.23472 −0.512490
\(149\) −5.18414 −0.424702 −0.212351 0.977194i \(-0.568112\pi\)
−0.212351 + 0.977194i \(0.568112\pi\)
\(150\) 0 0
\(151\) −13.0922 −1.06543 −0.532713 0.846296i \(-0.678827\pi\)
−0.532713 + 0.846296i \(0.678827\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 14.6505 1.18057
\(155\) −4.89945 −0.393533
\(156\) 0 0
\(157\) −7.36968 −0.588164 −0.294082 0.955780i \(-0.595014\pi\)
−0.294082 + 0.955780i \(0.595014\pi\)
\(158\) 14.2898 1.13683
\(159\) 0 0
\(160\) 9.81937 0.776289
\(161\) −13.5923 −1.07122
\(162\) 0 0
\(163\) −16.0281 −1.25542 −0.627708 0.778449i \(-0.716007\pi\)
−0.627708 + 0.778449i \(0.716007\pi\)
\(164\) 11.3668 0.887599
\(165\) 0 0
\(166\) −10.9713 −0.851540
\(167\) −13.1273 −1.01582 −0.507911 0.861409i \(-0.669582\pi\)
−0.507911 + 0.861409i \(0.669582\pi\)
\(168\) 0 0
\(169\) −9.67075 −0.743904
\(170\) 7.22916 0.554451
\(171\) 0 0
\(172\) −13.0363 −0.994007
\(173\) −18.4720 −1.40440 −0.702201 0.711978i \(-0.747799\pi\)
−0.702201 + 0.711978i \(0.747799\pi\)
\(174\) 0 0
\(175\) −8.19301 −0.619333
\(176\) −1.09043 −0.0821944
\(177\) 0 0
\(178\) −10.4142 −0.780578
\(179\) 11.8588 0.886370 0.443185 0.896430i \(-0.353849\pi\)
0.443185 + 0.896430i \(0.353849\pi\)
\(180\) 0 0
\(181\) −0.273724 −0.0203457 −0.0101729 0.999948i \(-0.503238\pi\)
−0.0101729 + 0.999948i \(0.503238\pi\)
\(182\) 6.04056 0.447756
\(183\) 0 0
\(184\) −9.58520 −0.706630
\(185\) −8.24916 −0.606490
\(186\) 0 0
\(187\) −22.2438 −1.62663
\(188\) 4.43328 0.323330
\(189\) 0 0
\(190\) 0 0
\(191\) 12.1649 0.880218 0.440109 0.897944i \(-0.354940\pi\)
0.440109 + 0.897944i \(0.354940\pi\)
\(192\) 0 0
\(193\) −23.0762 −1.66106 −0.830532 0.556970i \(-0.811964\pi\)
−0.830532 + 0.556970i \(0.811964\pi\)
\(194\) 0.147619 0.0105985
\(195\) 0 0
\(196\) −10.9016 −0.778682
\(197\) −6.46873 −0.460878 −0.230439 0.973087i \(-0.574016\pi\)
−0.230439 + 0.973087i \(0.574016\pi\)
\(198\) 0 0
\(199\) 0.307088 0.0217689 0.0108845 0.999941i \(-0.496535\pi\)
0.0108845 + 0.999941i \(0.496535\pi\)
\(200\) −5.77765 −0.408542
\(201\) 0 0
\(202\) −9.44529 −0.664569
\(203\) −5.69984 −0.400050
\(204\) 0 0
\(205\) 15.0394 1.05040
\(206\) 8.01893 0.558706
\(207\) 0 0
\(208\) −0.449597 −0.0311740
\(209\) 0 0
\(210\) 0 0
\(211\) −10.5856 −0.728741 −0.364371 0.931254i \(-0.618716\pi\)
−0.364371 + 0.931254i \(0.618716\pi\)
\(212\) 2.72598 0.187221
\(213\) 0 0
\(214\) 8.64975 0.591284
\(215\) −17.2483 −1.17633
\(216\) 0 0
\(217\) 11.2778 0.765587
\(218\) −1.71971 −0.116473
\(219\) 0 0
\(220\) −9.75123 −0.657428
\(221\) −9.17135 −0.616932
\(222\) 0 0
\(223\) −7.43507 −0.497889 −0.248944 0.968518i \(-0.580084\pi\)
−0.248944 + 0.968518i \(0.580084\pi\)
\(224\) −22.6027 −1.51021
\(225\) 0 0
\(226\) 11.7901 0.784267
\(227\) 3.54389 0.235216 0.117608 0.993060i \(-0.462477\pi\)
0.117608 + 0.993060i \(0.462477\pi\)
\(228\) 0 0
\(229\) −11.3492 −0.749973 −0.374987 0.927030i \(-0.622353\pi\)
−0.374987 + 0.927030i \(0.622353\pi\)
\(230\) −4.97383 −0.327965
\(231\) 0 0
\(232\) −4.01949 −0.263892
\(233\) 5.92767 0.388335 0.194167 0.980968i \(-0.437800\pi\)
0.194167 + 0.980968i \(0.437800\pi\)
\(234\) 0 0
\(235\) 5.86568 0.382635
\(236\) −8.26695 −0.538132
\(237\) 0 0
\(238\) −16.6404 −1.07864
\(239\) −15.1684 −0.981165 −0.490583 0.871395i \(-0.663216\pi\)
−0.490583 + 0.871395i \(0.663216\pi\)
\(240\) 0 0
\(241\) −8.86254 −0.570887 −0.285443 0.958396i \(-0.592141\pi\)
−0.285443 + 0.958396i \(0.592141\pi\)
\(242\) −7.23023 −0.464777
\(243\) 0 0
\(244\) −0.0989760 −0.00633629
\(245\) −14.4239 −0.921506
\(246\) 0 0
\(247\) 0 0
\(248\) 7.95303 0.505018
