Properties

Label 912.2.bo.j.385.1
Level $912$
Weight $2$
Character 912.385
Analytic conductor $7.282$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,2,Mod(289,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} + \cdots + 57 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 385.1
Root \(0.500000 - 1.80139i\) of defining polynomial
Character \(\chi\) \(=\) 912.385
Dual form 912.2.bo.j.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 + 0.984808i) q^{3} +(1.30800 + 1.09754i) q^{5} +(1.96517 + 3.40377i) q^{7} +(-0.939693 - 0.342020i) q^{9} +(2.21268 - 3.83247i) q^{11} +(0.316842 + 1.79690i) q^{13} +(-1.30800 + 1.09754i) q^{15} +(4.72331 - 1.71914i) q^{17} +(1.33604 + 4.14910i) q^{19} +(-3.69330 + 1.34425i) q^{21} +(-2.64922 + 2.22296i) q^{23} +(-0.361980 - 2.05289i) q^{25} +(0.500000 - 0.866025i) q^{27} +(1.36276 + 0.496003i) q^{29} +(-1.43471 - 2.48499i) q^{31} +(3.39002 + 2.84456i) q^{33} +(-1.16534 + 6.60896i) q^{35} -4.83123 q^{37} -1.82462 q^{39} +(-1.52950 + 8.67423i) q^{41} +(-7.73836 - 6.49325i) q^{43} +(-0.853733 - 1.47871i) q^{45} +(3.22814 + 1.17495i) q^{47} +(-4.22376 + 7.31577i) q^{49} +(0.872832 + 4.95008i) q^{51} +(-1.61814 + 1.35778i) q^{53} +(7.10045 - 2.58435i) q^{55} +(-4.31806 + 0.595259i) q^{57} +(6.01966 - 2.19098i) q^{59} +(0.0587523 - 0.0492990i) q^{61} +(-0.682495 - 3.87062i) q^{63} +(-1.55774 + 2.69809i) q^{65} +(-0.984002 - 0.358147i) q^{67} +(-1.72915 - 2.99498i) q^{69} +(10.3790 + 8.70898i) q^{71} +(0.696538 - 3.95026i) q^{73} +2.08456 q^{75} +17.3931 q^{77} +(-2.94592 + 16.7071i) q^{79} +(0.766044 + 0.642788i) q^{81} +(-6.51259 - 11.2801i) q^{83} +(8.06489 + 2.93538i) q^{85} +(-0.725109 + 1.25592i) q^{87} +(2.14695 + 12.1759i) q^{89} +(-5.49359 + 4.60967i) q^{91} +(2.69638 - 0.981401i) q^{93} +(-2.80626 + 6.89335i) q^{95} +(-0.164685 + 0.0599404i) q^{97} +(-3.39002 + 2.84456i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{5} + 9 q^{7} + 9 q^{11} - 3 q^{13} - 6 q^{15} + 12 q^{17} + 9 q^{19} - 9 q^{23} - 12 q^{25} + 6 q^{27} - 9 q^{33} - 30 q^{35} - 12 q^{37} - 6 q^{39} - 18 q^{41} - 15 q^{43} - 9 q^{45} + 9 q^{47}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.173648 + 0.984808i −0.100256 + 0.568579i
\(4\) 0 0
\(5\) 1.30800 + 1.09754i 0.584953 + 0.490834i 0.886570 0.462595i \(-0.153082\pi\)
−0.301616 + 0.953429i \(0.597526\pi\)
\(6\) 0 0
\(7\) 1.96517 + 3.40377i 0.742763 + 1.28650i 0.951233 + 0.308475i \(0.0998185\pi\)
−0.208469 + 0.978029i \(0.566848\pi\)
\(8\) 0 0
\(9\) −0.939693 0.342020i −0.313231 0.114007i
\(10\) 0 0
\(11\) 2.21268 3.83247i 0.667147 1.15553i −0.311551 0.950229i \(-0.600849\pi\)
0.978698 0.205303i \(-0.0658181\pi\)
\(12\) 0 0
\(13\) 0.316842 + 1.79690i 0.0878763 + 0.498371i 0.996699 + 0.0811881i \(0.0258714\pi\)
−0.908823 + 0.417183i \(0.863017\pi\)
\(14\) 0 0
\(15\) −1.30800 + 1.09754i −0.337723 + 0.283383i
\(16\) 0 0
\(17\) 4.72331 1.71914i 1.14557 0.416954i 0.301648 0.953419i \(-0.402463\pi\)
0.843922 + 0.536466i \(0.180241\pi\)
\(18\) 0 0
\(19\) 1.33604 + 4.14910i 0.306508 + 0.951868i
\(20\) 0 0
\(21\) −3.69330 + 1.34425i −0.805945 + 0.293340i
\(22\) 0 0
\(23\) −2.64922 + 2.22296i −0.552400 + 0.463519i −0.875753 0.482760i \(-0.839634\pi\)
0.323353 + 0.946278i \(0.395190\pi\)
\(24\) 0 0
\(25\) −0.361980 2.05289i −0.0723959 0.410578i
\(26\) 0 0
\(27\) 0.500000 0.866025i 0.0962250 0.166667i
\(28\) 0 0
\(29\) 1.36276 + 0.496003i 0.253058 + 0.0921055i 0.465434 0.885082i \(-0.345898\pi\)
−0.212377 + 0.977188i \(0.568120\pi\)
\(30\) 0 0
\(31\) −1.43471 2.48499i −0.257682 0.446318i 0.707939 0.706274i \(-0.249625\pi\)
−0.965621 + 0.259956i \(0.916292\pi\)
\(32\) 0 0
\(33\) 3.39002 + 2.84456i 0.590126 + 0.495175i
\(34\) 0 0
\(35\) −1.16534 + 6.60896i −0.196978 + 1.11712i
\(36\) 0 0
\(37\) −4.83123 −0.794249 −0.397124 0.917765i \(-0.629992\pi\)
−0.397124 + 0.917765i \(0.629992\pi\)
\(38\) 0 0
\(39\) −1.82462 −0.292173
\(40\) 0 0
\(41\) −1.52950 + 8.67423i −0.238868 + 1.35469i 0.595445 + 0.803396i \(0.296976\pi\)
−0.834313 + 0.551291i \(0.814135\pi\)
\(42\) 0 0
\(43\) −7.73836 6.49325i −1.18009 0.990212i −0.999978 0.00656507i \(-0.997910\pi\)
−0.180110 0.983647i \(-0.557645\pi\)
\(44\) 0 0
\(45\) −0.853733 1.47871i −0.127267 0.220433i
\(46\) 0 0
\(47\) 3.22814 + 1.17495i 0.470872 + 0.171384i 0.566548 0.824029i \(-0.308279\pi\)
−0.0956751 + 0.995413i \(0.530501\pi\)
\(48\) 0 0
\(49\) −4.22376 + 7.31577i −0.603394 + 1.04511i
\(50\) 0 0
\(51\) 0.872832 + 4.95008i 0.122221 + 0.693149i
\(52\) 0 0
\(53\) −1.61814 + 1.35778i −0.222269 + 0.186506i −0.747122 0.664687i \(-0.768565\pi\)
0.524853 + 0.851193i \(0.324120\pi\)
\(54\) 0 0
\(55\) 7.10045 2.58435i 0.957425 0.348474i
\(56\) 0 0
\(57\) −4.31806 + 0.595259i −0.571941 + 0.0788440i
\(58\) 0 0
\(59\) 6.01966 2.19098i 0.783693 0.285241i 0.0809810 0.996716i \(-0.474195\pi\)
0.702712 + 0.711475i \(0.251972\pi\)
\(60\) 0 0
\(61\) 0.0587523 0.0492990i 0.00752246 0.00631209i −0.639019 0.769191i \(-0.720659\pi\)
0.646541 + 0.762879i \(0.276215\pi\)
\(62\) 0 0
\(63\) −0.682495 3.87062i −0.0859863 0.487653i
\(64\) 0 0
\(65\) −1.55774 + 2.69809i −0.193214 + 0.334656i
\(66\) 0 0
\(67\) −0.984002 0.358147i −0.120215 0.0437547i 0.281212 0.959646i \(-0.409264\pi\)
−0.401427 + 0.915891i \(0.631486\pi\)
\(68\) 0 0
\(69\) −1.72915 2.99498i −0.208166 0.360553i
\(70\) 0 0
\(71\) 10.3790 + 8.70898i 1.23176 + 1.03357i 0.998123 + 0.0612406i \(0.0195057\pi\)
0.233632 + 0.972325i \(0.424939\pi\)
\(72\) 0 0
\(73\) 0.696538 3.95026i 0.0815236 0.462343i −0.916529 0.399968i \(-0.869021\pi\)
