Properties

Label 351.2.e.c
Level $351$
Weight $2$
Character orbit 351.e
Analytic conductor $2.803$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(118,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 3 x^{10} - x^{9} - 2 x^{8} + 9 x^{7} + 24 x^{6} + 27 x^{5} - 18 x^{4} - 27 x^{3} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{10} + \beta_{9} - \beta_{8} + \cdots - 1) q^{4} + (\beta_{10} + \beta_{9} - \beta_{5} + \cdots - 1) q^{5} + (\beta_{11} - \beta_{6} + \beta_{2}) q^{7} + ( - \beta_{11} + \beta_{8} - \beta_{7} + \cdots + 1) q^{8}+ \cdots + (2 \beta_{10} - \beta_{9} - 3 \beta_{8} + \cdots + 3) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} - 3 q^{5} + 12 q^{8} - 12 q^{10} - 7 q^{11} + 6 q^{13} - 13 q^{14} - 6 q^{16} + 28 q^{17} - 6 q^{19} - 17 q^{20} + 3 q^{22} - 17 q^{23} - 3 q^{25} - 4 q^{26} + 30 q^{28} - 14 q^{29}+ \cdots + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - x^{11} - 3 x^{10} - x^{9} - 2 x^{8} + 9 x^{7} + 24 x^{6} + 27 x^{5} - 18 x^{4} - 27 x^{3} + \cdots + 729 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{11} - 12 \nu^{10} - 31 \nu^{9} - 28 \nu^{8} + 133 \nu^{6} + 345 \nu^{5} + 456 \nu^{4} + \cdots - 3321 ) / 162 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 28 \nu^{11} - 53 \nu^{10} - 42 \nu^{9} + 46 \nu^{8} + 299 \nu^{7} + 603 \nu^{6} + 660 \nu^{5} + \cdots + 1944 ) / 729 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 61 \nu^{11} + 152 \nu^{10} + 117 \nu^{9} - 52 \nu^{8} - 686 \nu^{7} - 1605 \nu^{6} - 1965 \nu^{5} + \cdots - 2187 ) / 1458 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 47 \nu^{11} + 13 \nu^{10} - 129 \nu^{9} - 245 \nu^{8} - 424 \nu^{7} - 174 \nu^{6} + 984 \nu^{5} + \cdots - 22356 ) / 729 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 103 \nu^{11} - 116 \nu^{10} + 87 \nu^{9} + 364 \nu^{8} + 1046 \nu^{7} + 1329 \nu^{6} + \cdots + 30861 ) / 1458 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 133 \nu^{11} - 176 \nu^{10} + 51 \nu^{9} + 394 \nu^{8} + 1358 \nu^{7} + 1941 \nu^{6} + \cdots + 33777 ) / 1458 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 68 \nu^{11} - 37 \nu^{10} + 156 \nu^{9} + 320 \nu^{8} + 673 \nu^{7} + 399 \nu^{6} - 1083 \nu^{5} + \cdots + 31104 ) / 729 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 107 \nu^{11} - 91 \nu^{10} + 159 \nu^{9} + 440 \nu^{8} + 1060 \nu^{7} + 1008 \nu^{6} - 822 \nu^{5} + \cdots + 39609 ) / 729 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 25 \nu^{11} - 24 \nu^{10} + 31 \nu^{9} + 94 \nu^{8} + 252 \nu^{7} + 263 \nu^{6} - 117 \nu^{5} + \cdots + 8505 ) / 162 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 99 \nu^{11} + 86 \nu^{10} - 155 \nu^{9} - 414 \nu^{8} - 986 \nu^{7} - 913 \nu^{6} + 795 \nu^{5} + \cdots - 37503 ) / 486 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 307 \nu^{11} + 254 \nu^{10} - 501 \nu^{9} - 1324 \nu^{8} - 3092 \nu^{7} - 2823 \nu^{6} + \cdots - 118341 ) / 1458 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{11} + \beta_{9} + 2\beta_{7} - 2\beta_{6} - \beta_{4} + 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{11} + \beta_{9} + 3\beta_{8} - \beta_{7} + \beta_{6} + 2\beta_{4} + 3\beta_{3} - 3\beta_{2} + 2\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{11} - 3 \beta_{10} + 4 \beta_{9} - 6 \beta_{8} - \beta_{7} - 2 \beta_{6} + 3 \beta_{5} - \beta_{4} + \cdots + 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 2 \beta_{11} + 6 \beta_{10} + 7 \beta_{9} + 6 \beta_{8} - \beta_{7} - 5 \beta_{6} - 12 \beta_{5} + \cdots + 3 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{11} + \beta_{9} - 6 \beta_{8} + 17 \beta_{7} + 10 \beta_{6} - 18 \beta_{5} - 7 \beta_{4} + \cdots + 20 \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( \beta_{11} + 15 \beta_{10} + 4 \beta_{9} + 3 \beta_{8} - \beta_{7} - 2 \beta_{6} + 57 \beta_{5} + \cdots + 33 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 38 \beta_{11} + 24 \beta_{10} + 61 \beta_{9} - 39 \beta_{8} + 8 \beta_{7} - 5 \beta_{6} - 48 \beta_{5} + \cdots - 15 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 53 \beta_{11} - 27 \beta_{10} - 35 \beta_{9} + 12 \beta_{8} - 73 \beta_{7} + 28 \beta_{6} - 81 \beta_{5} + \cdots - 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 17 \beta_{11} + 78 \beta_{10} + 67 \beta_{9} - 24 \beta_{8} + 80 \beta_{7} + 61 \beta_{6} + \cdots - 201 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 155 \beta_{11} + 231 \beta_{10} + 34 \beta_{9} - 138 \beta_{8} + 44 \beta_{7} + 184 \beta_{6} + \cdots + 291 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 512 \beta_{11} + 135 \beta_{10} - 71 \beta_{9} - 348 \beta_{8} + 53 \beta_{7} + 46 \beta_{6} + \cdots + 99 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(-1 - \beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
