Properties

Label 912.2
Level 912
Weight 2
Dimension 9512
Nonzero newspaces 24
Newform subspaces 126
Sturm bound 92160
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 126 \)
Sturm bound: \(92160\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(912))\).

Total New Old
Modular forms 24048 9820 14228
Cusp forms 22033 9512 12521
Eisenstein series 2015 308 1707

Trace form

\( 9512q - 25q^{3} - 56q^{4} + 4q^{5} - 20q^{6} - 38q^{7} + 24q^{8} + q^{9} + O(q^{10}) \) \( 9512q - 25q^{3} - 56q^{4} + 4q^{5} - 20q^{6} - 38q^{7} + 24q^{8} + q^{9} - 56q^{10} + 24q^{11} - 36q^{12} - 70q^{13} - 24q^{14} - 7q^{15} - 104q^{16} - 4q^{17} - 52q^{18} - 38q^{19} - 32q^{20} - 53q^{21} - 104q^{22} - 16q^{23} - 92q^{24} - 36q^{25} - 40q^{26} - 49q^{27} - 72q^{28} + 20q^{29} - 76q^{30} - 86q^{31} - 65q^{33} - 56q^{34} - 48q^{35} - 68q^{36} - 4q^{37} + 8q^{38} - 90q^{39} - 24q^{40} + 12q^{41} + 52q^{42} - 54q^{43} + 80q^{44} - 17q^{45} + 24q^{46} + 92q^{48} - 72q^{49} + 72q^{50} - 95q^{51} - 8q^{52} - 28q^{53} + 60q^{54} - 118q^{55} - q^{57} - 176q^{58} - 56q^{59} - 52q^{60} - 126q^{61} + 24q^{62} - 25q^{63} - 200q^{64} + 168q^{65} - 140q^{66} + 130q^{67} - 64q^{68} - 29q^{69} - 216q^{70} + 124q^{71} - 108q^{72} + 138q^{73} - 104q^{74} + 128q^{75} - 136q^{76} + 184q^{77} - 132q^{78} + 230q^{79} - 16q^{80} - 95q^{81} - 120q^{82} + 180q^{83} - 20q^{84} + 30q^{85} + 32q^{86} + 189q^{87} - 8q^{88} + 156q^{89} + 12q^{90} + 218q^{91} + 32q^{92} + 23q^{93} + 8q^{94} + 56q^{95} + 40q^{96} - 94q^{97} + 80q^{98} + 101q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(912))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
912.2.a \(\chi_{912}(1, \cdot)\) 912.2.a.a 1 1
912.2.a.b 1
912.2.a.c 1
912.2.a.d 1
912.2.a.e 1
912.2.a.f 1
912.2.a.g 1
912.2.a.h 1
912.2.a.i 1
912.2.a.j 1
912.2.a.k 1
912.2.a.l 1
912.2.a.m 2
912.2.a.n 2
912.2.a.o 2
912.2.d \(\chi_{912}(191, \cdot)\) 912.2.d.a 12 1
912.2.d.b 24
912.2.e \(\chi_{912}(151, \cdot)\) None 0 1
912.2.f \(\chi_{912}(113, \cdot)\) 912.2.f.a 2 1
912.2.f.b 2
912.2.f.c 2
912.2.f.d 2
912.2.f.e 2
912.2.f.f 4
912.2.f.g 4
912.2.f.h 10
912.2.f.i 10
912.2.g \(\chi_{912}(457, \cdot)\) None 0 1
912.2.j \(\chi_{912}(647, \cdot)\) None 0 1
912.2.k \(\chi_{912}(607, \cdot)\) 912.2.k.a 2 1
912.2.k.b 2
912.2.k.c 2
912.2.k.d 2
912.2.k.e 2
912.2.k.f 2
912.2.k.g 4
912.2.k.h 4
912.2.p \(\chi_{912}(569, \cdot)\) None 0 1
912.2.q \(\chi_{912}(49, \cdot)\) 912.2.q.a 2 2
912.2.q.b 2
912.2.q.c 2
912.2.q.d 2
912.2.q.e 2
912.2.q.f 2
912.2.q.g 4
912.2.q.h 4
912.2.q.i 4
