Properties

Label 1008.2.df.d.929.7
Level $1008$
Weight $2$
Character 1008.929
Analytic conductor $8.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 929.7
Root \(-0.213160 - 1.71888i\) of defining polynomial
Character \(\chi\) \(=\) 1008.929
Dual form 1008.2.df.d.689.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.44376 + 0.956855i) q^{3} +2.86804 q^{5} +(1.83240 + 1.90848i) q^{7} +(1.16886 + 2.76293i) q^{9} +2.71286i q^{11} +(3.18987 - 1.84167i) q^{13} +(4.14074 + 2.74429i) q^{15} +(-3.22192 - 5.58052i) q^{17} +(-2.73867 - 1.58117i) q^{19} +(0.819404 + 4.50872i) q^{21} +2.99146i q^{23} +3.22563 q^{25} +(-0.956179 + 5.10742i) q^{27} +(-2.48332 - 1.43375i) q^{29} +(-8.26739 - 4.77318i) q^{31} +(-2.59581 + 3.91671i) q^{33} +(5.25540 + 5.47359i) q^{35} +(-1.70640 + 2.95556i) q^{37} +(6.36761 + 0.393320i) q^{39} +(0.794538 + 1.37618i) q^{41} +(4.67828 - 8.10302i) q^{43} +(3.35232 + 7.92418i) q^{45} +(-5.65372 - 9.79254i) q^{47} +(-0.284592 + 6.99421i) q^{49} +(0.688093 - 11.1398i) q^{51} +(-2.16419 + 1.24950i) q^{53} +7.78058i q^{55} +(-2.44102 - 4.90333i) q^{57} +(4.33680 - 7.51156i) q^{59} +(-0.566915 + 0.327308i) q^{61} +(-3.13118 + 7.29354i) q^{63} +(9.14867 - 5.28199i) q^{65} +(3.86146 - 6.68825i) q^{67} +(-2.86240 + 4.31894i) q^{69} +7.86582i q^{71} +(11.0769 - 6.39527i) q^{73} +(4.65702 + 3.08646i) q^{75} +(-5.17744 + 4.97106i) q^{77} +(2.59566 + 4.49581i) q^{79} +(-6.26755 + 6.45894i) q^{81} +(-7.92948 + 13.7343i) q^{83} +(-9.24057 - 16.0051i) q^{85} +(-2.21342 - 4.44616i) q^{87} +(-3.14826 + 5.45295i) q^{89} +(9.35993 + 2.71312i) q^{91} +(-7.36885 - 14.8020i) q^{93} +(-7.85460 - 4.53486i) q^{95} +(13.2065 + 7.62477i) q^{97} +(-7.49544 + 3.17095i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{7} + 3 q^{13} + 3 q^{15} - 9 q^{17} + 16 q^{25} + 9 q^{27} + 6 q^{29} - 6 q^{31} - 27 q^{33} - 15 q^{35} + q^{37} + 3 q^{39} + 6 q^{41} + 2 q^{43} - 15 q^{45} + 18 q^{47} + 13 q^{49} - 15 q^{51}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44376 + 0.956855i 0.833552 + 0.552440i
\(4\) 0 0
\(5\) 2.86804 1.28262 0.641312 0.767280i \(-0.278390\pi\)
0.641312 + 0.767280i \(0.278390\pi\)
\(6\) 0 0
\(7\) 1.83240 + 1.90848i 0.692584 + 0.721338i
\(8\) 0 0
\(9\) 1.16886 + 2.76293i 0.389619 + 0.920976i
\(10\) 0 0
\(11\) 2.71286i 0.817958i 0.912544 + 0.408979i \(0.134115\pi\)
−0.912544 + 0.408979i \(0.865885\pi\)
\(12\) 0 0
\(13\) 3.18987 1.84167i 0.884712 0.510789i 0.0125026 0.999922i \(-0.496020\pi\)
0.872209 + 0.489133i \(0.162687\pi\)
\(14\) 0 0
\(15\) 4.14074 + 2.74429i 1.06913 + 0.708574i
\(16\) 0 0
\(17\) −3.22192 5.58052i −0.781429 1.35348i −0.931109 0.364741i \(-0.881158\pi\)
0.149680 0.988735i \(-0.452176\pi\)
\(18\) 0 0
\(19\) −2.73867 1.58117i −0.628294 0.362746i 0.151797 0.988412i \(-0.451494\pi\)
−0.780091 + 0.625666i \(0.784827\pi\)
\(20\) 0 0
\(21\) 0.819404 + 4.50872i 0.178809 + 0.983884i
\(22\) 0 0
\(23\) 2.99146i 0.623763i 0.950121 + 0.311882i \(0.100959\pi\)
−0.950121 + 0.311882i \(0.899041\pi\)
\(24\) 0 0
\(25\) 3.22563 0.645126
\(26\) 0 0
\(27\) −0.956179 + 5.10742i −0.184017 + 0.982923i
\(28\) 0 0
\(29\) −2.48332 1.43375i −0.461142 0.266240i 0.251383 0.967888i \(-0.419115\pi\)
−0.712524 + 0.701648i \(0.752448\pi\)
\(30\) 0 0
\(31\) −8.26739 4.77318i −1.48487 0.857289i −0.485016 0.874506i \(-0.661186\pi\)
−0.999852 + 0.0172169i \(0.994519\pi\)
\(32\) 0 0
\(33\) −2.59581 + 3.91671i −0.451873 + 0.681811i
\(34\) 0 0
\(35\) 5.25540 + 5.47359i 0.888325 + 0.925205i
\(36\) 0 0