0.998053 0.0623753i \(-0.0198676\pi\)
\(74\) 0 0
\(75\) 2.08456 0.240704
\(76\) 0 0
\(77\) 17.3931 1.98213
\(78\) 0 0
\(79\) −2.94592 + 16.7071i −0.331442 + 1.87970i 0.128438 + 0.991718i \(0.459004\pi\)
−0.459880 + 0.887981i \(0.652107\pi\)
\(80\) 0 0
\(81\) 0.766044 + 0.642788i 0.0851160 + 0.0714208i
\(82\) 0 0
\(83\) −6.51259 11.2801i −0.714850 1.23816i −0.963017 0.269440i \(-0.913162\pi\)
0.248167 0.968717i \(-0.420172\pi\)
\(84\) 0 0
\(85\) 8.06489 + 2.93538i 0.874760 + 0.318387i
\(86\) 0 0
\(87\) −0.725109 + 1.25592i −0.0777398 + 0.134649i
\(88\) 0 0
\(89\) 2.14695 + 12.1759i 0.227576 + 1.29065i 0.857699 + 0.514152i \(0.171893\pi\)
−0.630123 + 0.776496i \(0.716995\pi\)
\(90\) 0 0
\(91\) −5.49359 + 4.60967i −0.575885 + 0.483225i
\(92\) 0 0
\(93\) 2.69638 0.981401i 0.279601 0.101767i
\(94\) 0 0
\(95\) −2.80626 + 6.89335i −0.287916 + 0.707243i
\(96\) 0 0
\(97\) −0.164685 + 0.0599404i −0.0167212 + 0.00608603i −0.350367 0.936612i \(-0.613943\pi\)
0.333646 + 0.942698i \(0.391721\pi\)
\(98\) 0 0
\(99\) −3.39002 + 2.84456i −0.340710 + 0.285889i
\(100\) 0 0
\(101\) −1.94720 11.0431i −0.193754 1.09883i −0.914183 0.405303i \(-0.867166\pi\)
0.720429 0.693529i \(-0.243945\pi\)
\(102\) 0 0
\(103\) 4.76005 8.24465i 0.469022 0.812369i −0.530351 0.847778i \(-0.677940\pi\)
0.999373 + 0.0354087i \(0.0112733\pi\)
\(104\) 0 0
\(105\) −6.30620 2.29527i −0.615422 0.223995i
\(106\) 0 0
\(107\) −5.13450 8.89322i −0.496371 0.859740i 0.503620 0.863925i \(-0.332001\pi\)
−0.999991 + 0.00418546i \(0.998668\pi\)
\(108\) 0 0
\(109\) −1.56399 1.31234i −0.149803 0.125700i 0.564806 0.825224i \(-0.308951\pi\)
−0.714609 + 0.699524i \(0.753395\pi\)
\(110\) 0 0
\(111\) 0.838934 4.75783i 0.0796281 0.451593i
\(112\) 0 0
\(113\) −13.9973 −1.31675 −0.658375 0.752690i \(-0.728756\pi\)
−0.658375 + 0.752690i \(0.728756\pi\)
\(114\) 0 0
\(115\) −5.90494 −0.550639
\(116\) 0 0
\(117\) 0.316842 1.79690i 0.0292921 0.166124i
\(118\) 0 0
\(119\) 15.1337 + 12.6986i 1.38730 + 1.16408i
\(120\) 0 0
\(121\) −4.29187 7.43374i −0.390170 0.675795i
\(122\) 0 0
\(123\) −8.27685 3.01253i −0.746299 0.271631i
\(124\) 0 0
\(125\) 6.04832 10.4760i 0.540978 0.937002i
\(126\) 0 0
\(127\) −0.340225 1.92951i −0.0301901 0.171216i 0.965985 0.258599i \(-0.0832608\pi\)
−0.996175 + 0.0873827i \(0.972150\pi\)
\(128\) 0 0
\(129\) 7.73836 6.49325i 0.681324 0.571699i
\(130\) 0 0
\(131\) −1.46596 + 0.533566i −0.128082 + 0.0466179i −0.405266 0.914199i \(-0.632821\pi\)
0.277184 + 0.960817i \(0.410599\pi\)
\(132\) 0 0
\(133\) −11.4970 + 12.7012i −0.996918 + 1.10134i
\(134\) 0 0
\(135\) 1.60449 0.583988i 0.138093 0.0502617i
\(136\) 0 0
\(137\) 11.7678 9.87434i 1.00539 0.843622i 0.0176677 0.999844i \(-0.494376\pi\)
0.987722 + 0.156222i \(0.0499314\pi\)
\(138\) 0 0
\(139\) −1.61632 9.16662i −0.137095 0.777502i −0.973378 0.229205i \(-0.926387\pi\)
0.836284 0.548297i \(-0.184724\pi\)
\(140\) 0 0
\(141\) −1.71766 + 2.97507i −0.144653 + 0.250546i
\(142\) 0 0
\(143\) 7.58764 + 2.76167i 0.634510 + 0.230943i
\(144\) 0 0
\(145\) 1.23810 + 2.14445i 0.102818 + 0.178087i
\(146\) 0 0
\(147\) −6.47117 5.42996i −0.533733 0.447856i
\(148\) 0 0
\(149\) 0.900217 5.10538i 0.0737487 0.418249i −0.925473 0.378813i \(-0.876332\pi\)
0.999222 0.0394368i \(-0.0125564\pi\)
\(150\) 0 0
\(151\) −13.0922 −1.06543 −0.532713 0.846296i \(-0.678827\pi\)
−0.532713 + 0.846296i \(0.678827\pi\)
\(152\) 0 0
\(153\) −5.02644 −0.406364
\(154\) 0 0
\(155\) 0.850780 4.82501i 0.0683363 0.387554i
\(156\) 0 0
\(157\) −5.64550 4.73714i −0.450560 0.378065i 0.389084 0.921202i \(-0.372792\pi\)
−0.839644 + 0.543138i \(0.817236\pi\)
\(158\) 0 0
\(159\) −1.05617 1.82934i −0.0837596 0.145076i
\(160\) 0 0
\(161\) −12.7726 4.64884i −1.00662 0.366380i
\(162\) 0 0
\(163\) −8.01404 + 13.8807i −0.627708 + 1.08722i 0.360302 + 0.932836i \(0.382674\pi\)
−0.988010 + 0.154387i \(0.950660\pi\)
\(164\) 0 0
\(165\) 1.31211 + 7.44135i 0.102148 + 0.579308i
\(166\) 0 0
\(167\) 10.0561 8.43808i 0.778165 0.652958i −0.164621 0.986357i \(-0.552640\pi\)
0.942786 + 0.333399i \(0.108196\pi\)
\(168\) 0 0
\(169\) 9.08754 3.30759i 0.699041 0.254430i
\(170\) 0 0
\(171\) 0.163608 4.35583i 0.0125114 0.333098i
\(172\) 0 0
\(173\) 17.3580 6.31781i 1.31971 0.480334i 0.416342 0.909208i \(-0.363312\pi\)
0.903364 + 0.428874i \(0.141090\pi\)
\(174\) 0 0
\(175\) 6.27621 5.26636i 0.474437 0.398100i
\(176\) 0 0
\(177\) 1.11239 + 6.30866i 0.0836122 + 0.474188i
\(178\) 0 0
\(179\) 5.92941 10.2700i 0.443185 0.767619i −0.554739 0.832024i \(-0.687182\pi\)
0.997924 + 0.0644059i \(0.0205152\pi\)
\(180\) 0 0
\(181\) −0.257216 0.0936191i −0.0191187 0.00695866i 0.332443 0.943123i \(-0.392127\pi\)
−0.351562 + 0.936165i \(0.614349\pi\)
\(182\) 0 0
\(183\) 0.0383478 + 0.0664204i 0.00283475 + 0.00490994i
\(184\) 0 0
\(185\) −6.31922 5.30246i −0.464599 0.389844i
\(186\) 0 0
\(187\) 3.86259 21.9058i 0.282461 1.60191i
\(188\) 0 0
\(189\) 3.93033 0.285890
\(190\) 0 0
\(191\) 12.1649 0.880218 0.440109 0.897944i \(-0.354940\pi\)
0.440109 + 0.897944i \(0.354940\pi\)
\(192\) 0 0
\(193\) 4.00715 22.7257i 0.288441 1.63583i −0.404288 0.914632i \(-0.632481\pi\)
0.692729 0.721198i \(-0.256408\pi\)
\(194\) 0 0
\(195\) −2.38660 2.00259i −0.170908 0.143409i
\(196\) 0 0
\(197\) −3.23436 5.60208i −0.230439 0.399132i 0.727498 0.686109i \(-0.240683\pi\)
−0.957937 + 0.286978i \(0.907349\pi\)
\(198\) 0 0
\(199\) 0.288569 + 0.105030i 0.0204561 + 0.00744541i 0.352228 0.935914i \(-0.385424\pi\)
−0.331772 + 0.943360i \(0.607646\pi\)