912.2.q.j 4
912.2.q.k 6
912.2.q.l 6
912.2.r \(\chi_{912}(341, \cdot)\) 912.2.r.a 312 2
912.2.u \(\chi_{912}(229, \cdot)\) 912.2.u.a 72 2
912.2.u.b 72
912.2.v \(\chi_{912}(419, \cdot)\) 912.2.v.a 288 2
912.2.y \(\chi_{912}(379, \cdot)\) 912.2.y.a 160 2
912.2.bb \(\chi_{912}(31, \cdot)\) 912.2.bb.a 2 2
912.2.bb.b 2
912.2.bb.c 4
912.2.bb.d 4
912.2.bb.e 6
912.2.bb.f 6
912.2.bb.g 8
912.2.bb.h 8
912.2.bc \(\chi_{912}(311, \cdot)\) None 0 2
912.2.bd \(\chi_{912}(521, \cdot)\) None 0 2
912.2.bg \(\chi_{912}(103, \cdot)\) None 0 2
912.2.bh \(\chi_{912}(239, \cdot)\) 912.2.bh.a 2 2
912.2.bh.b 2
912.2.bh.c 2
912.2.bh.d 2
912.2.bh.e 24
912.2.bh.f 24
912.2.bh.g 24
912.2.bm \(\chi_{912}(121, \cdot)\) None 0 2
912.2.bn \(\chi_{912}(65, \cdot)\) 912.2.bn.a 2 2
912.2.bn.b 2
912.2.bn.c 2
912.2.bn.d 2
912.2.bn.e 2
912.2.bn.f 2
912.2.bn.g 4
912.2.bn.h 4
912.2.bn.i 4
912.2.bn.j 4
912.2.bn.k 4
912.2.bn.l 4
912.2.bn.m 8
912.2.bn.n 16
912.2.bn.o 16
912.2.bo \(\chi_{912}(289, \cdot)\) 912.2.bo.a 6 6
912.2.bo.b 6
912.2.bo.c 6
912.2.bo.d 6
912.2.bo.e 6
912.2.bo.f 6
912.2.bo.g 12
912.2.bo.h 12
912.2.bo.i 12
912.2.bo.j 12
912.2.bo.k 18
912.2.bo.l 18
912.2.bq \(\chi_{912}(277, \cdot)\) 912.2.bq.a 320 4
912.2.br \(\chi_{912}(221, \cdot)\) 912.2.br.a 624 4
912.2.bu \(\chi_{912}(259, \cdot)\) 912.2.bu.a 320 4
912.2.bv \(\chi_{912}(11, \cdot)\) 912.2.bv.a 8 4
912.2.bv.b 8
912.2.bv.c 608
912.2.bz \(\chi_{912}(41, \cdot)\) None 0 6
912.2.ca \(\chi_{912}(25, \cdot)\) None 0 6
912.2.cc \(\chi_{912}(257, \cdot)\) 912.2.cc.a 6 6
912.2.cc.b 6
912.2.cc.c 18
912.2.cc.d 18
912.2.cc.e 24
912.2.cc.f 36
912.2.cc.g 60
912.2.cc.h 60
912.2.cf \(\chi_{912}(295, \cdot)\) None 0 6
912.2.ch \(\chi_{912}(47, \cdot)\) 912.2.ch.a 6 6
912.2.ch.b 6
912.2.ch.c 6
912.2.ch.d 6
912.2.ch.e 72
912.2.ch.f 72
912.2.ch.g 72
912.2.ci \(\chi_{912}(79, \cdot)\) 912.2.ci.a 6 6
912.2.ci.b 6
912.2.ci.c 12
912.2.ci.d 12
912.2.ci.e 18
912.2.ci.f 18
912.2.ci.g 24
912.2.ci.h 24
912.2.ck \(\chi_{912}(23, \cdot)\) None 0 6
912.2.cn \(\chi_{912}(67, \cdot)\) 912.2.cn.a 960 12
912.2.cp \(\chi_{912}(35, \cdot)\) 912.2.cp.a 1872 12
912.2.cq \(\chi_{912}(61, \cdot)\) 912.2.cq.a 960 12
912.2.cs \(\chi_{912}(29, \cdot)\) 912.2.cs.a 1872 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(912))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(912)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(228))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(304))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(456))\)\(^{\oplus 2}\)