\(249\) 0 0
\(250\) −10.1892 −0.644422
\(251\) −11.7071 −0.738948 −0.369474 0.929241i \(-0.620462\pi\)
−0.369474 + 0.929241i \(0.620462\pi\)
\(252\) 0 0
\(253\) 15.3042 0.962169
\(254\) 1.65033 0.103551
\(255\) 0 0
\(256\) −15.3033 −0.956457
\(257\) −9.91597 −0.618541 −0.309271 0.950974i \(-0.600085\pi\)
−0.309271 + 0.950974i \(0.600085\pi\)
\(258\) 0 0
\(259\) 18.9883 1.17988
\(260\) −4.02054 −0.249343
\(261\) 0 0
\(262\) −1.31405 −0.0811823
\(263\) 6.73892 0.415540 0.207770 0.978178i \(-0.433379\pi\)
0.207770 + 0.978178i \(0.433379\pi\)
\(264\) 0 0
\(265\) 3.60674 0.221560
\(266\) 0 0
\(267\) 0 0
\(268\) −1.35135 −0.0825471
\(269\) 0.718290 0.0437949 0.0218975 0.999760i \(-0.493029\pi\)
0.0218975 + 0.999760i \(0.493029\pi\)
\(270\) 0 0
\(271\) −28.8411 −1.75197 −0.875985 0.482339i \(-0.839787\pi\)
−0.875985 + 0.482339i \(0.839787\pi\)
\(272\) 1.23854 0.0750977
\(273\) 0 0
\(274\) 12.9395 0.781701
\(275\) 9.22490 0.556283
\(276\) 0 0
\(277\) −3.83134 −0.230203 −0.115101 0.993354i \(-0.536719\pi\)
−0.115101 + 0.993354i \(0.536719\pi\)
\(278\) −7.84030 −0.470230
\(279\) 0 0
\(280\) −18.6003 −1.11158
\(281\) −22.0921 −1.31791 −0.658953 0.752184i \(-0.729000\pi\)
−0.658953 + 0.752184i \(0.729000\pi\)
\(282\) 0 0
\(283\) −25.1465 −1.49481 −0.747403 0.664371i \(-0.768699\pi\)
−0.747403 + 0.664371i \(0.768699\pi\)
\(284\) 17.4847 1.03753
\(285\) 0 0
\(286\) −6.80136 −0.402173
\(287\) −34.6185 −2.04347
\(288\) 0 0
\(289\) 8.26510 0.486182
\(290\) −2.08574 −0.122479
\(291\) 0 0
\(292\) −5.17647 −0.302930
\(293\) −5.92712 −0.346266 −0.173133 0.984898i \(-0.555389\pi\)
−0.173133 + 0.984898i \(0.555389\pi\)
\(294\) 0 0
\(295\) −10.9380 −0.636835
\(296\) 13.3904 0.778304
\(297\) 0 0
\(298\) 4.36669 0.252955
\(299\) 6.31010 0.364923
\(300\) 0 0
\(301\) 39.7031 2.28845
\(302\) 11.0277 0.634575
\(303\) 0 0
\(304\) 0 0
\(305\) −0.130955 −0.00749848
\(306\) 0 0
\(307\) 17.5842 1.00359 0.501793 0.864988i \(-0.332674\pi\)
0.501793 + 0.864988i \(0.332674\pi\)
\(308\) 22.4459 1.27897
\(309\) 0 0
\(310\) 4.12688 0.234391
\(311\) 6.02866 0.341854 0.170927 0.985284i \(-0.445324\pi\)
0.170927 + 0.985284i \(0.445324\pi\)
\(312\) 0 0
\(313\) 16.6980 0.943829 0.471914 0.881644i \(-0.343563\pi\)
0.471914 + 0.881644i \(0.343563\pi\)
\(314\) 6.20760 0.350315
\(315\) 0 0
\(316\) 21.8932 1.23159
\(317\) −2.19305 −0.123174 −0.0615870 0.998102i \(-0.519616\pi\)
−0.0615870 + 0.998102i \(0.519616\pi\)
\(318\) 0 0
\(319\) 6.41772 0.359323
\(320\) −7.42955 −0.415325
\(321\) 0 0
\(322\) 11.4490 0.638029
\(323\) 0 0
\(324\) 0 0
\(325\) 3.80353 0.210982
\(326\) 13.5007 0.747735
\(327\) 0 0
\(328\) −24.4128 −1.34797
\(329\) −13.5019 −0.744385
\(330\) 0 0
\(331\) −15.5408 −0.854199 −0.427099 0.904205i \(-0.640465\pi\)
−0.427099 + 0.904205i \(0.640465\pi\)
\(332\) −16.8091 −0.922516
\(333\) 0 0
\(334\) 11.0574 0.605032
\(335\) −1.78798 −0.0976877
\(336\) 0 0
\(337\) −12.3767 −0.674200 −0.337100 0.941469i \(-0.609446\pi\)
−0.337100 + 0.941469i \(0.609446\pi\)
\(338\) 8.14583 0.443075
\(339\) 0 0
\(340\) 11.0757 0.600665
\(341\) −12.6982 −0.687647
\(342\) 0 0
\(343\) 5.68923 0.307189
\(344\) 27.9983 1.50957
\(345\) 0 0
\(346\) 15.5593 0.836473
\(347\) 22.2056 1.19206 0.596030 0.802962i \(-0.296744\pi\)
0.596030 + 0.802962i \(0.296744\pi\)
\(348\) 0 0
\(349\) −19.9292 −1.06679 −0.533393 0.845867i \(-0.679083\pi\)
−0.533393 + 0.845867i \(0.679083\pi\)
\(350\) 6.90110 0.368879
\(351\) 0 0
\(352\) 25.4495 1.35646
\(353\) 5.20604 0.277089 0.138545 0.990356i \(-0.455758\pi\)
0.138545 + 0.990356i \(0.455758\pi\)
\(354\) 0 0
\(355\) 23.1341 1.22783