\(37\) −1.70640 + 2.95556i −0.280530 + 0.485892i −0.971515 0.236977i \(-0.923843\pi\)
0.690986 + 0.722868i \(0.257177\pi\)
\(38\) 0 0
\(39\) 6.36761 + 0.393320i 1.01963 + 0.0629816i
\(40\) 0 0
\(41\) 0.794538 + 1.37618i 0.124086 + 0.214923i 0.921375 0.388674i \(-0.127067\pi\)
−0.797289 + 0.603597i \(0.793733\pi\)
\(42\) 0 0
\(43\) 4.67828 8.10302i 0.713431 1.23570i −0.250131 0.968212i \(-0.580474\pi\)
0.963562 0.267487i \(-0.0861931\pi\)
\(44\) 0 0
\(45\) 3.35232 + 7.92418i 0.499735 + 1.18127i
\(46\) 0 0
\(47\) −5.65372 9.79254i −0.824680 1.42839i −0.902163 0.431394i \(-0.858022\pi\)
0.0774831 0.996994i \(-0.475312\pi\)
\(48\) 0 0
\(49\) −0.284592 + 6.99421i −0.0406560 + 0.999173i
\(50\) 0 0
\(51\) 0.688093 11.1398i 0.0963523 1.55989i
\(52\) 0 0
\(53\) −2.16419 + 1.24950i −0.297275 + 0.171632i −0.641218 0.767359i \(-0.721571\pi\)
0.343943 + 0.938990i \(0.388237\pi\)
\(54\) 0 0
\(55\) 7.78058i 1.04913i
\(56\) 0 0
\(57\) −2.44102 4.90333i −0.323320 0.649462i
\(58\) 0 0
\(59\) 4.33680 7.51156i 0.564604 0.977922i −0.432483 0.901642i \(-0.642362\pi\)
0.997086 0.0762801i \(-0.0243043\pi\)
\(60\) 0 0
\(61\) −0.566915 + 0.327308i −0.0725860 + 0.0419075i −0.535854 0.844311i \(-0.680010\pi\)
0.463268 + 0.886218i \(0.346677\pi\)
\(62\) 0 0
\(63\) −3.13118 + 7.29354i −0.394491 + 0.918900i
\(64\) 0 0
\(65\) 9.14867 5.28199i 1.13475 0.655150i
\(66\) 0 0
\(67\) 3.86146 6.68825i 0.471752 0.817099i −0.527725 0.849415i \(-0.676955\pi\)
0.999478 + 0.0323159i \(0.0102883\pi\)
\(68\) 0 0
\(69\) −2.86240 + 4.31894i −0.344592 + 0.519939i
\(70\) 0 0
\(71\) 7.86582i 0.933501i 0.884389 + 0.466750i \(0.154575\pi\)
−0.884389 + 0.466750i \(0.845425\pi\)
\(72\) 0 0
\(73\) 11.0769 6.39527i 1.29646 0.748510i 0.316667 0.948537i \(-0.397436\pi\)
0.979790 + 0.200027i \(0.0641028\pi\)
\(74\) 0 0
\(75\) 4.65702 + 3.08646i 0.537746 + 0.356394i
\(76\) 0 0
\(77\) −5.17744 + 4.97106i −0.590024 + 0.566504i
\(78\) 0 0
\(79\) 2.59566 + 4.49581i 0.292034 + 0.505819i 0.974291 0.225295i \(-0.0723345\pi\)
−0.682256 + 0.731113i \(0.739001\pi\)
\(80\) 0 0
\(81\) −6.26755 + 6.45894i −0.696394 + 0.717660i
\(82\) 0 0
\(83\) −7.92948 + 13.7343i −0.870373 + 1.50753i −0.00876173 + 0.999962i \(0.502789\pi\)
−0.861611 + 0.507569i \(0.830544\pi\)
\(84\) 0 0
\(85\) −9.24057 16.0051i −1.00228 1.73600i
\(86\) 0 0
\(87\) −2.21342 4.44616i −0.237304 0.476678i
\(88\) 0 0
\(89\) −3.14826 + 5.45295i −0.333715 + 0.578012i −0.983237 0.182331i \(-0.941636\pi\)
0.649522 + 0.760343i \(0.274969\pi\)
\(90\) 0 0
\(91\) 9.35993 + 2.71312i 0.981188 + 0.284412i
\(92\) 0 0
\(93\) −7.36885 14.8020i −0.764114 1.53490i
\(94\) 0 0
\(95\) −7.85460 4.53486i −0.805865 0.465267i
\(96\) 0 0
\(97\) 13.2065 + 7.62477i 1.34092 + 0.774178i 0.986942 0.161077i \(-0.0514967\pi\)
0.353974 + 0.935255i \(0.384830\pi\)
\(98\) 0 0
\(99\) −7.49544 + 3.17095i −0.753320 + 0.318692i
\(100\) 0 0
\(101\) −3.48902 −0.347170 −0.173585 0.984819i \(-0.555535\pi\)
−0.173585 + 0.984819i \(0.555535\pi\)
\(102\) 0 0
\(103\) 3.33894i 0.328996i 0.986377 + 0.164498i \(0.0526004\pi\)
−0.986377 + 0.164498i \(0.947400\pi\)
\(104\) 0 0
\(105\) 2.35008 + 12.9312i 0.229344 + 1.26195i
\(106\) 0 0
\(107\) −3.10776 1.79427i −0.300439 0.173458i 0.342201 0.939627i \(-0.388828\pi\)
−0.642640 + 0.766168i \(0.722161\pi\)
\(108\) 0 0
\(109\) 6.89673 + 11.9455i 0.660587 + 1.14417i 0.980462 + 0.196710i \(0.0630258\pi\)
−0.319875 + 0.947460i \(0.603641\pi\)
\(110\) 0 0
\(111\) −5.29166 + 2.63434i −0.502262 + 0.250040i
\(112\) 0 0
