Properties

Label 1053.2.a.m
Level $1053$
Weight $2$
Character orbit 1053.a
Self dual yes
Analytic conductor $8.408$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(1,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,0,6,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.22931361.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 10x^{2} - 11x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{5} - \beta_{4} + \beta_1 + 1) q^{4} + (\beta_{5} + 1) q^{5} + (\beta_{5} + \beta_{2} + \beta_1) q^{7} + ( - \beta_{4} + \beta_{3} + \beta_1 + 1) q^{8} + ( - \beta_{5} + \beta_{4} + \beta_{3} + \cdots - 1) q^{10}+ \cdots + (\beta_{5} - 2 \beta_{4} - \beta_{3} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{4} + 3 q^{5} + 6 q^{8} - 6 q^{10} + 7 q^{11} - 6 q^{13} + 13 q^{14} + 6 q^{16} + 14 q^{17} - 3 q^{19} + 17 q^{20} - 3 q^{22} + 17 q^{23} + 3 q^{25} - 2 q^{26} + 15 q^{28} + 14 q^{29}+ \cdots + 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 10x^{2} - 11x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} - \nu^{4} - 7\nu^{3} + 5\nu^{2} + 10\nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 2\nu^{4} - 7\nu^{3} + 11\nu^{2} + 11\nu - 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 2\nu^{4} - 8\nu^{3} + 11\nu^{2} + 16\nu - 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 2\nu^{4} - 8\nu^{3} + 12\nu^{2} + 15\nu - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{5} - 6\beta_{4} - \beta_{3} + \beta_{2} + 7\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 8\beta_{4} + 6\beta_{3} + 2\beta_{2} + 27\beta _1 + 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.20550
−1.27336
0.258181
0.496094
2.21970
2.50489
−2.20550 0 2.86424 3.60740 0 −1.08012 −1.90608 0 −7.95614
1.2 −1.27336 0 −0.378549 0.268529 0 −1.15524 3.02875 0 −0.341935
1.3 0.258181 0 −1.93334 −3.47282 0 −4.42331 −1.01551 0 −0.896615
1.4 0.496094 0 −1.75389 1.32688 0 3.12929 −1.86228 0 0.658258
1.5 2.21970 0 2.92706 2.26088 0 0.366055 2.05779 0 5.01848
1.6 2.50489 0 4.27448 −0.990881 0 3.16333 5.69734 0 −2.48205
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1053.2.a.m 6
3.b odd 2 1 1053.2.a.l 6
9.c even 3 2 351.2.e.c 12
9.d odd 6 2 117.2.e.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.e.c 12 9.d odd 6 2
351.2.e.c 12 9.c even 3 2
1053.2.a.l 6 3.b odd 2 1
1053.2.a.m 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 2T_{2}^{5} - 7T_{2}^{4} + 12T_{2}^{3} + 10T_{2}^{2} - 11T_{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1053))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 2 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + \cdots + 10 \) Copy content Toggle raw display
$7$ \( T^{6} - 21 T^{4} + \cdots - 20 \) Copy content Toggle raw display
$11$ \( T^{6} - 7 T^{5} + \cdots - 8 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 14 T^{5} + \cdots + 5 \) Copy content Toggle raw display
$19$ \( T^{6} + 3 T^{5} + \cdots + 196 \) Copy content Toggle raw display
$23$ \( T^{6} - 17 T^{5} + \cdots + 2161 \) Copy content Toggle raw display
$29$ \( T^{6} - 14 T^{5} + \cdots + 29470 \) Copy content Toggle raw display
$31$ \( T^{6} - 6 T^{5} + \cdots + 302 \) Copy content Toggle raw display
$37$ \( T^{6} + 9 T^{5} + \cdots + 16562 \) Copy content Toggle raw display
$41$ \( T^{6} + 4 T^{5} + \cdots - 28330 \) Copy content Toggle raw display
$43$ \( T^{6} + 3 T^{5} + \cdots - 2239 \) Copy content Toggle raw display
$47$ \( T^{6} - 9 T^{5} + \cdots - 74 \) Copy content Toggle raw display
$53$ \( T^{6} - 28 T^{5} + \cdots - 6983 \) Copy content Toggle raw display
$59$ \( T^{6} - 17 T^{5} + \cdots - 170854 \) Copy content Toggle raw display
$61$ \( T^{6} + 6 T^{5} + \cdots + 17687 \) Copy content Toggle raw display
$67$ \( T^{6} + 12 T^{5} + \cdots + 2588 \) Copy content Toggle raw display
$71$ \( T^{6} + T^{5} + \cdots - 195956 \) Copy content Toggle raw display
$73$ \( T^{6} + 9 T^{5} + \cdots + 5782 \) Copy content Toggle raw display
$79$ \( T^{6} + 6 T^{5} + \cdots + 4801 \) Copy content Toggle raw display
$83$ \( T^{6} - 28 T^{5} + \cdots - 5686 \) Copy content Toggle raw display
$89$ \( T^{6} + 9 T^{5} + \cdots + 78148 \) Copy content Toggle raw display
$97$ \( T^{6} - 228 T^{4} + \cdots - 244 \) Copy content Toggle raw display
show more
show less