\(356\) −15.9555 −0.845640
\(357\) 0 0
\(358\) −9.98887 −0.527928
\(359\) 5.16826 0.272771 0.136385 0.990656i \(-0.456451\pi\)
0.136385 + 0.990656i \(0.456451\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0.230562 0.0121181
\(363\) 0 0
\(364\) 9.25468 0.485077
\(365\) −6.84899 −0.358493
\(366\) 0 0
\(367\) −6.06224 −0.316447 −0.158223 0.987403i \(-0.550577\pi\)
−0.158223 + 0.987403i \(0.550577\pi\)
\(368\) −0.852146 −0.0444212
\(369\) 0 0
\(370\) 6.94840 0.361230
\(371\) −8.30218 −0.431028
\(372\) 0 0
\(373\) −9.98545 −0.517027 −0.258514 0.966008i \(-0.583233\pi\)
−0.258514 + 0.966008i \(0.583233\pi\)
\(374\) 18.7363 0.968830
\(375\) 0 0
\(376\) −9.52147 −0.491032
\(377\) 2.64610 0.136281
\(378\) 0 0
\(379\) 13.7799 0.707826 0.353913 0.935278i \(-0.384851\pi\)
0.353913 + 0.935278i \(0.384851\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −10.2467 −0.524265
\(383\) 16.3124 0.833524 0.416762 0.909016i \(-0.363165\pi\)
0.416762 + 0.909016i \(0.363165\pi\)
\(384\) 0 0
\(385\) 29.6982 1.51356
\(386\) 19.4375 0.989343
\(387\) 0 0
\(388\) 0.226166 0.0114818
\(389\) 11.4713 0.581617 0.290808 0.956781i \(-0.406076\pi\)
0.290808 + 0.956781i \(0.406076\pi\)
\(390\) 0 0
\(391\) −17.3830 −0.879095
\(392\) 23.4135 1.18256
\(393\) 0 0
\(394\) 5.44871 0.274502
\(395\) 28.9669 1.45748
\(396\) 0 0
\(397\) −0.448109 −0.0224899 −0.0112450 0.999937i \(-0.503579\pi\)
−0.0112450 + 0.999937i \(0.503579\pi\)
\(398\) −0.258665 −0.0129657
\(399\) 0 0
\(400\) −0.513647 −0.0256823
\(401\) 14.5064 0.724416 0.362208 0.932097i \(-0.382023\pi\)
0.362208 + 0.932097i \(0.382023\pi\)
\(402\) 0 0
\(403\) −5.23562 −0.260805
\(404\) −14.4710 −0.719961
\(405\) 0 0
\(406\) 4.80106 0.238273
\(407\) −21.3799 −1.05976
\(408\) 0 0
\(409\) 13.1990 0.652647 0.326323 0.945258i \(-0.394190\pi\)
0.326323 + 0.945258i \(0.394190\pi\)
\(410\) −12.6680 −0.625626
\(411\) 0 0
\(412\) 12.2857 0.605274
\(413\) 25.1777 1.23891
\(414\) 0 0
\(415\) −22.2401 −1.09172
\(416\) 10.4931 0.514467
\(417\) 0 0
\(418\) 0 0
\(419\) −11.4229 −0.558047 −0.279024 0.960284i \(-0.590011\pi\)
−0.279024 + 0.960284i \(0.590011\pi\)
\(420\) 0 0
\(421\) 16.5837 0.808240 0.404120 0.914706i \(-0.367578\pi\)
0.404120 + 0.914706i \(0.367578\pi\)
\(422\) 8.91641 0.434044
\(423\) 0 0
\(424\) −5.85464 −0.284327
\(425\) −10.4779 −0.508253
\(426\) 0 0
\(427\) 0.301440 0.0145877
\(428\) 13.2522 0.640568
\(429\) 0 0
\(430\) 14.5285 0.700629
\(431\) 28.4987 1.37274 0.686368 0.727255i \(-0.259204\pi\)
0.686368 + 0.727255i \(0.259204\pi\)
\(432\) 0 0
\(433\) −13.9975 −0.672677 −0.336339 0.941741i \(-0.609189\pi\)
−0.336339 + 0.941741i \(0.609189\pi\)
\(434\) −9.49947 −0.455989
\(435\) 0 0
\(436\) −2.63475 −0.126182
\(437\) 0 0
\(438\) 0 0
\(439\) 26.8291 1.28048 0.640242 0.768174i \(-0.278834\pi\)
0.640242 + 0.768174i \(0.278834\pi\)
\(440\) 20.9429 0.998416
\(441\) 0 0
\(442\) 7.72518 0.367449
\(443\) 13.9183 0.661277 0.330638 0.943758i \(-0.392736\pi\)
0.330638 + 0.943758i \(0.392736\pi\)
\(444\) 0 0
\(445\) −21.1107 −1.00075
\(446\) 6.26268 0.296546
\(447\) 0 0
\(448\) 17.1017 0.807981
\(449\) 21.2841 1.00446 0.502229 0.864735i \(-0.332513\pi\)
0.502229 + 0.864735i \(0.332513\pi\)
\(450\) 0 0
\(451\) 38.9787 1.83544
\(452\) 18.0635 0.849636
\(453\) 0 0
\(454\) −2.98507 −0.140097
\(455\) 12.2449 0.574049
\(456\) 0 0
\(457\) −0.745738 −0.0348842 −0.0174421 0.999848i \(-0.505552\pi\)
−0.0174421 + 0.999848i \(0.505552\pi\)
\(458\) 9.55958 0.446690
\(459\) 0 0
\(460\) −7.62035 −0.355301
\(461\) −28.1942 −1.31314 −0.656568 0.754267i \(-0.727993\pi\)
−0.656568 + 0.754267i \(0.727993\pi\)
