Properties

Label 2-1053-1.1-c1-0-1
Degree $2$
Conductor $1053$
Sign $1$
Analytic cond. $8.40824$
Root an. cond. $2.89969$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.258·2-s − 1.93·4-s − 3.47·5-s − 4.42·7-s − 1.01·8-s − 0.896·10-s − 0.126·11-s − 13-s − 1.14·14-s + 3.60·16-s − 0.346·17-s − 0.863·19-s + 6.71·20-s − 0.0326·22-s + 8.11·23-s + 7.06·25-s − 0.258·26-s + 8.55·28-s + 2.50·29-s − 6.02·31-s + 2.96·32-s − 0.0894·34-s + 15.3·35-s − 2.44·37-s − 0.223·38-s + 3.52·40-s − 4.73·41-s + ⋯
L(s)  = 1  + 0.182·2-s − 0.966·4-s − 1.55·5-s − 1.67·7-s − 0.359·8-s − 0.283·10-s − 0.0381·11-s − 0.277·13-s − 0.305·14-s + 0.901·16-s − 0.0839·17-s − 0.198·19-s + 1.50·20-s − 0.00696·22-s + 1.69·23-s + 1.41·25-s − 0.0506·26-s + 1.61·28-s + 0.464·29-s − 1.08·31-s + 0.523·32-s − 0.0153·34-s + 2.59·35-s − 0.402·37-s − 0.0361·38-s + 0.557·40-s − 0.739·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1053\)    =    \(3^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(8.40824\)
Root analytic conductor: \(2.89969\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1053,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4650226038\)
\(L(\frac12)\) \(\approx\) \(0.4650226038\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - 0.258T + 2T^{2} \)
5 \( 1 + 3.47T + 5T^{2} \)
7 \( 1 + 4.42T + 7T^{2} \)
11 \( 1 + 0.126T + 11T^{2} \)
17 \( 1 + 0.346T + 17T^{2} \)
19 \( 1 + 0.863T + 19T^{2} \)
23 \( 1 - 8.11T + 23T^{2} \)
29 \( 1 - 2.50T + 29T^{2} \)
31 \( 1 + 6.02T + 31T^{2} \)
37 \( 1 + 2.44T + 37T^{2} \)
41 \( 1 + 4.73T + 41T^{2} \)
43 \( 1 + 6.73T + 43T^{2} \)
47 \( 1 + 0.214T + 47T^{2} \)
53 \( 1 - 4.02T + 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 + 2.72T + 61T^{2} \)
67 \( 1 - 4.01T + 67T^{2} \)
71 \( 1 + 8.55T + 71T^{2} \)
73 \( 1 + 9.17T + 73T^{2} \)
79 \( 1 - 0.432T + 79T^{2} \)
83 \( 1 - 1.04T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 - 0.178T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.831861241212206133359024683566, −8.984337111038277335733777115849, −8.435494639707346682632491884651, −7.31024502272124964612936858279, −6.72322747191912987075685130396, −5.46575899030308020829388956795, −4.50795951605451193164074661496, −3.59555870814120686640007428368, −3.09089365669763004014493296999, −0.49120520387618413993859533583, 0.49120520387618413993859533583, 3.09089365669763004014493296999, 3.59555870814120686640007428368, 4.50795951605451193164074661496, 5.46575899030308020829388956795, 6.72322747191912987075685130396, 7.31024502272124964612936858279, 8.435494639707346682632491884651, 8.984337111038277335733777115849, 9.831861241212206133359024683566

Graph of the $Z$-function along the critical line