Defining parameters
Level: | \( N \) | \(=\) | \( 1053 = 3^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1053.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(252\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1053))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 138 | 48 | 90 |
Cusp forms | 115 | 48 | 67 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(30\) | \(10\) | \(20\) | \(25\) | \(10\) | \(15\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(-\) | \(-\) | \(36\) | \(14\) | \(22\) | \(30\) | \(14\) | \(16\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(39\) | \(14\) | \(25\) | \(33\) | \(14\) | \(19\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(33\) | \(10\) | \(23\) | \(27\) | \(10\) | \(17\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(63\) | \(20\) | \(43\) | \(52\) | \(20\) | \(32\) | \(11\) | \(0\) | \(11\) | ||||
Minus space | \(-\) | \(75\) | \(28\) | \(47\) | \(63\) | \(28\) | \(35\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1053))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1053))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1053)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(351))\)\(^{\oplus 2}\)