\(462\) 0 0
\(463\) 8.85705 0.411622 0.205811 0.978592i \(-0.434017\pi\)
0.205811 + 0.978592i \(0.434017\pi\)
\(464\) −0.357342 −0.0165892
\(465\) 0 0
\(466\) −4.99298 −0.231295
\(467\) −37.2776 −1.72500 −0.862500 0.506057i \(-0.831102\pi\)
−0.862500 + 0.506057i \(0.831102\pi\)
\(468\) 0 0
\(469\) 4.11566 0.190044
\(470\) −4.94076 −0.227900
\(471\) 0 0
\(472\) 17.7551 0.817245
\(473\) −44.7036 −2.05547
\(474\) 0 0
\(475\) 0 0
\(476\) −25.4946 −1.16855
\(477\) 0 0
\(478\) 12.7766 0.584389
\(479\) 29.8552 1.36412 0.682059 0.731297i \(-0.261085\pi\)
0.682059 + 0.731297i \(0.261085\pi\)
\(480\) 0 0
\(481\) −8.81517 −0.401937
\(482\) 7.46506 0.340024
\(483\) 0 0
\(484\) −11.0774 −0.503516
\(485\) 0.299241 0.0135878
\(486\) 0 0
\(487\) −30.8808 −1.39934 −0.699671 0.714465i \(-0.746670\pi\)
−0.699671 + 0.714465i \(0.746670\pi\)
\(488\) 0.212573 0.00962273
\(489\) 0 0
\(490\) 12.1494 0.548856
\(491\) −10.1276 −0.457051 −0.228525 0.973538i \(-0.573390\pi\)
−0.228525 + 0.973538i \(0.573390\pi\)
\(492\) 0 0
\(493\) −7.28943 −0.328299
\(494\) 0 0
\(495\) 0 0
\(496\) 0.707042 0.0317471
\(497\) −53.2512 −2.38864
\(498\) 0 0
\(499\) 8.59460 0.384747 0.192374 0.981322i \(-0.438381\pi\)
0.192374 + 0.981322i \(0.438381\pi\)
\(500\) −15.6108 −0.698135
\(501\) 0 0
\(502\) 9.86111 0.440123
\(503\) 18.0671 0.805570 0.402785 0.915295i \(-0.368042\pi\)
0.402785 + 0.915295i \(0.368042\pi\)
\(504\) 0 0
\(505\) −19.1466 −0.852014
\(506\) −12.8910 −0.573075
\(507\) 0 0
\(508\) 2.52845 0.112182
\(509\) 31.4464 1.39384 0.696919 0.717150i \(-0.254554\pi\)
0.696919 + 0.717150i \(0.254554\pi\)
\(510\) 0 0
\(511\) 15.7654 0.697418
\(512\) −2.78294 −0.122990
\(513\) 0 0
\(514\) 8.35239 0.368408
\(515\) 16.2553 0.716292
\(516\) 0 0
\(517\) 15.2025 0.668604
\(518\) −15.9942 −0.702744
\(519\) 0 0
\(520\) 8.63501 0.378670
\(521\) 19.9501 0.874030 0.437015 0.899454i \(-0.356036\pi\)
0.437015 + 0.899454i \(0.356036\pi\)
\(522\) 0 0
\(523\) −3.16211 −0.138269 −0.0691346 0.997607i \(-0.522024\pi\)
−0.0691346 + 0.997607i \(0.522024\pi\)
\(524\) −2.01324 −0.0879488
\(525\) 0 0
\(526\) −5.67630 −0.247499
\(527\) 14.4230 0.628275
\(528\) 0 0
\(529\) −11.0401 −0.480005
\(530\) −3.03802 −0.131963
\(531\) 0 0
\(532\) 0 0
\(533\) 16.0714 0.696128
\(534\) 0 0
\(535\) 17.5340 0.758060
\(536\) 2.90234 0.125362
\(537\) 0 0
\(538\) −0.605028 −0.0260846
\(539\) −37.3832 −1.61021
\(540\) 0 0
\(541\) 0.594406 0.0255555 0.0127778 0.999918i \(-0.495933\pi\)
0.0127778 + 0.999918i \(0.495933\pi\)
\(542\) 24.2933 1.04349
\(543\) 0 0
\(544\) −28.9063 −1.23935
\(545\) −3.48604 −0.149325
\(546\) 0 0
\(547\) −26.5738 −1.13622 −0.568108 0.822954i \(-0.692324\pi\)
−0.568108 + 0.822954i \(0.692324\pi\)
\(548\) 19.8244 0.846856
\(549\) 0 0
\(550\) −7.77029 −0.331326
\(551\) 0 0
\(552\) 0 0
\(553\) −66.6776 −2.83542
\(554\) 3.22720 0.137111
\(555\) 0 0
\(556\) −12.0120 −0.509424
\(557\) −34.1718 −1.44791 −0.723953 0.689849i \(-0.757677\pi\)
−0.723953 + 0.689849i \(0.757677\pi\)
\(558\) 0 0
\(559\) −18.4318 −0.779582
\(560\) −1.65361 −0.0698776
\(561\) 0 0
\(562\) 18.6086 0.784955
\(563\) −30.0716 −1.26737 −0.633683 0.773593i \(-0.718457\pi\)
−0.633683 + 0.773593i \(0.718457\pi\)
\(564\) 0 0
\(565\) 23.8998 1.00547
\(566\) 21.1813 0.890317
\(567\) 0 0
\(568\) −37.5524 −1.57566
\(569\) −24.7511 −1.03762 −0.518809 0.854890i \(-0.673624\pi\)
−0.518809 + 0.854890i \(0.673624\pi\)
\(570\) 0 0
\(571\) 31.5869 1.32187 0.660934 0.750444i \(-0.270160\pi\)
0.660934 + 0.750444i \(0.270160\pi\)
\(572\) −10.4203 −0.435694
\(573\) 0 0
\(574\) 29.1598 1.21711
\(575\) 7.20904 0.300638