\(200\) 0 0
\(201\) 0.523576 0.906861i 0.0369302 0.0639650i
\(202\) 0 0
\(203\) 0.989766 + 5.61324i 0.0694680 + 0.393972i
\(204\) 0 0
\(205\) −11.5209 + 9.66717i −0.804653 + 0.675184i
\(206\) 0 0
\(207\) 3.24975 1.18281i 0.225873 0.0822110i
\(208\) 0 0
\(209\) 18.8575 + 4.06028i 1.30440 + 0.280855i
\(210\) 0 0
\(211\) 9.94719 3.62048i 0.684793 0.249244i 0.0238889 0.999715i \(-0.492395\pi\)
0.660904 + 0.750470i \(0.270173\pi\)
\(212\) 0 0
\(213\) −10.3790 + 8.70898i −0.711154 + 0.596729i
\(214\) 0 0
\(215\) −2.99514 16.9863i −0.204267 1.15846i
\(216\) 0 0
\(217\) 5.63890 9.76686i 0.382793 0.663018i
\(218\) 0 0
\(219\) 3.76929 + 1.37191i 0.254705 + 0.0927052i
\(220\) 0 0
\(221\) 4.58568 + 7.94263i 0.308466 + 0.534279i
\(222\) 0 0
\(223\) −5.69559 4.77917i −0.381405 0.320037i 0.431849 0.901946i \(-0.357861\pi\)
−0.813254 + 0.581909i \(0.802306\pi\)
\(224\) 0 0
\(225\) −0.361980 + 2.05289i −0.0241320 + 0.136859i
\(226\) 0 0
\(227\) −3.54389 −0.235216 −0.117608 0.993060i \(-0.537523\pi\)
−0.117608 + 0.993060i \(0.537523\pi\)
\(228\) 0 0
\(229\) −11.3492 −0.749973 −0.374987 0.927030i \(-0.622353\pi\)
−0.374987 + 0.927030i \(0.622353\pi\)
\(230\) 0 0
\(231\) −3.02028 + 17.1289i −0.198720 + 1.12700i
\(232\) 0 0
\(233\) −4.54086 3.81024i −0.297482 0.249617i 0.481813 0.876274i \(-0.339978\pi\)
−0.779295 + 0.626657i \(0.784423\pi\)
\(234\) 0 0
\(235\) 2.93284 + 5.07983i 0.191317 + 0.331372i
\(236\) 0 0
\(237\) −15.9418 5.80232i −1.03553 0.376901i
\(238\) 0 0
\(239\) 7.58422 13.1363i 0.490583 0.849714i −0.509359 0.860554i \(-0.670117\pi\)
0.999941 + 0.0108402i \(0.00345063\pi\)
\(240\) 0 0
\(241\) 1.53896 + 8.72790i 0.0991334 + 0.562214i 0.993402 + 0.114683i \(0.0365853\pi\)
−0.894269 + 0.447530i \(0.852304\pi\)
\(242\) 0 0
\(243\) −0.766044 + 0.642788i −0.0491418 + 0.0412348i
\(244\) 0 0
\(245\) −13.5540 + 4.93325i −0.865933 + 0.315174i
\(246\) 0 0
\(247\) −7.03221 + 3.71534i −0.447449 + 0.236401i
\(248\) 0 0
\(249\) 12.2397 4.45488i 0.775658 0.282316i
\(250\) 0 0
\(251\) −8.96819 + 7.52520i −0.566067 + 0.474987i −0.880338 0.474347i \(-0.842684\pi\)
0.314271 + 0.949333i \(0.398240\pi\)
\(252\) 0 0
\(253\) 2.65755 + 15.0717i 0.167079 + 0.947551i
\(254\) 0 0
\(255\) −4.29124 + 7.43264i −0.268728 + 0.465450i
\(256\) 0 0
\(257\) 9.31797 + 3.39146i 0.581239 + 0.211554i 0.615872 0.787846i \(-0.288804\pi\)
−0.0346328 + 0.999400i \(0.511026\pi\)
\(258\) 0 0
\(259\) −9.49417 16.4444i −0.589939 1.02180i
\(260\) 0 0
\(261\) −1.11093 0.932182i −0.0687649 0.0577006i
\(262\) 0 0
\(263\) 1.17020 6.63654i 0.0721577 0.409227i −0.927238 0.374472i \(-0.877824\pi\)
0.999396 0.0347546i \(-0.0110650\pi\)
\(264\) 0 0
\(265\) −3.60674 −0.221560
\(266\) 0 0
\(267\) −12.3638 −0.756651
\(268\) 0 0
\(269\) 0.124730 0.707378i 0.00760491 0.0431296i −0.980769 0.195171i \(-0.937474\pi\)
0.988374 + 0.152042i \(0.0485848\pi\)
\(270\) 0 0
\(271\) 22.0935 + 18.5387i 1.34209 + 1.12614i 0.981085 + 0.193579i \(0.0620097\pi\)
0.361002 + 0.932565i \(0.382435\pi\)
\(272\) 0 0
\(273\) −3.58569 6.21059i −0.217016 0.375882i
\(274\) 0 0
\(275\) −8.66857 3.15510i −0.522735 0.190260i
\(276\) 0 0
\(277\) 1.91567 3.31804i 0.115101 0.199361i −0.802719 0.596358i \(-0.796614\pi\)
0.917820 + 0.396996i \(0.129947\pi\)
\(278\) 0 0
\(279\) 0.498270 + 2.82583i 0.0298307 + 0.169178i
\(280\) 0 0
\(281\) −16.9236 + 14.2006i −1.00957 + 0.847134i −0.988282 0.152639i \(-0.951223\pi\)
−0.0212929 + 0.999773i \(0.506778\pi\)
\(282\) 0 0
\(283\) −23.6300 + 8.60061i −1.40466 + 0.511253i −0.929557 0.368678i \(-0.879810\pi\)
−0.475100 + 0.879932i \(0.657588\pi\)
\(284\) 0 0
\(285\) −6.30133 3.96064i −0.373258 0.234608i
\(286\) 0 0
\(287\) −32.5308 + 11.8402i −1.92023 + 0.698907i
\(288\) 0 0
\(289\) 6.33143 5.31270i 0.372437 0.312512i
\(290\) 0 0
\(291\) −0.0304326 0.172592i −0.00178399 0.0101175i
\(292\) 0 0
\(293\) 2.96356 5.13304i 0.173133 0.299875i −0.766381 0.642387i \(-0.777944\pi\)
0.939514 + 0.342512i \(0.111278\pi\)
\(294\) 0 0
\(295\) 10.2784 + 3.74102i 0.598429 + 0.217811i
\(296\) 0 0
\(297\) −2.21268 3.83247i −0.128393 0.222382i
\(298\) 0 0
\(299\) −4.83382 4.05606i −0.279547 0.234568i
\(300\) 0 0
\(301\) 6.89437 39.0999i 0.397385 2.25368i
\(302\) 0 0
\(303\) 11.2135 0.644197
\(304\) 0 0
\(305\) 0.130955 0.00749848
\(306\) 0 0
\(307\) 3.05347 17.3171i 0.174271 0.988339i −0.764711 0.644373i \(-0.777118\pi\)
0.938982 0.343966i \(-0.111771\pi\)
\(308\) 0 0
\(309\) 7.29282 + 6.11940i 0.414874 + 0.348121i
\(310\) 0 0
\(311\) −3.01433 5.22097i −0.170927 0.296054i 0.767817 0.640669i \(-0.221343\pi\)
−0.938744 + 0.344615i \(0.888010\pi\)
\(312\) 0 0
\(313\) −15.6910 5.71107i −0.886909 0.322809i −0.141914 0.989879i \(-0.545326\pi\)
−0.744995 + 0.667070i \(0.767548\pi\)
\(314\) 0 0
\(315\) 3.35546 5.81182i 0.189059 0.327459i
\(316\) 0 0
\(317\) −0.380819 2.15973i −0.0213889 0.121303i 0.972244 0.233970i \(-0.0751717\pi\)
−0.993633 + 0.112667i \(0.964061\pi\)
\(318\) 0 0
\(319\) 4.91626 4.12523i 0.275258 0.230969i
\(320\) 0 0
\(321\) 9.64970 3.51221i 0.538594 0.196032i
\(322\) 0 0
\(323\) 13.4434 + 17.3006i 0.748012 + 0.962632i
\(324\) 0 0
\(325\) 3.57415 1.30088i 0.198258 0.0721601i
\(326\) 0 0
\(327\) 1.56399 1.31234i 0.0864888 0.0725727i
\(328\) 0 0
\(329\) 2.34458 + 13.2968i 0.129261 + 0.733076i
\(330\) 0 0
\(331\) 7.77039 13.4587i 0.427099 0.739758i −0.569515 0.821981i \(-0.692869\pi\)
0.996614 + 0.0822234i \(0.0262021\pi\)
\(332\) 0 0
\(333\) 4.53987 + 1.65238i 0.248783 + 0.0905497i
\(334\) 0 0
