Defining parameters
| Level: | \( N \) | \(=\) | \( 1083 = 3 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1083.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 19 \) | ||
| Sturm bound: | \(253\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1083))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 146 | 57 | 89 |
| Cusp forms | 107 | 57 | 50 |
| Eisenstein series | 39 | 0 | 39 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(33\) | \(14\) | \(19\) | \(24\) | \(14\) | \(10\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(-\) | \(39\) | \(15\) | \(24\) | \(29\) | \(15\) | \(14\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(+\) | \(-\) | \(40\) | \(19\) | \(21\) | \(30\) | \(19\) | \(11\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(-\) | \(+\) | \(34\) | \(9\) | \(25\) | \(24\) | \(9\) | \(15\) | \(10\) | \(0\) | \(10\) | |||
| Plus space | \(+\) | \(67\) | \(23\) | \(44\) | \(48\) | \(23\) | \(25\) | \(19\) | \(0\) | \(19\) | ||||
| Minus space | \(-\) | \(79\) | \(34\) | \(45\) | \(59\) | \(34\) | \(25\) | \(20\) | \(0\) | \(20\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1083))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1083)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 2}\)