\(576\) 0 0
\(577\) −30.8109 −1.28267 −0.641337 0.767260i \(-0.721620\pi\)
−0.641337 + 0.767260i \(0.721620\pi\)
\(578\) −6.96182 −0.289574
\(579\) 0 0
\(580\) −3.19554 −0.132688
\(581\) 51.1933 2.12386
\(582\) 0 0
\(583\) 9.34783 0.387148
\(584\) 11.1176 0.460050
\(585\) 0 0
\(586\) 4.99251 0.206239
\(587\) 14.1246 0.582986 0.291493 0.956573i \(-0.405848\pi\)
0.291493 + 0.956573i \(0.405848\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 9.21326 0.379304
\(591\) 0 0
\(592\) 1.19044 0.0489268
\(593\) −37.7151 −1.54877 −0.774387 0.632712i \(-0.781942\pi\)
−0.774387 + 0.632712i \(0.781942\pi\)
\(594\) 0 0
\(595\) −33.7320 −1.38288
\(596\) 6.69015 0.274039
\(597\) 0 0
\(598\) −5.31510 −0.217351
\(599\) 0.0927993 0.00379167 0.00189584 0.999998i \(-0.499397\pi\)
0.00189584 + 0.999998i \(0.499397\pi\)
\(600\) 0 0
\(601\) 23.0380 0.939740 0.469870 0.882736i \(-0.344301\pi\)
0.469870 + 0.882736i \(0.344301\pi\)
\(602\) −33.4425 −1.36302
\(603\) 0 0
\(604\) 16.8955 0.687468
\(605\) −14.6565 −0.595870
\(606\) 0 0
\(607\) −31.9363 −1.29625 −0.648127 0.761532i \(-0.724447\pi\)
−0.648127 + 0.761532i \(0.724447\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.110306 0.00446615
\(611\) 6.26815 0.253582
\(612\) 0 0
\(613\) 43.7113 1.76548 0.882741 0.469859i \(-0.155695\pi\)
0.882741 + 0.469859i \(0.155695\pi\)
\(614\) −14.8115 −0.597743
\(615\) 0 0
\(616\) −48.2075 −1.94234
\(617\) 13.4123 0.539957 0.269978 0.962866i \(-0.412983\pi\)
0.269978 + 0.962866i \(0.412983\pi\)
\(618\) 0 0
\(619\) 22.9340 0.921797 0.460899 0.887453i \(-0.347527\pi\)
0.460899 + 0.887453i \(0.347527\pi\)
\(620\) 6.32275 0.253928
\(621\) 0 0
\(622\) −5.07804 −0.203611
\(623\) 48.5938 1.94687
\(624\) 0 0
\(625\) −10.2318 −0.409273
\(626\) −14.0650 −0.562152
\(627\) 0 0
\(628\) 9.51059 0.379514
\(629\) 24.2839 0.968261
\(630\) 0 0
\(631\) −21.3573 −0.850219 −0.425109 0.905142i \(-0.639764\pi\)
−0.425109 + 0.905142i \(0.639764\pi\)
\(632\) −47.0206 −1.87038
\(633\) 0 0
\(634\) 1.84724 0.0733634
\(635\) 3.34540 0.132758
\(636\) 0 0
\(637\) −15.4135 −0.610706
\(638\) −5.40575 −0.214016
\(639\) 0 0
\(640\) −13.3807 −0.528919
\(641\) −29.5018 −1.16525 −0.582625 0.812741i \(-0.697974\pi\)
−0.582625 + 0.812741i \(0.697974\pi\)
\(642\) 0 0
\(643\) 6.83309 0.269471 0.134735 0.990882i \(-0.456982\pi\)
0.134735 + 0.990882i \(0.456982\pi\)
\(644\) 17.5409 0.691209
\(645\) 0 0
\(646\) 0 0
\(647\) 18.9452 0.744812 0.372406 0.928070i \(-0.378533\pi\)
0.372406 + 0.928070i \(0.378533\pi\)
\(648\) 0 0
\(649\) −28.3487 −1.11279
\(650\) −3.20378 −0.125662
\(651\) 0 0
\(652\) 20.6843 0.810060
\(653\) −27.1399 −1.06207 −0.531033 0.847351i \(-0.678196\pi\)
−0.531033 + 0.847351i \(0.678196\pi\)
\(654\) 0 0
\(655\) −2.66372 −0.104080
\(656\) −2.17035 −0.0847380
\(657\) 0 0
\(658\) 11.3729 0.443361
\(659\) −39.9075 −1.55457 −0.777287 0.629146i \(-0.783405\pi\)
−0.777287 + 0.629146i \(0.783405\pi\)
\(660\) 0 0
\(661\) 50.3466 1.95826 0.979129 0.203241i \(-0.0651476\pi\)
0.979129 + 0.203241i \(0.0651476\pi\)
\(662\) 13.0903 0.508767
\(663\) 0 0
\(664\) 36.1012 1.40100
\(665\) 0 0
\(666\) 0 0
\(667\) 5.01530 0.194193
\(668\) 16.9409 0.655461
\(669\) 0 0
\(670\) 1.50604 0.0581835
\(671\) −0.339405 −0.0131026
\(672\) 0 0
\(673\) 47.8104 1.84295 0.921477 0.388432i \(-0.126983\pi\)
0.921477 + 0.388432i \(0.126983\pi\)
\(674\) 10.4251 0.401559
\(675\) 0 0
\(676\) 12.4801 0.480005
\(677\) 41.2610 1.58579 0.792894 0.609359i \(-0.208573\pi\)
0.792894 + 0.609359i \(0.208573\pi\)
\(678\) 0 0
\(679\) −0.688807 −0.0264340
\(680\) −23.7876 −0.912212
\(681\) 0 0