\(113\) −5.28607 + 3.05191i −0.497271 + 0.287100i −0.727586 0.686016i \(-0.759358\pi\)
0.230315 + 0.973116i \(0.426024\pi\)
\(114\) 0 0
\(115\) 8.57963i 0.800054i
\(116\) 0 0
\(117\) 8.81692 + 6.66074i 0.815125 + 0.615785i
\(118\) 0 0
\(119\) 4.74646 16.3747i 0.435108 1.50107i
\(120\) 0 0
\(121\) 3.64039 0.330945
\(122\) 0 0
\(123\) −0.169687 + 2.74712i −0.0153001 + 0.247700i
\(124\) 0 0
\(125\) −5.08895 −0.455170
\(126\) 0 0
\(127\) 13.3819 1.18745 0.593727 0.804666i \(-0.297656\pi\)
0.593727 + 0.804666i \(0.297656\pi\)
\(128\) 0 0
\(129\) 14.5077 7.22234i 1.27733 0.635891i
\(130\) 0 0
\(131\) 0.777928 0.0679679 0.0339839 0.999422i \(-0.489180\pi\)
0.0339839 + 0.999422i \(0.489180\pi\)
\(132\) 0 0
\(133\) −2.00071 8.12404i −0.173484 0.704444i
\(134\) 0 0
\(135\) −2.74235 + 14.6483i −0.236024 + 1.26072i
\(136\) 0 0
\(137\) 16.5217i 1.41154i −0.708440 0.705771i \(-0.750601\pi\)
0.708440 0.705771i \(-0.249399\pi\)
\(138\) 0 0
\(139\) 9.91826 5.72631i 0.841256 0.485699i −0.0164348 0.999865i \(-0.505232\pi\)
0.857691 + 0.514165i \(0.171898\pi\)
\(140\) 0 0
\(141\) 1.20745 19.5478i 0.101685 1.64622i
\(142\) 0 0
\(143\) 4.99620 + 8.65368i 0.417804 + 0.723657i
\(144\) 0 0
\(145\) −7.12226 4.11204i −0.591472 0.341486i
\(146\) 0 0
\(147\) −7.10333 + 9.82562i −0.585873 + 0.810403i
\(148\) 0 0
\(149\) 4.90494i 0.401829i 0.979609 + 0.200914i \(0.0643913\pi\)
−0.979609 + 0.200914i \(0.935609\pi\)
\(150\) 0 0
\(151\) −9.85629 −0.802093 −0.401047 0.916058i \(-0.631353\pi\)
−0.401047 + 0.916058i \(0.631353\pi\)
\(152\) 0 0
\(153\) 11.6526 15.4248i 0.942059 1.24702i
\(154\) 0 0
\(155\) −23.7112 13.6897i −1.90453 1.09958i
\(156\) 0 0
\(157\) −13.3514 7.70843i −1.06556 0.615200i −0.138593 0.990349i \(-0.544258\pi\)
−0.926964 + 0.375149i \(0.877591\pi\)
\(158\) 0 0
\(159\) −4.32015 0.266851i −0.342610 0.0211626i
\(160\) 0 0
\(161\) −5.70915 + 5.48157i −0.449944 + 0.432008i
\(162\) 0 0
\(163\) 5.72053 9.90825i 0.448066 0.776074i −0.550194 0.835037i \(-0.685446\pi\)
0.998260 + 0.0589632i \(0.0187795\pi\)
\(164\) 0 0
\(165\) −7.44489 + 11.2333i −0.579584 + 0.874508i
\(166\) 0 0
\(167\) −6.49103 11.2428i −0.502291 0.869993i −0.999996 0.00264735i \(-0.999157\pi\)
0.497706 0.867346i \(-0.334176\pi\)
\(168\) 0 0
\(169\) 0.283528 0.491084i 0.0218098 0.0377757i
\(170\) 0 0
\(171\) 1.16755 9.41491i 0.0892848 0.719976i
\(172\) 0 0
\(173\) −9.79984 16.9738i −0.745068 1.29050i −0.950163 0.311754i \(-0.899084\pi\)
0.205095 0.978742i \(-0.434250\pi\)
\(174\) 0 0
\(175\) 5.91066 + 6.15605i 0.446804 + 0.465354i
\(176\) 0 0
\(177\) 13.4488 6.69517i 1.01087 0.503239i
\(178\) 0 0
\(179\) −16.2630 + 9.38942i −1.21555 + 0.701799i −0.963963 0.266036i \(-0.914286\pi\)
−0.251588 + 0.967835i \(0.580953\pi\)
\(180\) 0 0
\(181\) 4.47775i 0.332829i 0.986056 + 0.166414i \(0.0532190\pi\)
−0.986056 + 0.166414i \(0.946781\pi\)
\(182\) 0 0
\(183\) −1.13167 0.0699021i −0.0836556 0.00516731i
\(184\) 0 0
\(185\) −4.89400 + 8.47666i −0.359814 + 0.623217i
\(186\) 0 0
\(187\) 15.1392 8.74061i 1.10709 0.639177i
\(188\) 0 0
\(189\) −11.4995 + 7.53401i −0.836466 + 0.548018i
\(190\) 0 0
\(191\) 5.90050 3.40665i 0.426945 0.246497i −0.271099 0.962551i \(-0.587387\pi\)
0.698044 + 0.716055i \(0.254054\pi\)
\(192\) 0 0
\(193\) 7.97694 13.8165i 0.574193 0.994531i −0.421936 0.906626i \(-0.638649\pi\)
0.996129 0.0879053i \(-0.0280173\pi\)
\(194\) 0 0
\(195\) 18.2625 + 1.12806i 1.30781 + 0.0807817i
\(196\) 0 0
\(197\) 25.9511i 1.84894i 0.381254 + 0.924470i \(0.375492\pi\)
−0.381254 + 0.924470i \(0.624508\pi\)