118.1
−1.70946 + 0.278853i
1.70358 + 0.312736i
0.471837 1.66654i
1.70010 0.331167i
−0.372202 + 1.69159i
−1.29386 1.15149i
−1.70946 0.278853i
1.70358 0.312736i
0.471837 + 1.66654i
1.70010 + 0.331167i
−0.372202 1.69159i
−1.29386 + 1.15149i
−1.25245 2.16930i 0 −2.13724 + 3.70181i 0.495441 0.858128i 0 −1.58167 2.73953i 5.69734 0 −2.48205
118.2 −1.10985 1.92231i 0 −1.46353 + 2.53491i −1.13044 + 1.95798i 0 −0.183027 0.317013i 2.05779 0 5.01848
118.3 −0.248047 0.429630i 0 0.876945 1.51891i −0.663441 + 1.14911i 0 −1.56464 2.71004i −1.86228 0 0.658258
118.4 −0.129090 0.223591i 0 0.966671 1.67432i 1.73641 3.00755i 0 2.21165 + 3.83070i −1.01551 0 −0.896615
118.5 0.636681 + 1.10276i 0 0.189274 0.327833i −0.134264 + 0.232553i 0 0.577621 + 1.00047i 3.02875 0 −0.341935
118.6 1.10275 + 1.91002i 0 −1.43212 + 2.48050i −1.80370 + 3.12410i 0 0.540062 + 0.935414i −1.90608 0 −7.95614
235.1 −1.25245 + 2.16930i 0 −2.13724 3.70181i 0.495441 + 0.858128i 0 −1.58167 + 2.73953i 5.69734 0 −2.48205
235.2 −1.10985 + 1.92231i 0 −1.46353 2.53491i −1.13044 1.95798i 0 −0.183027 + 0.317013i 2.05779 0 5.01848
235.3 −0.248047 + 0.429630i 0 0.876945 + 1.51891i −0.663441 1.14911i 0 −1.56464 + 2.71004i −1.86228 0 0.658258
235.4 −0.129090 + 0.223591i 0 0.966671 + 1.67432i 1.73641 + 3.00755i 0 2.21165 3.83070i −1.01551 0 −0.896615
235.5 0.636681 1.10276i 0 0.189274 + 0.327833i −0.134264 0.232553i 0 0.577621 1.00047i 3.02875 0 −0.341935
235.6 1.10275 1.91002i 0 −1.43212 2.48050i −1.80370 3.12410i 0 0.540062 0.935414i −1.90608 0 −7.95614
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 118.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 351.2.e.c 12
3.b odd 2 1 117.2.e.c 12
9.c even 3 1 inner 351.2.e.c 12
9.c even 3 1 1053.2.a.m 6
9.d odd 6 1 117.2.e.c 12
9.d odd 6 1 1053.2.a.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.e.c 12 3.b odd 2 1
117.2.e.c 12 9.d odd 6 1
351.2.e.c 12 1.a even 1 1 trivial
351.2.e.c 12 9.c even 3 1 inner
1053.2.a.l 6 9.d odd 6 1
1053.2.a.m 6 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 2 T_{2}^{11} + 11 T_{2}^{10} + 10 T_{2}^{9} + 63 T_{2}^{8} + 55 T_{2}^{7} + 196 T_{2}^{6} + \cdots + 4 \) acting on \(S_{2}^{\mathrm{new}}(351, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} + 2 T^{11} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + 3 T^{11} + \cdots + 100 \) Copy content Toggle raw display
$7$ \( T^{12} + 21 T^{10} + \cdots + 400 \) Copy content Toggle raw display
$11$ \( T^{12} + 7 T^{11} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{6} \) Copy content Toggle raw display
$17$ \( (T^{6} - 14 T^{5} + 62 T^{4} + \cdots + 5)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + 3 T^{5} + \cdots + 196)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + 17 T^{11} + \cdots + 4669921 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 868480900 \) Copy content Toggle raw display
$31$ \( T^{12} + 6 T^{11} + \cdots + 91204 \) Copy content Toggle raw display
$37$ \( (T^{6} + 9 T^{5} + \cdots + 16562)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 802588900 \) Copy content Toggle raw display
$43$ \( T^{12} - 3 T^{11} + \cdots + 5013121 \) Copy content Toggle raw display
$47$ \( T^{12} + 9 T^{11} + \cdots + 5476 \) Copy content Toggle raw display
$53$ \( (T^{6} - 28 T^{5} + \cdots - 6983)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 29191089316 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 312829969 \) Copy content Toggle raw display
$67$ \( T^{12} - 12 T^{11} + \cdots + 6697744 \) Copy content Toggle raw display
$71$ \( (T^{6} + T^{5} + \cdots - 195956)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 9 T^{5} + \cdots + 5782)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} - 6 T^{11} + \cdots + 23049601 \) Copy content Toggle raw display
$83$ \( T^{12} + 28 T^{11} + \cdots + 32330596 \) Copy content Toggle raw display
$89$ \( (T^{6} + 9 T^{5} + \cdots + 78148)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + 228 T^{10} + \cdots + 59536 \) Copy content Toggle raw display
show more
show less