\(335\) −0.893989 1.54843i −0.0488439 0.0846000i
\(336\) 0 0
\(337\) 9.48108 + 7.95557i 0.516467 + 0.433368i 0.863398 0.504523i \(-0.168332\pi\)
−0.346931 + 0.937891i \(0.612776\pi\)
\(338\) 0 0
\(339\) 2.43060 13.7846i 0.132012 0.748677i
\(340\) 0 0
\(341\) −12.6982 −0.687647
\(342\) 0 0
\(343\) −5.68923 −0.307189
\(344\) 0 0
\(345\) 1.02538 5.81523i 0.0552047 0.313082i
\(346\) 0 0
\(347\) 17.0105 + 14.2735i 0.913171 + 0.766241i 0.972720 0.231984i \(-0.0745217\pi\)
−0.0595486 + 0.998225i \(0.518966\pi\)
\(348\) 0 0
\(349\) 9.96461 + 17.2592i 0.533393 + 0.923864i 0.999239 + 0.0389982i \(0.0124167\pi\)
−0.465846 + 0.884866i \(0.654250\pi\)
\(350\) 0 0
\(351\) 1.71458 + 0.624058i 0.0915177 + 0.0333097i
\(352\) 0 0
\(353\) 2.60302 4.50856i 0.138545 0.239966i −0.788401 0.615161i \(-0.789091\pi\)
0.926946 + 0.375195i \(0.122424\pi\)
\(354\) 0 0
\(355\) 4.01719 + 22.7826i 0.213210 + 1.20918i
\(356\) 0 0
\(357\) −15.1337 + 12.6986i −0.800958 + 0.672083i
\(358\) 0 0
\(359\) −4.85658 + 1.76765i −0.256320 + 0.0932930i −0.466984 0.884266i \(-0.654660\pi\)
0.210664 + 0.977559i \(0.432437\pi\)
\(360\) 0 0
\(361\) −15.4300 + 11.0867i −0.812105 + 0.583511i
\(362\) 0 0
\(363\) 8.06609 2.93581i 0.423360 0.154090i
\(364\) 0 0
\(365\) 5.24663 4.40245i 0.274621 0.230435i
\(366\) 0 0
\(367\) 1.05270 + 5.97015i 0.0549504 + 0.311639i 0.999878 0.0156413i \(-0.00497898\pi\)
−0.944927 + 0.327280i \(0.893868\pi\)
\(368\) 0 0
\(369\) 4.40402 7.62799i 0.229264 0.397097i
\(370\) 0 0
\(371\) −7.80150 2.83951i −0.405034 0.147420i
\(372\) 0 0
\(373\) −4.99273 8.64766i −0.258514 0.447759i 0.707330 0.706883i \(-0.249899\pi\)
−0.965844 + 0.259124i \(0.916566\pi\)
\(374\) 0 0
\(375\) 9.26657 + 7.77557i 0.478524 + 0.401529i
\(376\) 0 0
\(377\) −0.459490 + 2.60590i −0.0236649 + 0.134211i
\(378\) 0 0
\(379\) 13.7799 0.707826 0.353913 0.935278i \(-0.384851\pi\)
0.353913 + 0.935278i \(0.384851\pi\)
\(380\) 0 0
\(381\) 1.95928 0.100377
\(382\) 0 0
\(383\) −2.83262 + 16.0646i −0.144740 + 0.820861i 0.822836 + 0.568279i \(0.192391\pi\)
−0.967576 + 0.252582i \(0.918720\pi\)
\(384\) 0 0
\(385\) 22.7501 + 19.0896i 1.15945 + 0.972896i
\(386\) 0 0
\(387\) 5.05085 + 8.74833i 0.256749 + 0.444703i
\(388\) 0 0
\(389\) 10.7795 + 3.92341i 0.546541 + 0.198925i 0.600509 0.799618i \(-0.294965\pi\)
−0.0539681 + 0.998543i \(0.517187\pi\)
\(390\) 0 0
\(391\) −8.69149 + 15.0541i −0.439547 + 0.761318i
\(392\) 0 0
\(393\) −0.270899 1.53634i −0.0136650 0.0774982i
\(394\) 0 0
\(395\) −22.1900 + 18.6196i −1.11650 + 0.936853i
\(396\) 0 0
\(397\) 0.421085 0.153262i 0.0211336 0.00769201i −0.331432 0.943479i \(-0.607532\pi\)
0.352565 + 0.935787i \(0.385309\pi\)
\(398\) 0 0
\(399\) −10.5118 13.5279i −0.526250 0.677242i
\(400\) 0 0
\(401\) −13.6316 + 4.96149i −0.680729 + 0.247765i −0.659160 0.752002i \(-0.729088\pi\)
−0.0215682 + 0.999767i \(0.506866\pi\)
\(402\) 0 0
\(403\) 4.01072 3.36539i 0.199788 0.167642i
\(404\) 0 0
\(405\) 0.296498 + 1.68153i 0.0147331 + 0.0835557i
\(406\) 0 0
\(407\) −10.6899 + 18.5155i −0.529881 + 0.917781i
\(408\) 0 0
\(409\) 12.4030 + 4.51431i 0.613287 + 0.223218i 0.629941 0.776643i \(-0.283079\pi\)
−0.0166536 + 0.999861i \(0.505301\pi\)
\(410\) 0 0
\(411\) 7.68088 + 13.3037i 0.378870 + 0.656222i
\(412\) 0 0
\(413\) 19.2872 + 16.1839i 0.949061 + 0.796357i
\(414\) 0 0
\(415\) 3.86195 21.9022i 0.189576 1.07514i
\(416\) 0 0
\(417\) 9.30803 0.455816
\(418\) 0 0
\(419\) −11.4229 −0.558047 −0.279024 0.960284i \(-0.590011\pi\)
−0.279024 + 0.960284i \(0.590011\pi\)
\(420\) 0 0
\(421\) −2.87973 + 16.3318i −0.140349 + 0.795961i 0.830635 + 0.556818i \(0.187978\pi\)
−0.970984 + 0.239144i \(0.923133\pi\)
\(422\) 0 0
\(423\) −2.63160 2.20818i −0.127953 0.107365i
\(424\) 0 0
\(425\) −5.23895 9.07413i −0.254126 0.440160i
\(426\) 0 0
\(427\) 0.283261 + 0.103098i 0.0137079 + 0.00498928i
\(428\) 0 0
\(429\) −4.03730 + 6.99281i −0.194923 + 0.337616i
\(430\) 0 0
\(431\) −4.94875 28.0658i −0.238373 1.35188i −0.835393 0.549654i \(-0.814760\pi\)
0.597020 0.802227i \(-0.296351\pi\)
\(432\) 0 0
\(433\) 10.7227 8.99743i 0.515301 0.432389i −0.347689 0.937610i \(-0.613034\pi\)
0.862990 + 0.505221i \(0.168589\pi\)
\(434\) 0 0
\(435\) −2.32686 + 0.846909i −0.111565 + 0.0406062i
\(436\) 0 0
\(437\) −12.7627 8.02190i −0.610524 0.383739i
\(438\) 0 0
\(439\) −25.2111 + 9.17609i −1.20326 + 0.437951i −0.864361 0.502871i \(-0.832277\pi\)
−0.338900 + 0.940823i \(0.610055\pi\)
\(440\) 0 0
\(441\) 6.47117 5.42996i 0.308151 0.258570i
\(442\) 0 0
\(443\) 2.41688 + 13.7068i 0.114829 + 0.651230i 0.986834 + 0.161733i \(0.0517085\pi\)
−0.872005 + 0.489497i \(0.837180\pi\)
\(444\) 0 0
\(445\) −10.5554 + 18.2824i −0.500373 + 0.866671i
\(446\) 0 0
\(447\) 4.87150 + 1.77308i 0.230414 + 0.0838639i
\(448\) 0 0
\(449\) −10.6420 18.4326i −0.502229 0.869887i −0.999997 0.00257601i \(-0.999180\pi\)
0.497767 0.867311i \(-0.334153\pi\)
\(450\) 0 0
\(451\) 29.8594 + 25.0550i 1.40603 + 1.17980i
\(452\) 0 0
\(453\) 2.27343 12.8933i 0.106815 0.605779i
\(454\) 0 0
\(455\) −12.2449 −0.574049
\(456\) 0 0
\(457\) −0.745738 −0.0348842 −0.0174421 0.999848i \(-0.505552\pi\)
−0.0174421 + 0.999848i \(0.505552\pi\)
\(458\) 0 0
\(459\) 0.872832 4.95008i 0.0407403 0.231050i
\(460\) 0 0
\(461\) 21.5980 + 18.1229i 1.00592 + 0.844068i 0.987794 0.155768i \(-0.0497852\pi\)
0.0181272 + 0.999836i \(0.494230\pi\)
\(462\) 0 0
\(463\) 4.42852 + 7.67043i 0.205811 + 0.356475i 0.950391 0.311058i \(-0.100683\pi\)
−0.744580 + 0.667533i \(0.767350\pi\)
\(464\) 0 0
\(465\) 4.60397 + 1.67571i 0.213504 + 0.0777092i