\(198\) 0 0
\(199\) −2.75706 + 1.59179i −0.195443 + 0.112839i −0.594528 0.804075i \(-0.702661\pi\)
0.399085 + 0.916914i \(0.369328\pi\)
\(200\) 0 0
\(201\) 11.9747 5.96133i 0.844629 0.420480i
\(202\) 0 0
\(203\) −1.81417 7.36658i −0.127330 0.517032i
\(204\) 0 0
\(205\) 2.27876 + 3.94693i 0.159156 + 0.275666i
\(206\) 0 0
\(207\) −8.26520 + 3.49659i −0.574471 + 0.243030i
\(208\) 0 0
\(209\) 4.28950 7.42963i 0.296711 0.513918i
\(210\) 0 0
\(211\) 0.0552411 + 0.0956804i 0.00380295 + 0.00658691i 0.867921 0.496703i \(-0.165456\pi\)
−0.864118 + 0.503290i \(0.832123\pi\)
\(212\) 0 0
\(213\) −7.52645 + 11.3563i −0.515704 + 0.778122i
\(214\) 0 0
\(215\) 13.4175 23.2397i 0.915064 1.58494i
\(216\) 0 0
\(217\) −6.03968 24.5245i −0.410000 1.66483i
\(218\) 0 0
\(219\) 22.1117 + 1.36582i 1.49417 + 0.0922933i
\(220\) 0 0
\(221\) −20.5550 11.8674i −1.38268 0.798290i
\(222\) 0 0
\(223\) 11.3064 + 6.52775i 0.757132 + 0.437130i 0.828265 0.560336i \(-0.189328\pi\)
−0.0711331 + 0.997467i \(0.522661\pi\)
\(224\) 0 0
\(225\) 3.77030 + 8.91219i 0.251353 + 0.594146i
\(226\) 0 0
\(227\) −9.26784 −0.615128 −0.307564 0.951527i \(-0.599514\pi\)
−0.307564 + 0.951527i \(0.599514\pi\)
\(228\) 0 0
\(229\) 13.4180i 0.886689i 0.896351 + 0.443344i \(0.146208\pi\)
−0.896351 + 0.443344i \(0.853792\pi\)
\(230\) 0 0
\(231\) −12.2315 + 2.22293i −0.804776 + 0.146258i
\(232\) 0 0
\(233\) 18.3415 + 10.5895i 1.20159 + 0.693738i 0.960909 0.276866i \(-0.0892958\pi\)
0.240681 + 0.970604i \(0.422629\pi\)
\(234\) 0 0
\(235\) −16.2151 28.0853i −1.05776 1.83209i
\(236\) 0 0
\(237\) −0.554346 + 8.97452i −0.0360086 + 0.582958i
\(238\) 0 0
\(239\) 7.73342 4.46489i 0.500233 0.288810i −0.228577 0.973526i \(-0.573407\pi\)
0.728810 + 0.684716i \(0.240074\pi\)
\(240\) 0 0
\(241\) 18.4094i 1.18585i −0.805257 0.592926i \(-0.797973\pi\)
0.805257 0.592926i \(-0.202027\pi\)
\(242\) 0 0
\(243\) −15.2291 + 3.32799i −0.976945 + 0.213491i
\(244\) 0 0
\(245\) −0.816219 + 20.0597i −0.0521463 + 1.28156i
\(246\) 0 0
\(247\) −11.6480 −0.741145
\(248\) 0 0
\(249\) −24.5899 + 12.2415i −1.55832 + 0.775776i
\(250\) 0 0
\(251\) −6.33194 −0.399669 −0.199834 0.979830i \(-0.564040\pi\)
−0.199834 + 0.979830i \(0.564040\pi\)
\(252\) 0 0
\(253\) −8.11542 −0.510212
\(254\) 0 0
\(255\) 1.97348 31.9494i 0.123584 2.00075i
\(256\) 0 0
\(257\) 16.3857 1.02211 0.511054 0.859548i \(-0.329255\pi\)
0.511054 + 0.859548i \(0.329255\pi\)
\(258\) 0 0
\(259\) −8.76744 + 2.15916i −0.544782 + 0.134164i
\(260\) 0 0
\(261\) 1.05869 8.53709i 0.0655313 0.528433i
\(262\) 0 0
\(263\) 12.0854i 0.745217i 0.927989 + 0.372609i \(0.121537\pi\)
−0.927989 + 0.372609i \(0.878463\pi\)
\(264\) 0 0
\(265\) −6.20698 + 3.58360i −0.381292 + 0.220139i
\(266\) 0 0
\(267\) −9.76300 + 4.86029i −0.597486 + 0.297445i
\(268\) 0 0
\(269\) −12.6652 21.9368i −0.772212 1.33751i −0.936348 0.351072i \(-0.885817\pi\)
0.164136 0.986438i \(-0.447516\pi\)
\(270\) 0 0
\(271\) 0.195591 + 0.112924i 0.0118813 + 0.00685967i 0.505929 0.862575i \(-0.331150\pi\)
−0.494048 + 0.869435i \(0.664483\pi\)
\(272\) 0 0
\(273\) 10.9174 + 12.8732i 0.660751 + 0.779120i
\(274\) 0 0
\(275\) 8.75069i 0.527686i
\(276\) 0 0
\(277\) −20.4339 −1.22776 −0.613878 0.789401i \(-0.710391\pi\)
−0.613878 + 0.789401i \(0.710391\pi\)
\(278\) 0 0
\(279\) 3.52456 28.4214i 0.211010 1.70154i
\(280\) 0 0
\(281\) 8.96635 + 5.17672i 0.534887 + 0.308817i 0.743004 0.669287i \(-0.233400\pi\)
−0.208117 + 0.978104i \(0.566733\pi\)
\(282\) 0 0
\(283\) −11.8781 6.85783i −0.706080 0.407656i 0.103528 0.994627i \(-0.466987\pi\)