\(682\) 10.6959 0.409568
\(683\) −17.8805 −0.684178 −0.342089 0.939668i \(-0.611134\pi\)
−0.342089 + 0.939668i \(0.611134\pi\)
\(684\) 0 0
\(685\) 26.2297 1.00218
\(686\) −4.79213 −0.182964
\(687\) 0 0
\(688\) 2.48912 0.0948967
\(689\) 3.85421 0.146834
\(690\) 0 0
\(691\) −11.3331 −0.431132 −0.215566 0.976489i \(-0.569160\pi\)
−0.215566 + 0.976489i \(0.569160\pi\)
\(692\) 23.8382 0.906193
\(693\) 0 0
\(694\) −18.7042 −0.710000
\(695\) −15.8931 −0.602861
\(696\) 0 0
\(697\) −44.2731 −1.67696
\(698\) 16.7867 0.635386
\(699\) 0 0
\(700\) 10.5731 0.399626
\(701\) −6.89362 −0.260368 −0.130184 0.991490i \(-0.541557\pi\)
−0.130184 + 0.991490i \(0.541557\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −19.2557 −0.725725
\(705\) 0 0
\(706\) −4.38513 −0.165037
\(707\) 44.0727 1.65752
\(708\) 0 0
\(709\) −50.6485 −1.90214 −0.951072 0.308971i \(-0.900015\pi\)
−0.951072 + 0.308971i \(0.900015\pi\)
\(710\) −19.4862 −0.731304
\(711\) 0 0
\(712\) 34.2680 1.28425
\(713\) −9.92335 −0.371632
\(714\) 0 0
\(715\) −13.7871 −0.515609
\(716\) −15.3038 −0.571931
\(717\) 0 0
\(718\) −4.35331 −0.162464
\(719\) −19.6429 −0.732556 −0.366278 0.930505i \(-0.619368\pi\)
−0.366278 + 0.930505i \(0.619368\pi\)
\(720\) 0 0
\(721\) −37.4172 −1.39349
\(722\) 0 0
\(723\) 0 0
\(724\) 0.353242 0.0131281
\(725\) 3.02306 0.112274
\(726\) 0 0
\(727\) −17.8693 −0.662734 −0.331367 0.943502i \(-0.607510\pi\)
−0.331367 + 0.943502i \(0.607510\pi\)
\(728\) −19.8765 −0.736672
\(729\) 0 0
\(730\) 5.76902 0.213521
\(731\) 50.7756 1.87800
\(732\) 0 0
\(733\) 39.1472 1.44594 0.722968 0.690882i \(-0.242777\pi\)
0.722968 + 0.690882i \(0.242777\pi\)
\(734\) 5.10633 0.188478
\(735\) 0 0
\(736\) 19.8882 0.733088
\(737\) −4.63402 −0.170696
\(738\) 0 0
\(739\) 30.9676 1.13916 0.569581 0.821935i \(-0.307105\pi\)
0.569581 + 0.821935i \(0.307105\pi\)
\(740\) 10.6456 0.391339
\(741\) 0 0
\(742\) 6.99306 0.256723
\(743\) −12.2426 −0.449136 −0.224568 0.974458i \(-0.572097\pi\)
−0.224568 + 0.974458i \(0.572097\pi\)
\(744\) 0 0
\(745\) 8.85175 0.324303
\(746\) 8.41091 0.307945
\(747\) 0 0
\(748\) 28.7057 1.04958
\(749\) −40.3606 −1.47474
\(750\) 0 0
\(751\) 44.9133 1.63891 0.819455 0.573143i \(-0.194276\pi\)
0.819455 + 0.573143i \(0.194276\pi\)
\(752\) −0.846480 −0.0308680
\(753\) 0 0
\(754\) −2.22885 −0.0811700
\(755\) 22.3544 0.813561
\(756\) 0 0
\(757\) −15.2301 −0.553549 −0.276775 0.960935i \(-0.589266\pi\)
−0.276775 + 0.960935i \(0.589266\pi\)
\(758\) −11.6070 −0.421587
\(759\) 0 0
\(760\) 0 0
\(761\) 32.2300 1.16834 0.584169 0.811632i \(-0.301421\pi\)
0.584169 + 0.811632i \(0.301421\pi\)
\(762\) 0 0
\(763\) 8.02434 0.290501
\(764\) −15.6988 −0.567962
\(765\) 0 0
\(766\) −13.7402 −0.496453
\(767\) −11.6885 −0.422047
\(768\) 0 0
\(769\) 10.7275 0.386843 0.193422 0.981116i \(-0.438041\pi\)
0.193422 + 0.981116i \(0.438041\pi\)
\(770\) −25.0152 −0.901487
\(771\) 0 0
\(772\) 29.7800 1.07180
\(773\) 0.826686 0.0297338 0.0148669 0.999889i \(-0.495268\pi\)
0.0148669 + 0.999889i \(0.495268\pi\)
\(774\) 0 0
\(775\) −5.98148 −0.214861
\(776\) −0.485742 −0.0174371
\(777\) 0 0
\(778\) −9.66244 −0.346415
\(779\) 0 0
\(780\) 0 0
\(781\) 59.9581 2.14547
\(782\) 14.6420 0.523595
\(783\) 0 0
\(784\) 2.08152 0.0743398
\(785\) 12.5835 0.449124
\(786\) 0 0
\(787\) 13.0266 0.464348 0.232174 0.972674i \(-0.425416\pi\)
0.232174 + 0.972674i \(0.425416\pi\)
\(788\) 8.34791 0.297382
\(789\) 0 0
\(790\) −24.3993 −0.868089
\(791\) −55.0139 −1.95607
\(792\) 0 0
\(793\) −0.139941 −0.00496944
\(794\) 0.377449 0.0133952
\(795\) 0 0
\(796\) −0.396298 −0.0140464