\(466\) 0 0
\(467\) 18.6388 32.2833i 0.862500 1.49389i −0.00700866 0.999975i \(-0.502231\pi\)
0.869508 0.493918i \(-0.164436\pi\)
\(468\) 0 0
\(469\) −0.714677 4.05313i −0.0330007 0.187156i
\(470\) 0 0
\(471\) 5.64550 4.73714i 0.260131 0.218276i
\(472\) 0 0
\(473\) −42.0077 + 15.2895i −1.93151 + 0.703014i
\(474\) 0 0
\(475\) 8.03401 4.24463i 0.368626 0.194757i
\(476\) 0 0
\(477\) 1.98495 0.722461i 0.0908844 0.0330792i
\(478\) 0 0
\(479\) 22.8704 19.1905i 1.04498 0.876838i 0.0524190 0.998625i \(-0.483307\pi\)
0.992556 + 0.121787i \(0.0388624\pi\)
\(480\) 0 0
\(481\) −1.53074 8.68124i −0.0697956 0.395831i
\(482\) 0 0
\(483\) 6.79615 11.7713i 0.309235 0.535612i
\(484\) 0 0
\(485\) −0.281194 0.102346i −0.0127684 0.00464731i
\(486\) 0 0
\(487\) 15.4404 + 26.7435i 0.699671 + 1.21187i 0.968581 + 0.248700i \(0.0800034\pi\)
−0.268910 + 0.963165i \(0.586663\pi\)
\(488\) 0 0
\(489\) −12.2782 10.3027i −0.555240 0.465902i
\(490\) 0 0
\(491\) −1.75863 + 9.97370i −0.0793660 + 0.450107i 0.919065 + 0.394107i \(0.128946\pi\)
−0.998431 + 0.0560004i \(0.982165\pi\)
\(492\) 0 0
\(493\) 7.28943 0.328299
\(494\) 0 0
\(495\) −7.55614 −0.339623
\(496\) 0 0
\(497\) −9.24697 + 52.4422i −0.414783 + 2.35235i
\(498\) 0 0
\(499\) −6.58385 5.52450i −0.294734 0.247311i 0.483415 0.875391i \(-0.339396\pi\)
−0.778148 + 0.628081i \(0.783841\pi\)
\(500\) 0 0
\(501\) 6.56366 + 11.3686i 0.293243 + 0.507911i
\(502\) 0 0
\(503\) −16.9775 6.17930i −0.756989 0.275521i −0.0654451 0.997856i \(-0.520847\pi\)
−0.691543 + 0.722335i \(0.743069\pi\)
\(504\) 0 0
\(505\) 9.57332 16.5815i 0.426007 0.737866i
\(506\) 0 0
\(507\) 1.67931 + 9.52383i 0.0745807 + 0.422968i
\(508\) 0 0
\(509\) 24.0894 20.2134i 1.06774 0.895942i 0.0728963 0.997340i \(-0.476776\pi\)
0.994846 + 0.101397i \(0.0323314\pi\)
\(510\) 0 0
\(511\) 14.8146 5.39207i 0.655359 0.238531i
\(512\) 0 0
\(513\) 4.26124 + 0.917504i 0.188138 + 0.0405088i
\(514\) 0 0
\(515\) 15.2749 5.55962i 0.673094 0.244986i
\(516\) 0 0
\(517\) 11.6458 9.77196i 0.512180 0.429770i
\(518\) 0 0
\(519\) 3.20763 + 18.1914i 0.140800 + 0.798514i
\(520\) 0 0
\(521\) −9.97505 + 17.2773i −0.437015 + 0.756932i −0.997458 0.0712610i \(-0.977298\pi\)
0.560443 + 0.828193i \(0.310631\pi\)
\(522\) 0 0
\(523\) 2.97141 + 1.08150i 0.129931 + 0.0472909i 0.406167 0.913799i \(-0.366865\pi\)
−0.276236 + 0.961090i \(0.589087\pi\)
\(524\) 0 0
\(525\) 4.09650 + 7.09535i 0.178786 + 0.309667i
\(526\) 0 0
\(527\) −11.0487 9.27092i −0.481287 0.403848i
\(528\) 0 0
\(529\) −1.91710 + 10.8724i −0.0833520 + 0.472713i
\(530\) 0 0
\(531\) −6.40598 −0.277996
\(532\) 0 0
\(533\) −16.0714 −0.696128
\(534\) 0 0
\(535\) 3.04474 17.2676i 0.131636 0.746543i
\(536\) 0 0
\(537\) 9.08438 + 7.62270i 0.392020 + 0.328944i
\(538\) 0 0
\(539\) 18.6916 + 32.3748i 0.805105 + 1.39448i
\(540\) 0 0
\(541\) −0.558559 0.203299i −0.0240143 0.00874050i 0.329985 0.943986i \(-0.392956\pi\)
−0.353999 + 0.935246i \(0.615179\pi\)
\(542\) 0 0
\(543\) 0.136862 0.237052i 0.00587331 0.0101729i
\(544\) 0 0
\(545\) −0.605344 3.43308i −0.0259301 0.147057i
\(546\) 0 0
\(547\) −20.3567 + 17.0813i −0.870392 + 0.730345i −0.964181 0.265247i \(-0.914547\pi\)
0.0937888 + 0.995592i \(0.470102\pi\)
\(548\) 0 0
\(549\) −0.0720704 + 0.0262315i −0.00307589 + 0.00111953i
\(550\) 0 0
\(551\) −0.237267 + 6.31690i −0.0101079 + 0.269109i
\(552\) 0 0
\(553\) −62.6564 + 22.8051i −2.66442 + 0.969770i
\(554\) 0 0
\(555\) 6.31922 5.30246i 0.268236 0.225077i
\(556\) 0 0
\(557\) 5.93387 + 33.6527i 0.251426 + 1.42591i 0.805082 + 0.593163i \(0.202121\pi\)
−0.553656 + 0.832745i \(0.686768\pi\)
\(558\) 0 0
\(559\) 9.21590 15.9624i 0.389791 0.675138i
\(560\) 0 0
\(561\) 20.9023 + 7.60782i 0.882496 + 0.321202i
\(562\) 0 0
\(563\) −15.0358 26.0427i −0.633683 1.09757i −0.986793 0.161989i \(-0.948209\pi\)
0.353110 0.935582i \(-0.385124\pi\)
\(564\) 0 0
\(565\) −18.3083 15.3625i −0.770238 0.646306i
\(566\) 0 0
\(567\) −0.682495 + 3.87062i −0.0286621 + 0.162551i
\(568\) 0 0
\(569\) −24.7511 −1.03762 −0.518809 0.854890i \(-0.673624\pi\)
−0.518809 + 0.854890i \(0.673624\pi\)
\(570\) 0 0
\(571\) −31.5869 −1.32187 −0.660934 0.750444i \(-0.729840\pi\)
−0.660934 + 0.750444i \(0.729840\pi\)
\(572\) 0 0
\(573\) −2.11241 + 11.9800i −0.0882470 + 0.500474i
\(574\) 0 0
\(575\) 5.52245 + 4.63388i 0.230302 + 0.193246i
\(576\) 0 0
\(577\) 15.4054 + 26.6830i 0.641337 + 1.11083i 0.985135 + 0.171784i \(0.0549531\pi\)
−0.343798 + 0.939044i \(0.611714\pi\)
\(578\) 0 0
\(579\) 21.6846 + 7.89254i 0.901180 + 0.328003i
\(580\) 0 0
\(581\) 25.5967 44.3347i 1.06193 1.83931i
\(582\) 0 0
\(583\) 1.62323 + 9.20582i 0.0672275 + 0.381266i
\(584\) 0 0
\(585\) 2.38660 2.00259i 0.0986737 0.0827970i
\(586\) 0 0
\(587\) −13.2728 + 4.83091i −0.547828 + 0.199393i −0.601081 0.799188i \(-0.705263\pi\)
0.0532531 + 0.998581i \(0.483041\pi\)
\(588\) 0 0
\(589\) 8.39365 9.27281i 0.345854 0.382080i
\(590\) 0 0
\(591\) 6.07861 2.21243i 0.250041 0.0910074i
\(592\) 0 0
\(593\) 28.8915 24.2428i 1.18643 0.995533i 0.186516 0.982452i \(-0.440280\pi\)
0.999914 0.0130812i \(-0.00416400\pi\)
\(594\) 0 0
\(595\) 5.85750 + 33.2195i 0.240134 + 1.36187i
\(596\) 0 0
\(597\) −0.153544 + 0.265946i −0.00628414 + 0.0108845i
\(598\) 0 0
\(599\) 0.0872028 + 0.0317392i 0.00356301 + 0.00129683i 0.343801 0.939043i \(-0.388285\pi\)
−0.340238 + 0.940339i \(0.610508\pi\)
\(600\) 0 0
\(601\) 11.5190 + 19.9515i 0.469870 + 0.813839i 0.999406 0.0344482i \(-0.0109674\pi\)
−0.529536 + 0.848287i \(0.677634\pi\)
\(602\) 0 0