−0.809608 + 0.586971i \(0.800320\pi\)
\(284\) 0 0
\(285\) −7.00092 14.0629i −0.414699 0.833017i
\(286\) 0 0
\(287\) −1.17050 + 4.03808i −0.0690923 + 0.238360i
\(288\) 0 0
\(289\) −12.2615 + 21.2375i −0.721264 + 1.24927i
\(290\) 0 0
\(291\) 11.7711 + 23.6450i 0.690036 + 1.38609i
\(292\) 0 0
\(293\) −4.21527 7.30105i −0.246258 0.426532i 0.716226 0.697868i \(-0.245868\pi\)
−0.962485 + 0.271336i \(0.912535\pi\)
\(294\) 0 0
\(295\) 12.4381 21.5434i 0.724175 1.25431i
\(296\) 0 0
\(297\) −13.8557 2.59398i −0.803990 0.150518i
\(298\) 0 0
\(299\) 5.50930 + 9.54239i 0.318611 + 0.551851i
\(300\) 0 0
\(301\) 24.0369 5.91960i 1.38547 0.341200i
\(302\) 0 0
\(303\) −5.03729 3.33849i −0.289385 0.191791i
\(304\) 0 0
\(305\) −1.62593 + 0.938732i −0.0931006 + 0.0537516i
\(306\) 0 0
\(307\) 5.34345i 0.304967i 0.988306 + 0.152484i \(0.0487271\pi\)
−0.988306 + 0.152484i \(0.951273\pi\)
\(308\) 0 0
\(309\) −3.19488 + 4.82061i −0.181751 + 0.274235i
\(310\) 0 0
\(311\) 4.70867 8.15565i 0.267004 0.462465i −0.701083 0.713080i \(-0.747300\pi\)
0.968087 + 0.250615i \(0.0806329\pi\)
\(312\) 0 0
\(313\) 14.3347 8.27614i 0.810245 0.467795i −0.0367961 0.999323i \(-0.511715\pi\)
0.847041 + 0.531528i \(0.178382\pi\)
\(314\) 0 0
\(315\) −8.98032 + 20.9181i −0.505984 + 1.17860i
\(316\) 0 0
\(317\) −22.9725 + 13.2632i −1.29026 + 0.744934i −0.978701 0.205291i \(-0.934186\pi\)
−0.311563 + 0.950225i \(0.600853\pi\)
\(318\) 0 0
\(319\) 3.88956 6.73691i 0.217773 0.377194i
\(320\) 0 0
\(321\) −2.76999 5.56416i −0.154606 0.310561i
\(322\) 0 0
\(323\) 20.3776i 1.13384i
\(324\) 0 0
\(325\) 10.2894 5.94056i 0.570751 0.329523i
\(326\) 0 0
\(327\) −1.47291 + 23.8455i −0.0814521 + 1.31866i
\(328\) 0 0
\(329\) 8.32895 28.7339i 0.459190 1.58415i
\(330\) 0 0
\(331\) −8.82000 15.2767i −0.484791 0.839682i 0.515056 0.857156i \(-0.327771\pi\)
−0.999847 + 0.0174739i \(0.994438\pi\)
\(332\) 0 0
\(333\) −10.1605 1.26002i −0.556794 0.0690485i
\(334\) 0 0
\(335\) 11.0748 19.1821i 0.605081 1.04803i
\(336\) 0 0
\(337\) 7.31169 + 12.6642i 0.398293 + 0.689864i 0.993515 0.113697i \(-0.0362694\pi\)
−0.595222 + 0.803561i \(0.702936\pi\)
\(338\) 0 0
\(339\) −10.5520 0.651786i −0.573107 0.0354002i
\(340\) 0 0
\(341\) 12.9490 22.4283i 0.701226 1.21456i
\(342\) 0 0
\(343\) −13.8698 + 12.2731i −0.748899 + 0.662684i
\(344\) 0 0
\(345\) −8.20946 + 12.3869i −0.441982 + 0.666887i
\(346\) 0 0
\(347\) −1.05563 0.609467i −0.0566691 0.0327179i 0.471398 0.881921i \(-0.343750\pi\)
−0.528067 + 0.849203i \(0.677083\pi\)
\(348\) 0 0
\(349\) 10.6857 + 6.16942i 0.571995 + 0.330241i 0.757946 0.652318i \(-0.226203\pi\)
−0.185951 + 0.982559i \(0.559537\pi\)
\(350\) 0 0
\(351\) 6.35611 + 18.0530i 0.339264 + 0.963597i
\(352\) 0 0
\(353\) −22.2969 −1.18674 −0.593372 0.804928i \(-0.702204\pi\)
−0.593372 + 0.804928i \(0.702204\pi\)
\(354\) 0 0
\(355\) 22.5595i 1.19733i
\(356\) 0 0
\(357\) 22.5210 19.0994i 1.19194 1.01085i
\(358\) 0 0
\(359\) 10.4819 + 6.05173i 0.553214 + 0.319398i 0.750417 0.660965i \(-0.229853\pi\)
−0.197204 + 0.980363i \(0.563186\pi\)
\(360\) 0 0
\(361\) −4.49979 7.79387i −0.236831 0.410204i
\(362\) 0 0
\(363\) 5.25583 + 3.48333i 0.275860 + 0.182827i
\(364\) 0 0
\(365\) 31.7691 18.3419i 1.66287 0.960058i
\(366\) 0 0
\(367\) 14.7275i 0.768769i 0.923173 + 0.384385i \(0.125586\pi\)
−0.923173 + 0.384385i \(0.874414\pi\)
\(368\) 0 0
\(369\) −2.87358 + 3.80381i −0.149593 + 0.198018i
\(370\) 0 0
\(371\) −6.35032 1.84073i −0.329692 0.0955662i
\(372\) 0 0