\(797\) −47.0808 −1.66769 −0.833844 0.552000i \(-0.813865\pi\)
−0.833844 + 0.552000i \(0.813865\pi\)
\(798\) 0 0
\(799\) −17.2674 −0.610877
\(800\) 11.9880 0.423838
\(801\) 0 0
\(802\) −12.2190 −0.431468
\(803\) −17.7510 −0.626418
\(804\) 0 0
\(805\) 23.2084 0.817988
\(806\) 4.41004 0.155337
\(807\) 0 0
\(808\) 31.0798 1.09338
\(809\) 10.0150 0.352107 0.176053 0.984381i \(-0.443667\pi\)
0.176053 + 0.984381i \(0.443667\pi\)
\(810\) 0 0
\(811\) 31.5550 1.10804 0.554022 0.832502i \(-0.313092\pi\)
0.554022 + 0.832502i \(0.313092\pi\)
\(812\) 7.35566 0.258133
\(813\) 0 0
\(814\) 18.0086 0.631202
\(815\) 27.3674 0.958639
\(816\) 0 0
\(817\) 0 0
\(818\) −11.1177 −0.388721
\(819\) 0 0
\(820\) −19.4085 −0.677772
\(821\) 38.3465 1.33830 0.669151 0.743126i \(-0.266658\pi\)
0.669151 + 0.743126i \(0.266658\pi\)
\(822\) 0 0
\(823\) 49.1374 1.71282 0.856410 0.516296i \(-0.172689\pi\)
0.856410 + 0.516296i \(0.172689\pi\)
\(824\) −26.3863 −0.919211
\(825\) 0 0
\(826\) −21.2075 −0.737905
\(827\) 16.0238 0.557201 0.278600 0.960407i \(-0.410130\pi\)
0.278600 + 0.960407i \(0.410130\pi\)
\(828\) 0 0
\(829\) −34.4952 −1.19807 −0.599033 0.800724i \(-0.704448\pi\)
−0.599033 + 0.800724i \(0.704448\pi\)
\(830\) 18.7332 0.650238
\(831\) 0 0
\(832\) −7.93932 −0.275247
\(833\) 42.4609 1.47118
\(834\) 0 0
\(835\) 22.4145 0.775685
\(836\) 0 0
\(837\) 0 0
\(838\) 9.62173 0.332377
\(839\) −17.0321 −0.588013 −0.294007 0.955803i \(-0.594989\pi\)
−0.294007 + 0.955803i \(0.594989\pi\)
\(840\) 0 0
\(841\) −26.8969 −0.927478
\(842\) −13.9687 −0.481394
\(843\) 0 0
\(844\) 13.6607 0.470222
\(845\) 16.5125 0.568047
\(846\) 0 0
\(847\) 33.7370 1.15922
\(848\) −0.520491 −0.0178737
\(849\) 0 0
\(850\) 8.82571 0.302719
\(851\) −16.7079 −0.572738
\(852\) 0 0
\(853\) 34.2140 1.17146 0.585732 0.810505i \(-0.300807\pi\)
0.585732 + 0.810505i \(0.300807\pi\)
\(854\) −0.253907 −0.00868853
\(855\) 0 0
\(856\) −28.4620 −0.972812
\(857\) 8.26690 0.282392 0.141196 0.989982i \(-0.454905\pi\)
0.141196 + 0.989982i \(0.454905\pi\)
\(858\) 0 0
\(859\) −50.4943 −1.72284 −0.861421 0.507891i \(-0.830425\pi\)
−0.861421 + 0.507891i \(0.830425\pi\)
\(860\) 22.2590 0.759026
\(861\) 0 0
\(862\) −24.0049 −0.817611
\(863\) −33.0070 −1.12357 −0.561785 0.827283i \(-0.689885\pi\)
−0.561785 + 0.827283i \(0.689885\pi\)
\(864\) 0 0
\(865\) 31.5404 1.07241
\(866\) 11.7903 0.400652
\(867\) 0 0
\(868\) −14.5540 −0.493996
\(869\) 75.0755 2.54676
\(870\) 0 0
\(871\) −1.91066 −0.0647402
\(872\) 5.65871 0.191628
\(873\) 0 0
\(874\) 0 0
\(875\) 47.5438 1.60728
\(876\) 0 0
\(877\) −2.11604 −0.0714535 −0.0357267 0.999362i \(-0.511375\pi\)
−0.0357267 + 0.999362i \(0.511375\pi\)
\(878\) −22.5986 −0.762666
\(879\) 0 0
\(880\) 1.86188 0.0627638
\(881\) 53.0406 1.78698 0.893492 0.449080i \(-0.148248\pi\)
0.893492 + 0.449080i \(0.148248\pi\)
\(882\) 0 0
\(883\) 17.1836 0.578275 0.289137 0.957288i \(-0.406632\pi\)
0.289137 + 0.957288i \(0.406632\pi\)
\(884\) 11.8357 0.398076
\(885\) 0 0
\(886\) −11.7236 −0.393861
\(887\) −3.89561 −0.130802 −0.0654008 0.997859i \(-0.520833\pi\)
−0.0654008 + 0.997859i \(0.520833\pi\)
\(888\) 0 0
\(889\) −7.70060 −0.258270
\(890\) 17.7819 0.596051
\(891\) 0 0
\(892\) 9.59498 0.321264
\(893\) 0 0
\(894\) 0 0
\(895\) −20.2485 −0.676834
\(896\) 30.8004 1.02897
\(897\) 0 0
\(898\) −17.9279 −0.598263
\(899\) −4.16129 −0.138787
\(900\) 0 0
\(901\) −10.6175 −0.353721
\(902\) −32.8324 −1.09320
\(903\) 0 0
\(904\) −38.7954 −1.29032
\(905\) 0.467375 0.0155361
\(906\) 0 0
\(907\) 8.84164 0.293582 0.146791 0.989168i \(-0.453106\pi\)
0.146791 + 0.989168i \(0.453106\pi\)
\(908\) −4.57340 −0.151774