\(603\) 0.802166 + 0.673097i 0.0326667 + 0.0274106i
\(604\) 0 0
\(605\) 2.54507 14.4338i 0.103472 0.586817i
\(606\) 0 0
\(607\) −31.9363 −1.29625 −0.648127 0.761532i \(-0.724447\pi\)
−0.648127 + 0.761532i \(0.724447\pi\)
\(608\) 0 0
\(609\) −5.69984 −0.230969
\(610\) 0 0
\(611\) −1.08845 + 6.17292i −0.0440341 + 0.249730i
\(612\) 0 0
\(613\) 33.4848 + 28.0971i 1.35244 + 1.13483i 0.978239 + 0.207482i \(0.0665269\pi\)
0.374199 + 0.927348i \(0.377918\pi\)
\(614\) 0 0
\(615\) −7.51972 13.0245i −0.303224 0.525200i
\(616\) 0 0
\(617\) 12.6034 + 4.58726i 0.507394 + 0.184676i 0.583016 0.812460i \(-0.301872\pi\)
−0.0756229 + 0.997136i \(0.524095\pi\)
\(618\) 0 0
\(619\) 11.4670 19.8615i 0.460899 0.798300i −0.538107 0.842876i \(-0.680861\pi\)
0.999006 + 0.0445765i \(0.0141938\pi\)
\(620\) 0 0
\(621\) 0.600529 + 3.40577i 0.0240984 + 0.136669i
\(622\) 0 0
\(623\) −37.2250 + 31.2355i −1.49139 + 1.25142i
\(624\) 0 0
\(625\) 9.61478 3.49949i 0.384591 0.139980i
\(626\) 0 0
\(627\) −7.27317 + 17.8660i −0.290462 + 0.713497i
\(628\) 0 0
\(629\) −22.8194 + 8.30557i −0.909868 + 0.331165i
\(630\) 0 0
\(631\) 16.3606 13.7282i 0.651306 0.546510i −0.256161 0.966634i \(-0.582458\pi\)
0.907467 + 0.420124i \(0.138013\pi\)
\(632\) 0 0
\(633\) 1.83817 + 10.4248i 0.0730606 + 0.414347i
\(634\) 0 0
\(635\) 1.67270 2.89720i 0.0663790 0.114972i
\(636\) 0 0
\(637\) −14.4840 5.27174i −0.573876 0.208874i
\(638\) 0 0
\(639\) −6.77438 11.7336i −0.267990 0.464173i
\(640\) 0 0
\(641\) −22.5997 18.9634i −0.892634 0.749009i 0.0761030 0.997100i \(-0.475752\pi\)
−0.968737 + 0.248091i \(0.920197\pi\)
\(642\) 0 0
\(643\) −1.18655 + 6.72928i −0.0467931 + 0.265377i −0.999224 0.0393763i \(-0.987463\pi\)
0.952431 + 0.304753i \(0.0985740\pi\)
\(644\) 0 0
\(645\) 17.2483 0.679152
\(646\) 0 0
\(647\) 18.9452 0.744812 0.372406 0.928070i \(-0.378533\pi\)
0.372406 + 0.928070i \(0.378533\pi\)
\(648\) 0 0
\(649\) 4.92271 27.9181i 0.193233 1.09588i
\(650\) 0 0
\(651\) 8.63929 + 7.24923i 0.338601 + 0.284120i
\(652\) 0 0
\(653\) −13.5699 23.5038i −0.531033 0.919776i −0.999344 0.0362124i \(-0.988471\pi\)
0.468311 0.883564i \(-0.344863\pi\)
\(654\) 0 0
\(655\) −2.50308 0.911046i −0.0978034 0.0355975i
\(656\) 0 0
\(657\) −2.00560 + 3.47380i −0.0782459 + 0.135526i
\(658\) 0 0
\(659\) 6.92986 + 39.3012i 0.269949 + 1.53096i 0.754562 + 0.656228i \(0.227849\pi\)
−0.484613 + 0.874729i \(0.661040\pi\)
\(660\) 0 0
\(661\) −38.5678 + 32.3622i −1.50011 + 1.25874i −0.619415 + 0.785064i \(0.712630\pi\)
−0.880697 + 0.473680i \(0.842925\pi\)
\(662\) 0 0
\(663\) −8.61825 + 3.13679i −0.334705 + 0.121823i
\(664\) 0 0
\(665\) −28.9781 + 3.99473i −1.12372 + 0.154909i
\(666\) 0 0
\(667\) −4.71284 + 1.71533i −0.182482 + 0.0664179i
\(668\) 0 0
\(669\) 5.69559 4.77917i 0.220204 0.184773i
\(670\) 0 0
\(671\) −0.0589371 0.334249i −0.00227524 0.0129035i
\(672\) 0 0
\(673\) 23.9052 41.4050i 0.921477 1.59605i 0.124347 0.992239i \(-0.460317\pi\)
0.797131 0.603807i \(-0.206350\pi\)
\(674\) 0 0
\(675\) −1.95884 0.712961i −0.0753959 0.0274419i
\(676\) 0 0
\(677\) −20.6305 35.7331i −0.792894 1.37333i −0.924168 0.381987i \(-0.875240\pi\)
0.131274 0.991346i \(-0.458093\pi\)
\(678\) 0 0
\(679\) −0.527657 0.442757i −0.0202496 0.0169914i
\(680\) 0 0
\(681\) 0.615390 3.49005i 0.0235818 0.133739i
\(682\) 0 0
\(683\) 17.8805 0.684178 0.342089 0.939668i \(-0.388866\pi\)
0.342089 + 0.939668i \(0.388866\pi\)
\(684\) 0 0
\(685\) 26.2297 1.00218
\(686\) 0 0
\(687\) 1.97076 11.1767i 0.0751892 0.426419i
\(688\) 0 0
\(689\) −2.95250 2.47744i −0.112481 0.0943830i
\(690\) 0 0
\(691\) −5.66655 9.81476i −0.215566 0.373371i 0.737882 0.674930i \(-0.235826\pi\)
−0.953447 + 0.301559i \(0.902493\pi\)
\(692\) 0 0
\(693\) −16.3442 5.94879i −0.620864 0.225976i
\(694\) 0 0
\(695\) 7.94657 13.7639i 0.301431 0.522093i
\(696\) 0 0
\(697\) 7.68794 + 43.6005i 0.291202 + 1.65149i
\(698\) 0 0
\(699\) 4.54086 3.81024i 0.171751 0.144116i
\(700\) 0 0
\(701\) −6.47788 + 2.35776i −0.244666 + 0.0890512i −0.461443 0.887170i \(-0.652668\pi\)
0.216776 + 0.976221i \(0.430446\pi\)
\(702\) 0 0
\(703\) −6.45471 20.0452i −0.243444 0.756020i
\(704\) 0 0
\(705\) −5.51194 + 2.00618i −0.207592 + 0.0755572i
\(706\) 0 0
\(707\) 33.7616 28.3294i 1.26974 1.06544i
\(708\) 0 0
\(709\) −8.79501 49.8790i −0.330304 1.87325i −0.469429 0.882970i \(-0.655540\pi\)
0.139125 0.990275i \(-0.455571\pi\)
\(710\) 0 0
\(711\) 8.48243 14.6920i 0.318116 0.550993i
\(712\) 0 0
\(713\) 9.32490 + 3.39399i 0.349220 + 0.127106i
\(714\) 0 0
\(715\) 6.89355 + 11.9400i 0.257804 + 0.446530i
\(716\) 0 0
\(717\) 11.6197 + 9.75009i 0.433946 + 0.364124i
\(718\) 0 0
\(719\) −3.41095 + 19.3445i −0.127207 + 0.721427i 0.852765 + 0.522294i \(0.174924\pi\)
−0.979972 + 0.199133i \(0.936187\pi\)
\(720\) 0 0
\(721\) 37.4172 1.39349
\(722\) 0 0
\(723\) −8.86254 −0.329602
\(724\) 0 0
\(725\) 0.524949 2.97713i 0.0194961 0.110568i
\(726\) 0 0
\(727\) 13.6886 + 11.4861i 0.507684 + 0.425997i 0.860313 0.509766i \(-0.170268\pi\)
−0.352630 + 0.935763i \(0.614712\pi\)
\(728\) 0 0
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 0 0
\(731\) −47.7135 17.3663i −1.76475 0.642315i
\(732\) 0 0
\(733\) −19.5736 + 33.9025i −0.722968 + 1.25222i 0.236837 + 0.971549i \(0.423889\pi\)
−0.959805 + 0.280668i \(0.909444\pi\)
\(734\) 0 0
\(735\) −2.50468 14.2047i −0.0923864 0.523949i
\(736\) 0 0
\(737\) −3.54987 + 2.97869i −0.130761 + 0.109722i
\(738\) 0 0
\(739\) 29.1001 10.5916i 1.07046 0.389617i 0.254113 0.967175i \(-0.418216\pi\)
0.816350 + 0.577558i \(0.195994\pi\)