\(373\) −9.08558 −0.470433 −0.235217 0.971943i \(-0.575580\pi\)
−0.235217 + 0.971943i \(0.575580\pi\)
\(374\) 0 0
\(375\) −7.34720 4.86939i −0.379408 0.251454i
\(376\) 0 0
\(377\) −10.5620 −0.543970
\(378\) 0 0
\(379\) −21.2298 −1.09050 −0.545250 0.838273i \(-0.683565\pi\)
−0.545250 + 0.838273i \(0.683565\pi\)
\(380\) 0 0
\(381\) 19.3202 + 12.8046i 0.989806 + 0.655998i
\(382\) 0 0
\(383\) −6.70454 −0.342586 −0.171293 0.985220i \(-0.554794\pi\)
−0.171293 + 0.985220i \(0.554794\pi\)
\(384\) 0 0
\(385\) −14.8491 + 14.2572i −0.756779 + 0.726613i
\(386\) 0 0
\(387\) 27.8563 + 3.45448i 1.41602 + 0.175601i
\(388\) 0 0
\(389\) 7.69794i 0.390301i −0.980773 0.195151i \(-0.937480\pi\)
0.980773 0.195151i \(-0.0625195\pi\)
\(390\) 0 0
\(391\) 16.6939 9.63825i 0.844249 0.487427i
\(392\) 0 0
\(393\) 1.12314 + 0.744364i 0.0566548 + 0.0375482i
\(394\) 0 0
\(395\) 7.44444 + 12.8942i 0.374571 + 0.648775i
\(396\) 0 0
\(397\) −0.0428112 0.0247170i −0.00214863 0.00124051i 0.498925 0.866645i \(-0.333728\pi\)
−0.501074 + 0.865404i \(0.667062\pi\)
\(398\) 0 0
\(399\) 4.88499 13.6435i 0.244555 0.683030i
\(400\) 0 0
\(401\) 20.3272i 1.01509i −0.861625 0.507546i \(-0.830553\pi\)
0.861625 0.507546i \(-0.169447\pi\)
\(402\) 0 0
\(403\) −35.1626 −1.75157
\(404\) 0 0
\(405\) −17.9755 + 18.5245i −0.893212 + 0.920488i
\(406\) 0 0
\(407\) −8.01803 4.62921i −0.397439 0.229461i
\(408\) 0 0
\(409\) 12.1144 + 6.99428i 0.599021 + 0.345845i 0.768656 0.639662i \(-0.220926\pi\)
−0.169636 + 0.985507i \(0.554259\pi\)
\(410\) 0 0
\(411\) 15.8088 23.8532i 0.779792 1.17659i
\(412\) 0 0
\(413\) 22.2824 5.48752i 1.09645 0.270023i
\(414\) 0 0
\(415\) −22.7420 + 39.3903i −1.11636 + 1.93360i
\(416\) 0 0
\(417\) 19.7988 + 1.22295i 0.969551 + 0.0598880i
\(418\) 0 0
\(419\) 10.6718 + 18.4842i 0.521353 + 0.903010i 0.999692 + 0.0248344i \(0.00790585\pi\)
−0.478339 + 0.878176i \(0.658761\pi\)
\(420\) 0 0
\(421\) 3.97287 6.88121i 0.193626 0.335370i −0.752823 0.658223i \(-0.771309\pi\)
0.946449 + 0.322853i \(0.104642\pi\)
\(422\) 0 0
\(423\) 20.4477 27.0669i 0.994200 1.31604i
\(424\) 0 0
\(425\) −10.3927 18.0007i −0.504121 0.873163i
\(426\) 0 0
\(427\) −1.66348 0.482184i −0.0805013 0.0233345i
\(428\) 0 0
\(429\) −1.06702 + 17.2744i −0.0515163 + 0.834018i
\(430\) 0 0
\(431\) −27.6515 + 15.9646i −1.33193 + 0.768989i −0.985595 0.169123i \(-0.945907\pi\)
−0.346333 + 0.938112i \(0.612573\pi\)
\(432\) 0 0
\(433\) 18.5300i 0.890493i 0.895408 + 0.445247i \(0.146884\pi\)
−0.895408 + 0.445247i \(0.853116\pi\)
\(434\) 0 0
\(435\) −6.34817 12.7517i −0.304372 0.611400i
\(436\) 0 0
\(437\) 4.73002 8.19263i 0.226267 0.391907i
\(438\) 0 0
\(439\) −1.80316 + 1.04106i −0.0860603 + 0.0496869i −0.542413 0.840112i \(-0.682489\pi\)
0.456352 + 0.889799i \(0.349156\pi\)
\(440\) 0 0
\(441\) −19.6572 + 7.38893i −0.936055 + 0.351854i
\(442\) 0 0
\(443\) −2.13895 + 1.23493i −0.101625 + 0.0586731i −0.549951 0.835197i \(-0.685354\pi\)
0.448326 + 0.893870i \(0.352020\pi\)
\(444\) 0 0
\(445\) −9.02933 + 15.6393i −0.428031 + 0.741372i
\(446\) 0 0
\(447\) −4.69332 + 7.08154i −0.221986 + 0.334945i
\(448\) 0 0
\(449\) 37.5094i 1.77018i 0.465424 + 0.885088i \(0.345902\pi\)
−0.465424 + 0.885088i \(0.654098\pi\)
\(450\) 0 0
\(451\) −3.73338 + 2.15547i −0.175798 + 0.101497i
\(452\) 0 0
\(453\) −14.2301 9.43104i −0.668587 0.443109i
\(454\) 0 0
\(455\) 26.8446 + 7.78132i 1.25850 + 0.364794i
\(456\) 0 0
\(457\) −2.92345 5.06356i −0.136753 0.236864i 0.789513 0.613734i \(-0.210333\pi\)
−0.926266 + 0.376871i \(0.877000\pi\)
\(458\) 0 0