\(909\) 0 0
\(910\) −10.3141 −0.341908
\(911\) 18.4416 0.610997 0.305498 0.952193i \(-0.401177\pi\)
0.305498 + 0.952193i \(0.401177\pi\)
\(912\) 0 0
\(913\) −57.6411 −1.90764
\(914\) 0.628147 0.0207773
\(915\) 0 0
\(916\) 14.6461 0.483922
\(917\) 6.13149 0.202480
\(918\) 0 0
\(919\) −45.5362 −1.50210 −0.751051 0.660245i \(-0.770453\pi\)
−0.751051 + 0.660245i \(0.770453\pi\)
\(920\) 16.3664 0.539584
\(921\) 0 0
\(922\) 23.7485 0.782114
\(923\) 24.7214 0.813714
\(924\) 0 0
\(925\) −10.0710 −0.331132
\(926\) −7.46044 −0.245165
\(927\) 0 0
\(928\) 8.33997 0.273773
\(929\) 1.51634 0.0497494 0.0248747 0.999691i \(-0.492081\pi\)
0.0248747 + 0.999691i \(0.492081\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.64968 −0.250574
\(933\) 0 0
\(934\) 31.3995 1.02742
\(935\) 37.9805 1.24209
\(936\) 0 0
\(937\) 7.13697 0.233155 0.116577 0.993182i \(-0.462808\pi\)
0.116577 + 0.993182i \(0.462808\pi\)
\(938\) −3.46669 −0.113191
\(939\) 0 0
\(940\) −7.56968 −0.246896
\(941\) 49.7958 1.62330 0.811648 0.584147i \(-0.198571\pi\)
0.811648 + 0.584147i \(0.198571\pi\)
\(942\) 0 0
\(943\) 30.4609 0.991944
\(944\) 1.57847 0.0513748
\(945\) 0 0
\(946\) 37.6546 1.22426
\(947\) 0.349552 0.0113589 0.00567945 0.999984i \(-0.498192\pi\)
0.00567945 + 0.999984i \(0.498192\pi\)
\(948\) 0 0
\(949\) −7.31892 −0.237582
\(950\) 0 0
\(951\) 0 0
\(952\) 54.7554 1.77463
\(953\) 21.0086 0.680534 0.340267 0.940329i \(-0.389483\pi\)
0.340267 + 0.940329i \(0.389483\pi\)
\(954\) 0 0
\(955\) −20.7711 −0.672137
\(956\) 19.5749 0.633099
\(957\) 0 0
\(958\) −25.1475 −0.812479
\(959\) −60.3768 −1.94967
\(960\) 0 0
\(961\) −22.7664 −0.734400
\(962\) 7.42516 0.239397
\(963\) 0 0
\(964\) 11.4371 0.368366
\(965\) 39.4019 1.26839
\(966\) 0 0
\(967\) −36.8410 −1.18473 −0.592364 0.805670i \(-0.701805\pi\)
−0.592364 + 0.805670i \(0.701805\pi\)
\(968\) 23.7911 0.764675
\(969\) 0 0
\(970\) −0.252055 −0.00809300
\(971\) 5.39119 0.173012 0.0865058 0.996251i \(-0.472430\pi\)
0.0865058 + 0.996251i \(0.472430\pi\)
\(972\) 0 0
\(973\) 36.5836 1.17282
\(974\) 26.0114 0.833459
\(975\) 0 0
\(976\) 0.0188982 0.000604918 0
\(977\) −40.7182 −1.30269 −0.651345 0.758782i \(-0.725795\pi\)
−0.651345 + 0.758782i \(0.725795\pi\)
\(978\) 0 0
\(979\) −54.7141 −1.74867
\(980\) 18.6140 0.594603
\(981\) 0 0
\(982\) 8.53061 0.272223
\(983\) 43.9907 1.40309 0.701543 0.712627i \(-0.252495\pi\)
0.701543 + 0.712627i \(0.252495\pi\)
\(984\) 0 0
\(985\) 11.0451 0.351927
\(986\) 6.14000 0.195538
\(987\) 0 0
\(988\) 0 0
\(989\) −34.9348 −1.11086
\(990\) 0 0
\(991\) −33.2649 −1.05669 −0.528347 0.849029i \(-0.677188\pi\)
−0.528347 + 0.849029i \(0.677188\pi\)
\(992\) −16.5016 −0.523926
\(993\) 0 0
\(994\) 44.8543 1.42269
\(995\) −0.524343 −0.0166228
\(996\) 0 0
\(997\) 27.0800 0.857633 0.428817 0.903392i \(-0.358931\pi\)
0.428817 + 0.903392i \(0.358931\pi\)
\(998\) −7.23937 −0.229158
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3249.2.a.bg.1.3 6
3.2 odd 2 1083.2.a.p.1.4 6
19.2 odd 18 171.2.u.e.118.1 12
19.10 odd 18 171.2.u.e.100.1 12
19.18 odd 2 3249.2.a.bh.1.4 6
57.2 even 18 57.2.i.b.4.2 12
57.29 even 18 57.2.i.b.43.2 yes 12
57.56 even 2 1083.2.a.q.1.3 6
228.59 odd 18 912.2.bo.j.289.1 12
228.143 odd 18 912.2.bo.j.385.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.b.4.2 12 57.2 even 18
57.2.i.b.43.2 yes 12 57.29 even 18
171.2.u.e.100.1 12 19.10 odd 18
171.2.u.e.118.1 12 19.2 odd 18
912.2.bo.j.289.1 12 228.59 odd 18
912.2.bo.j.385.1 12 228.143 odd 18
1083.2.a.p.1.4 6 3.2 odd 2
1083.2.a.q.1.3 6 57.56 even 2
3249.2.a.bg.1.3 6 1.1 even 1 trivial
3249.2.a.bh.1.4 6 19.18 odd 2