Defining parameters
Level: | \( N \) | \(=\) | \( 3249 = 3^{2} \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3249.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 40 \) | ||
Sturm bound: | \(760\) | ||
Trace bound: | \(91\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3249))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 420 | 150 | 270 |
Cusp forms | 341 | 133 | 208 |
Eisenstein series | 79 | 17 | 62 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(23\) |
\(+\) | \(-\) | \(-\) | \(33\) |
\(-\) | \(+\) | \(-\) | \(41\) |
\(-\) | \(-\) | \(+\) | \(36\) |
Plus space | \(+\) | \(59\) | |
Minus space | \(-\) | \(74\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3249))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3249)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 2}\)