\(459\) 31.5828 11.1197i 1.47416 0.519023i
\(460\) 0 0
\(461\) −3.82830 + 6.63081i −0.178302 + 0.308827i −0.941299 0.337574i \(-0.890394\pi\)
0.762997 + 0.646402i \(0.223727\pi\)
\(462\) 0 0
\(463\) −4.89449 8.47751i −0.227466 0.393983i 0.729590 0.683885i \(-0.239711\pi\)
−0.957057 + 0.289901i \(0.906378\pi\)
\(464\) 0 0
\(465\) −21.1341 42.4527i −0.980071 1.96870i
\(466\) 0 0
\(467\) 14.0806 24.3883i 0.651572 1.12856i −0.331169 0.943571i \(-0.607443\pi\)
0.982741 0.184985i \(-0.0592235\pi\)
\(468\) 0 0
\(469\) 19.8401 4.88605i 0.916132 0.225617i
\(470\) 0 0
\(471\) −11.9003 23.9044i −0.548337 1.10146i
\(472\) 0 0
\(473\) 21.9824 + 12.6915i 1.01075 + 0.583557i
\(474\) 0 0
\(475\) −8.83394 5.10028i −0.405329 0.234017i
\(476\) 0 0
\(477\) −5.98190 4.51903i −0.273893 0.206912i
\(478\) 0 0
\(479\) 29.6105 1.35294 0.676470 0.736470i \(-0.263509\pi\)
0.676470 + 0.736470i \(0.263509\pi\)
\(480\) 0 0
\(481\) 12.5705i 0.573165i
\(482\) 0 0
\(483\) −13.4877 + 2.45122i −0.613711 + 0.111534i
\(484\) 0 0
\(485\) 37.8767 + 21.8681i 1.71989 + 0.992980i
\(486\) 0 0
\(487\) 14.6701 + 25.4094i 0.664767 + 1.15141i 0.979348 + 0.202180i \(0.0648025\pi\)
−0.314582 + 0.949230i \(0.601864\pi\)
\(488\) 0 0
\(489\) 17.7398 8.83136i 0.802221 0.399368i
\(490\) 0 0
\(491\) 8.63745 4.98683i 0.389803 0.225053i −0.292272 0.956335i \(-0.594411\pi\)
0.682075 + 0.731283i \(0.261078\pi\)
\(492\) 0 0
\(493\) 18.4777i 0.832192i
\(494\) 0 0
\(495\) −21.4972 + 9.09439i −0.966227 + 0.408762i
\(496\) 0 0
\(497\) −15.0118 + 14.4134i −0.673369 + 0.646527i
\(498\) 0 0
\(499\) 19.5957 0.877223 0.438611 0.898677i \(-0.355470\pi\)
0.438611 + 0.898677i \(0.355470\pi\)
\(500\) 0 0
\(501\) 1.38627 22.4428i 0.0619338 1.00267i
\(502\) 0 0
\(503\) 21.2907 0.949304 0.474652 0.880174i \(-0.342574\pi\)
0.474652 + 0.880174i \(0.342574\pi\)
\(504\) 0 0
\(505\) −10.0066 −0.445289
\(506\) 0 0
\(507\) 0.879241 0.437711i 0.0390485 0.0194394i
\(508\) 0 0
\(509\) 43.6614 1.93526 0.967630 0.252375i \(-0.0812115\pi\)
0.967630 + 0.252375i \(0.0812115\pi\)
\(510\) 0 0
\(511\) 32.5027 + 9.42139i 1.43783 + 0.416778i
\(512\) 0 0
\(513\) 10.6944 12.4756i 0.472168 0.550813i
\(514\) 0 0
\(515\) 9.57621i 0.421978i
\(516\) 0 0
\(517\) 26.5658 15.3378i 1.16836 0.674554i
\(518\) 0 0
\(519\) 2.09292 33.8831i 0.0918689 1.48730i
\(520\) 0 0
\(521\) −2.60043 4.50408i −0.113927 0.197327i 0.803423 0.595408i \(-0.203010\pi\)
−0.917350 + 0.398081i \(0.869676\pi\)
\(522\) 0 0
\(523\) 34.7043 + 20.0365i 1.51751 + 0.876137i 0.999788 + 0.0205902i \(0.00655454\pi\)
0.517726 + 0.855547i \(0.326779\pi\)
\(524\) 0 0
\(525\) 2.64309 + 14.5435i 0.115354 + 0.634729i
\(526\) 0 0
\(527\) 61.5152i 2.67964i
\(528\) 0 0
\(529\) 14.0511 0.610919
\(530\) 0 0
\(531\) 25.8230 + 3.20233i 1.12062 + 0.138969i
\(532\) 0 0
\(533\) 5.06895 + 2.92656i 0.219561 + 0.126763i
\(534\) 0 0
\(535\) −8.91317 5.14602i −0.385350 0.222482i
\(536\) 0 0
\(537\) −32.4640 2.00527i −1.40093 0.0865336i
\(538\) 0 0
\(539\) −18.9743 0.772057i −0.817282 0.0332549i
\(540\) 0 0
\(541\) −4.12096 + 7.13771i −0.177174 + 0.306874i −0.940911 0.338653i \(-0.890029\pi\)
0.763738 + 0.645527i \(0.223362\pi\)
\(542\) 0 0
\(543\) −4.28456 + 6.46478i −0.183868 + 0.277430i
\(544\) 0 0
\(545\) 19.7801 + 34.2601i 0.847285 + 1.46754i
\(546\) 0 0
\(547\) 2.53756 4.39518i 0.108498 0.187925i −0.806664 0.591011i \(-0.798729\pi\)
0.915162 + 0.403086i \(0.132062\pi\)
\(548\) 0 0
\(549\) −1.56697 1.18377i −0.0668767 0.0505220i
\(550\) 0 0
\(551\) 4.53400 + 7.85312i 0.193155 + 0.334554i