\(740\) 0 0
\(741\) −2.43777 7.57053i −0.0895536 0.278110i
\(742\) 0 0
\(743\) −11.5042 + 4.18720i −0.422050 + 0.153614i −0.544309 0.838885i \(-0.683208\pi\)
0.122259 + 0.992498i \(0.460986\pi\)
\(744\) 0 0
\(745\) 6.78084 5.68980i 0.248431 0.208458i
\(746\) 0 0
\(747\) 2.26180 + 12.8273i 0.0827549 + 0.469327i
\(748\) 0 0
\(749\) 20.1803 34.9533i 0.737372 1.27717i
\(750\) 0 0
\(751\) −42.2047 15.3613i −1.54007 0.560541i −0.574010 0.818848i \(-0.694613\pi\)
−0.966063 + 0.258308i \(0.916835\pi\)
\(752\) 0 0
\(753\) −5.85357 10.1387i −0.213316 0.369474i
\(754\) 0 0
\(755\) −17.1245 14.3692i −0.623224 0.522947i
\(756\) 0 0
\(757\) −2.64469 + 14.9988i −0.0961228 + 0.545139i 0.898275 + 0.439434i \(0.144821\pi\)
−0.994398 + 0.105705i \(0.966290\pi\)
\(758\) 0 0
\(759\) −15.3042 −0.555508
\(760\) 0 0
\(761\) −32.2300 −1.16834 −0.584169 0.811632i \(-0.698579\pi\)
−0.584169 + 0.811632i \(0.698579\pi\)
\(762\) 0 0
\(763\) 1.39341 7.90243i 0.0504449 0.286087i
\(764\) 0 0
\(765\) −6.57456 5.51671i −0.237704 0.199457i
\(766\) 0 0
\(767\) 5.84425 + 10.1225i 0.211024 + 0.365504i
\(768\) 0 0
\(769\) −10.0805 3.66902i −0.363514 0.132308i 0.153804 0.988101i \(-0.450847\pi\)
−0.517318 + 0.855793i \(0.673070\pi\)
\(770\) 0 0
\(771\) −4.95799 + 8.58749i −0.178558 + 0.309271i
\(772\) 0 0
\(773\) 0.143553 + 0.814127i 0.00516323 + 0.0292821i 0.987281 0.158988i \(-0.0508231\pi\)
−0.982117 + 0.188270i \(0.939712\pi\)
\(774\) 0 0
\(775\) −4.58208 + 3.84482i −0.164593 + 0.138110i
\(776\) 0 0
\(777\) 17.8432 6.49439i 0.640121 0.232985i
\(778\) 0 0
\(779\) −38.0337 + 5.24307i −1.36270 + 0.187852i
\(780\) 0 0
\(781\) 56.3422 20.5069i 2.01608 0.733793i
\(782\) 0 0
\(783\) 1.11093 0.932182i 0.0397014 0.0333135i
\(784\) 0 0
\(785\) −2.18510 12.3923i −0.0779895 0.442300i
\(786\) 0 0
\(787\) −6.51330 + 11.2814i −0.232174 + 0.402137i −0.958448 0.285269i \(-0.907917\pi\)
0.726274 + 0.687406i \(0.241251\pi\)
\(788\) 0 0
\(789\) 6.33252 + 2.30485i 0.225444 + 0.0820547i
\(790\) 0 0
\(791\) −27.5069 47.6434i −0.978034 1.69400i
\(792\) 0 0
\(793\) 0.107201 + 0.0899521i 0.00380681 + 0.00319429i
\(794\) 0 0
\(795\) 0.626304 3.55195i 0.0222127 0.125975i
\(796\) 0 0
\(797\) −47.0808 −1.66769 −0.833844 0.552000i \(-0.813865\pi\)
−0.833844 + 0.552000i \(0.813865\pi\)
\(798\) 0 0
\(799\) 17.2674 0.610877
\(800\) 0 0
\(801\) 2.14695 12.1759i 0.0758587 0.430216i
\(802\) 0 0
\(803\) −13.5980 11.4101i −0.479864 0.402654i
\(804\) 0 0
\(805\) −11.6042 20.0991i −0.408994 0.708399i
\(806\) 0 0
\(807\) 0.674972 + 0.245670i 0.0237601 + 0.00864799i
\(808\) 0 0
\(809\) 5.00748 8.67320i 0.176053 0.304934i −0.764472 0.644657i \(-0.777000\pi\)
0.940525 + 0.339724i \(0.110333\pi\)
\(810\) 0 0
\(811\) 5.47946 + 31.0756i 0.192410 + 1.09121i 0.916059 + 0.401043i \(0.131352\pi\)
−0.723649 + 0.690168i \(0.757537\pi\)
\(812\) 0 0
\(813\) −22.0935 + 18.5387i −0.774854 + 0.650180i
\(814\) 0 0
\(815\) −25.7170 + 9.36021i −0.900826 + 0.327874i
\(816\) 0 0
\(817\) 16.6024 40.7824i 0.580844 1.42680i
\(818\) 0 0
\(819\) 6.73889 2.45275i 0.235476 0.0857062i
\(820\) 0 0
\(821\) −29.3751 + 24.6487i −1.02520 + 0.860244i −0.990272 0.139146i \(-0.955564\pi\)
−0.0349269 + 0.999390i \(0.511120\pi\)
\(822\) 0 0
\(823\) −8.53261 48.3909i −0.297428 1.68680i −0.657166 0.753746i \(-0.728245\pi\)
0.359738 0.933053i \(-0.382866\pi\)
\(824\) 0 0
\(825\) 4.61245 7.98900i 0.160585 0.278141i
\(826\) 0 0
\(827\) 15.0574 + 5.48045i 0.523597 + 0.190574i 0.590277 0.807201i \(-0.299018\pi\)
−0.0666799 + 0.997774i \(0.521241\pi\)
\(828\) 0 0
\(829\) −17.2476 29.8737i −0.599033 1.03756i −0.992964 0.118416i \(-0.962218\pi\)
0.393931 0.919140i \(-0.371115\pi\)
\(830\) 0 0
\(831\) 2.93498 + 2.46274i 0.101813 + 0.0854314i
\(832\) 0 0
\(833\) −7.37326 + 41.8159i −0.255468 + 1.44883i
\(834\) 0 0
\(835\) 22.4145 0.775685
\(836\) 0 0
\(837\) −2.86943 −0.0991818
\(838\) 0 0
\(839\) 2.95759 16.7733i 0.102107 0.579080i −0.890229 0.455514i \(-0.849456\pi\)
0.992336 0.123567i \(-0.0394333\pi\)
\(840\) 0 0
\(841\) −20.6042 17.2890i −0.710490 0.596172i
\(842\) 0 0
\(843\) −11.0461 19.1324i −0.380447 0.658953i
\(844\) 0 0
\(845\) 15.5167 + 5.64760i 0.533789 + 0.194283i
\(846\) 0 0
\(847\) 16.8685 29.2171i 0.579608 1.00391i
\(848\) 0 0
\(849\) −4.36665 24.7645i −0.149863 0.849915i
\(850\) 0 0
\(851\) 12.7990 10.7396i 0.438743 0.368149i
\(852\) 0 0
\(853\) −32.1506 + 11.7019i −1.10082 + 0.400664i −0.827617 0.561293i \(-0.810304\pi\)
−0.273199 + 0.961957i \(0.588082\pi\)
\(854\) 0 0
\(855\) 4.99469 5.51784i 0.170815 0.188706i
\(856\) 0 0
\(857\) −7.76834 + 2.82745i −0.265362 + 0.0965837i −0.471274 0.881987i \(-0.656206\pi\)
0.205913 + 0.978570i \(0.433984\pi\)
\(858\) 0 0
\(859\) 38.6809 32.4571i 1.31977 1.10742i 0.333421 0.942778i \(-0.391797\pi\)
0.986353 0.164643i \(-0.0526473\pi\)
\(860\) 0 0
\(861\) −6.01145 34.0926i −0.204870 1.16187i
\(862\) 0 0
\(863\) −16.5035 + 28.5849i −0.561785 + 0.973040i 0.435556 + 0.900162i \(0.356552\pi\)
−0.997341 + 0.0728785i \(0.976781\pi\)
\(864\) 0 0
\(865\) 29.6383 + 10.7874i 1.00773 + 0.366784i
\(866\) 0 0
\(867\) 4.13255 + 7.15778i 0.140349 + 0.243091i
\(868\) 0 0
\(869\) 57.5112 + 48.2576i 1.95093 + 1.63703i
\(870\) 0 0
\(871\) 0.331782 1.88163i 0.0112420 0.0637566i
\(872\) 0 0
\(873\) 0.175254 0.00593145
\(874\) 0 0
\(875\) 47.5438 1.60728
\(876\) 0 0
\(877\) 0.367446 2.08389i 0.0124078 0.0703680i −0.977975 0.208721i \(-0.933070\pi\)
0.990383 + 0.138353i \(0.0441810\pi\)
\(878\) 0 0
\(879\) 4.54044 + 3.80988i 0.153145 + 0.128504i
