Properties

Label 1053.2.a
Level $1053$
Weight $2$
Character orbit 1053.a
Rep. character $\chi_{1053}(1,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $14$
Sturm bound $252$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 14 \)
Sturm bound: \(252\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1053))\).

Total New Old
Modular forms 138 48 90
Cusp forms 115 48 67
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(30\)\(10\)\(20\)\(25\)\(10\)\(15\)\(5\)\(0\)\(5\)
\(+\)\(-\)\(-\)\(36\)\(14\)\(22\)\(30\)\(14\)\(16\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(39\)\(14\)\(25\)\(33\)\(14\)\(19\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(33\)\(10\)\(23\)\(27\)\(10\)\(17\)\(6\)\(0\)\(6\)
Plus space\(+\)\(63\)\(20\)\(43\)\(52\)\(20\)\(32\)\(11\)\(0\)\(11\)
Minus space\(-\)\(75\)\(28\)\(47\)\(63\)\(28\)\(35\)\(12\)\(0\)\(12\)

Trace form

\( 48 q + 48 q^{4} + 72 q^{16} - 12 q^{19} + 12 q^{22} + 36 q^{25} + 24 q^{28} - 12 q^{31} - 36 q^{34} - 12 q^{37} - 24 q^{40} + 12 q^{43} - 24 q^{46} + 48 q^{49} - 12 q^{55} - 24 q^{61} + 72 q^{64} + 24 q^{67}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1053))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 13
1053.2.a.a 1053.a 1.a $1$ $8.408$ \(\Q\) None 117.2.e.a \(-2\) \(0\) \(-4\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-4q^{5}+2q^{7}+8q^{10}+\cdots\)
1053.2.a.b 1053.a 1.a $1$ $8.408$ \(\Q\) None 1053.2.a.b \(-1\) \(0\) \(-2\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-2q^{5}+5q^{7}+3q^{8}+2q^{10}+\cdots\)
1053.2.a.c 1053.a 1.a $1$ $8.408$ \(\Q\) None 1053.2.a.b \(1\) \(0\) \(2\) \(5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+2q^{5}+5q^{7}-3q^{8}+2q^{10}+\cdots\)
1053.2.a.d 1053.a 1.a $1$ $8.408$ \(\Q\) None 117.2.e.a \(2\) \(0\) \(4\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+4q^{5}+2q^{7}+8q^{10}+\cdots\)
1053.2.a.e 1053.a 1.a $2$ $8.408$ \(\Q(\sqrt{5}) \) None 1053.2.a.e \(-1\) \(0\) \(3\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{4}+(2-\beta )q^{5}+(-1+\cdots)q^{7}+\cdots\)
1053.2.a.f 1053.a 1.a $2$ $8.408$ \(\Q(\sqrt{5}) \) None 1053.2.a.e \(1\) \(0\) \(-3\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(-1+\beta )q^{4}+(-2+\beta )q^{5}+\cdots\)
1053.2.a.g 1053.a 1.a $3$ $8.408$ 3.3.621.1 None 1053.2.a.g \(0\) \(0\) \(-3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots\)
1053.2.a.h 1053.a 1.a $3$ $8.408$ 3.3.621.1 None 1053.2.a.g \(0\) \(0\) \(3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{1}+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
1053.2.a.i 1053.a 1.a $4$ $8.408$ \(\Q(\sqrt{3}, \sqrt{7})\) None 1053.2.a.i \(0\) \(0\) \(0\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}-\beta _{2}q^{4}-\beta _{3}q^{5}+(-2+\beta _{2}+\cdots)q^{7}+\cdots\)
1053.2.a.j 1053.a 1.a $5$ $8.408$ 5.5.403137.1 None 117.2.e.b \(-2\) \(0\) \(-1\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}-\beta _{3}q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
1053.2.a.k 1053.a 1.a $5$ $8.408$ 5.5.403137.1 None 117.2.e.b \(2\) \(0\) \(1\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}+\beta _{3}q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
1053.2.a.l 1053.a 1.a $6$ $8.408$ 6.6.22931361.1 None 117.2.e.c \(-2\) \(0\) \(-3\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{1}-\beta _{4}+\beta _{5})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1053.2.a.m 1053.a 1.a $6$ $8.408$ 6.6.22931361.1 None 117.2.e.c \(2\) \(0\) \(3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{1}-\beta _{4}+\beta _{5})q^{4}+(1+\cdots)q^{5}+\cdots\)
1053.2.a.n 1053.a 1.a $8$ $8.408$ 8.8.\(\cdots\).1 None 1053.2.a.n \(0\) \(0\) \(0\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(\beta _{1}-\beta _{7})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1053))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1053)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(351))\)\(^{\oplus 2}\)