\(880\) 0 0
\(881\) 26.5203 + 45.9345i 0.893492 + 1.54757i 0.835660 + 0.549246i \(0.185085\pi\)
0.0578312 + 0.998326i \(0.481581\pi\)
\(882\) 0 0
\(883\) 16.1473 + 5.87714i 0.543401 + 0.197782i 0.599112 0.800665i \(-0.295520\pi\)
−0.0557114 + 0.998447i \(0.517743\pi\)
\(884\) 0 0
\(885\) −5.46900 + 9.47259i −0.183839 + 0.318418i
\(886\) 0 0
\(887\) 0.676465 + 3.83642i 0.0227135 + 0.128814i 0.994056 0.108869i \(-0.0347230\pi\)
−0.971343 + 0.237684i \(0.923612\pi\)
\(888\) 0 0
\(889\) 5.89901 4.94985i 0.197846 0.166013i
\(890\) 0 0
\(891\) 4.15847 1.51356i 0.139314 0.0507062i
\(892\) 0 0
\(893\) −0.562045 + 14.9636i −0.0188081 + 0.500739i
\(894\) 0 0
\(895\) 19.0274 6.92541i 0.636016 0.231491i
\(896\) 0 0
\(897\) 4.83382 4.05606i 0.161397 0.135428i
\(898\) 0 0
\(899\) −0.722600 4.09807i −0.0241001 0.136678i
\(900\) 0 0
\(901\) −5.30876 + 9.19505i −0.176861 + 0.306331i
\(902\) 0 0
\(903\) 37.3087 + 13.5792i 1.24156 + 0.451889i
\(904\) 0 0
\(905\) −0.233687 0.404758i −0.00776803 0.0134546i
\(906\) 0 0
\(907\) 6.77309 + 5.68329i 0.224897 + 0.188711i 0.748273 0.663391i \(-0.230883\pi\)
−0.523376 + 0.852102i \(0.675328\pi\)
\(908\) 0 0
\(909\) −1.94720 + 11.0431i −0.0645845 + 0.366277i
\(910\) 0 0
\(911\) −18.4416 −0.610997 −0.305498 0.952193i \(-0.598823\pi\)
−0.305498 + 0.952193i \(0.598823\pi\)
\(912\) 0 0
\(913\) −57.6411 −1.90764
\(914\) 0 0
\(915\) −0.0227402 + 0.128966i −0.000751766 + 0.00426348i
\(916\) 0 0
\(917\) −4.69699 3.94124i −0.155108 0.130151i
\(918\) 0 0
\(919\) −22.7681 39.4355i −0.751051 1.30086i −0.947314 0.320307i \(-0.896214\pi\)
0.196263 0.980551i \(-0.437119\pi\)
\(920\) 0 0
\(921\) 16.5238 + 6.01417i 0.544477 + 0.198174i
\(922\) 0 0
\(923\) −12.3607 + 21.4093i −0.406857 + 0.704697i
\(924\) 0 0
\(925\) 1.74881 + 9.91797i 0.0575004 + 0.326101i
\(926\) 0 0
\(927\) −7.29282 + 6.11940i −0.239528 + 0.200988i
\(928\) 0 0
\(929\) 1.42489 0.518618i 0.0467492 0.0170153i −0.318540 0.947910i \(-0.603192\pi\)
0.365289 + 0.930894i \(0.380970\pi\)
\(930\) 0 0
\(931\) −35.9969 7.75063i −1.17975 0.254017i
\(932\) 0 0
\(933\) 5.66509 2.06192i 0.185467 0.0675044i
\(934\) 0 0
\(935\) 29.0947 24.4134i 0.951500 0.798403i
\(936\) 0 0
\(937\) 1.23932 + 7.02855i 0.0404869 + 0.229613i 0.998336 0.0576578i \(-0.0183632\pi\)
−0.957849 + 0.287271i \(0.907252\pi\)
\(938\) 0 0
\(939\) 8.34902 14.4609i 0.272460 0.471914i
\(940\) 0 0
\(941\) −46.7927 17.0311i −1.52540 0.555200i −0.562909 0.826519i \(-0.690318\pi\)
−0.962489 + 0.271319i \(0.912540\pi\)
\(942\) 0 0
\(943\) −15.2305 26.3799i −0.495972 0.859049i
\(944\) 0 0
\(945\) 5.14086 + 4.31369i 0.167232 + 0.140324i
\(946\) 0 0
\(947\) 0.0606990 0.344241i 0.00197245 0.0111863i −0.983806 0.179239i \(-0.942637\pi\)
0.985778 + 0.168052i \(0.0537477\pi\)
\(948\) 0 0
\(949\) 7.31892 0.237582
\(950\) 0 0
\(951\) 2.19305 0.0711146
\(952\) 0 0
\(953\) 3.64810 20.6894i 0.118174 0.670195i −0.866956 0.498384i \(-0.833927\pi\)
0.985130 0.171811i \(-0.0549619\pi\)
\(954\) 0 0
\(955\) 15.9116 + 13.3514i 0.514887 + 0.432041i
\(956\) 0 0
\(957\) 3.20886 + 5.55791i 0.103728 + 0.179662i
\(958\) 0 0
\(959\) 56.7356 + 20.6501i 1.83209 + 0.666826i
\(960\) 0 0
\(961\) 11.3832 19.7163i 0.367200 0.636009i
\(962\) 0 0
\(963\) 1.78319 + 10.1130i 0.0574626 + 0.325887i
\(964\) 0 0
\(965\) 30.1836 25.3271i 0.971645 0.815307i
\(966\) 0 0
\(967\) −34.6193 + 12.6004i −1.11328 + 0.405201i −0.832196 0.554482i \(-0.812916\pi\)
−0.281085 + 0.959683i \(0.590694\pi\)
\(968\) 0 0
\(969\) −19.3722 + 10.2350i −0.622325 + 0.328794i
\(970\) 0 0
\(971\) 5.06606 1.84390i 0.162578 0.0591735i −0.259449 0.965757i \(-0.583541\pi\)
0.422027 + 0.906583i \(0.361319\pi\)
\(972\) 0 0
\(973\) 28.0247 23.5155i 0.898430 0.753873i
\(974\) 0 0
\(975\) 0.660476 + 3.74575i 0.0211522 + 0.119960i
\(976\) 0 0
\(977\) 20.3591 35.2630i 0.651345 1.12816i −0.331451 0.943472i \(-0.607538\pi\)
0.982797 0.184691i \(-0.0591283\pi\)
\(978\) 0 0
\(979\) 51.4144 + 18.7133i 1.64321 + 0.598080i
\(980\) 0 0
\(981\) 1.02082 + 1.76812i 0.0325923 + 0.0564516i
\(982\) 0 0
\(983\) −33.6989 28.2767i −1.07483 0.901887i −0.0793458 0.996847i \(-0.525283\pi\)
−0.995481 + 0.0949603i \(0.969728\pi\)
\(984\) 0 0
\(985\) 1.91797 10.8773i 0.0611115 0.346581i
\(986\) 0 0
\(987\) −13.5019 −0.429771
\(988\) 0 0
\(989\) 34.9348 1.11086
\(990\) 0 0
\(991\) −5.77639 + 32.7595i −0.183493 + 1.04064i 0.744383 + 0.667752i \(0.232744\pi\)
−0.927876 + 0.372888i \(0.878368\pi\)
\(992\) 0 0
\(993\) 11.9049 + 9.98942i 0.377792 + 0.317005i
\(994\) 0 0
\(995\) 0.262172 + 0.454094i 0.00831140 + 0.0143958i
\(996\) 0 0
\(997\) −25.4469 9.26192i −0.805912 0.293328i −0.0939778 0.995574i \(-0.529958\pi\)
−0.711934 + 0.702246i \(0.752180\pi\)
\(998\) 0 0
\(999\) −2.41561 + 4.18397i −0.0764266 + 0.132375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bo.j.385.1 12
4.3 odd 2 57.2.i.b.43.2 yes 12
12.11 even 2 171.2.u.e.100.1 12
19.4 even 9 inner 912.2.bo.j.289.1 12
76.23 odd 18 57.2.i.b.4.2 12
76.55 odd 18 1083.2.a.q.1.3 6
76.59 even 18 1083.2.a.p.1.4 6
228.23 even 18 171.2.u.e.118.1 12
228.59 odd 18 3249.2.a.bg.1.3 6
228.131 even 18 3249.2.a.bh.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.b.4.2 12 76.23 odd 18
57.2.i.b.43.2 yes 12 4.3 odd 2
171.2.u.e.100.1 12 12.11 even 2
171.2.u.e.118.1 12 228.23 even 18
912.2.bo.j.289.1 12 19.4 even 9 inner
912.2.bo.j.385.1 12 1.1 even 1 trivial
1083.2.a.p.1.4 6 76.59 even 18
1083.2.a.q.1.3 6 76.55 odd 18
3249.2.a.bg.1.3 6 228.59 odd 18
3249.2.a.bh.1.4 6 228.131 even 18