\(552\) 0 0
\(553\) −3.82387 + 13.1919i −0.162608 + 0.560977i
\(554\) 0 0
\(555\) −15.1767 + 7.55537i −0.644214 + 0.320708i
\(556\) 0 0
\(557\) −37.6102 + 21.7142i −1.59359 + 0.920062i −0.600910 + 0.799316i \(0.705195\pi\)
−0.992684 + 0.120745i \(0.961472\pi\)
\(558\) 0 0
\(559\) 34.4635i 1.45765i
\(560\) 0 0
\(561\) 30.2208 + 1.86670i 1.27592 + 0.0788122i
\(562\) 0 0
\(563\) 4.99118 8.64498i 0.210353 0.364343i −0.741472 0.670984i \(-0.765872\pi\)
0.951825 + 0.306641i \(0.0992052\pi\)
\(564\) 0 0
\(565\) −15.1606 + 8.75300i −0.637813 + 0.368241i
\(566\) 0 0
\(567\) −23.8114 0.126106i −0.999986 0.00529593i
\(568\) 0 0
\(569\) −14.0597 + 8.11739i −0.589415 + 0.340299i −0.764866 0.644189i \(-0.777195\pi\)
0.175451 + 0.984488i \(0.443862\pi\)
\(570\) 0 0
\(571\) −6.31028 + 10.9297i −0.264077 + 0.457395i −0.967321 0.253553i \(-0.918401\pi\)
0.703244 + 0.710948i \(0.251734\pi\)
\(572\) 0 0
\(573\) 11.7785 + 0.727547i 0.492056 + 0.0303937i
\(574\) 0 0
\(575\) 9.64936i 0.402406i
\(576\) 0 0
\(577\) −4.18012 + 2.41339i −0.174020 + 0.100471i −0.584480 0.811408i \(-0.698702\pi\)
0.410460 + 0.911879i \(0.365368\pi\)
\(578\) 0 0
\(579\) 24.7371 12.3148i 1.02804 0.511786i
\(580\) 0 0
\(581\) −40.7416 + 10.0335i −1.69024 + 0.416258i
\(582\) 0 0
\(583\) −3.38971 5.87115i −0.140387 0.243158i
\(584\) 0 0
\(585\) 25.2872 + 19.1032i 1.04550 + 0.789822i
\(586\) 0 0
\(587\) 5.26032 9.11114i 0.217117 0.376057i −0.736809 0.676101i \(-0.763668\pi\)
0.953925 + 0.300044i \(0.0970015\pi\)
\(588\) 0 0
\(589\) 15.0944 + 26.1443i 0.621955 + 1.07726i
\(590\) 0 0
\(591\) −24.8315 + 37.4671i −1.02143 + 1.54119i
\(592\) 0 0
\(593\) −14.7342 + 25.5205i −0.605063 + 1.04800i 0.386979 + 0.922089i \(0.373519\pi\)
−0.992042 + 0.125911i \(0.959815\pi\)
\(594\) 0 0
\(595\) 13.6130 46.9633i 0.558080 1.92531i
\(596\) 0 0
\(597\) −5.50362 0.339952i −0.225248 0.0139133i
\(598\) 0 0
\(599\) 7.11658 + 4.10876i 0.290776 + 0.167879i 0.638292 0.769795i \(-0.279641\pi\)
−0.347516 + 0.937674i \(0.612975\pi\)
\(600\) 0 0
\(601\) −32.7131 18.8869i −1.33439 0.770413i −0.348425 0.937337i \(-0.613283\pi\)
−0.985970 + 0.166924i \(0.946617\pi\)
\(602\) 0 0
\(603\) 22.9926 + 2.85133i 0.936333 + 0.116115i
\(604\) 0 0
\(605\) 10.4408 0.424478
\(606\) 0 0
\(607\) 35.6221i 1.44586i 0.690923 + 0.722929i \(0.257204\pi\)
−0.690923 + 0.722929i \(0.742796\pi\)
\(608\) 0 0
\(609\) 4.42952 12.3714i 0.179493 0.501316i
\(610\) 0 0
\(611\) −36.0693 20.8246i −1.45921 0.842474i
\(612\) 0 0
\(613\) 11.9660 + 20.7256i 0.483301 + 0.837101i 0.999816 0.0191767i \(-0.00610451\pi\)
−0.516516 + 0.856278i \(0.672771\pi\)
\(614\) 0 0
\(615\) −0.486667 + 7.87885i −0.0196243 + 0.317706i
\(616\) 0 0
\(617\) −1.98622 + 1.14675i −0.0799623 + 0.0461663i −0.539448 0.842019i \(-0.681367\pi\)
0.459486 + 0.888185i \(0.348034\pi\)
\(618\) 0 0
\(619\) 10.5171i 0.422717i −0.977409 0.211359i \(-0.932211\pi\)
0.977409 0.211359i \(-0.0677888\pi\)
\(620\) 0 0
\(621\) −15.2787 2.86037i −0.613112 0.114783i
\(622\) 0 0
\(623\) −16.1757 + 3.98361i −0.648067 + 0.159600i
\(624\) 0 0
\(625\) −30.7235 −1.22894
\(626\) 0 0
\(627\) 13.3021 6.62214i 0.531233 0.264463i
\(628\) 0 0
\(629\) 21.9914 0.876856
\(630\) 0 0
\(631\) 2.02836 0.0807477 0.0403739 0.999185i \(-0.487145\pi\)
0.0403739 + 0.999185i \(0.487145\pi\)
\(632\) 0 0
\(633\) −0.0117976 + 0.190997i −0.000468914 + 0.00759144i
\(634\) 0 0
\(635\) 38.3799 1.52306
\(636\) 0 0
\(637\) 11.9732 + 22.8348i 0.474397 + 0.904747i
\(638\) 0 0
\(639\) −21.7327 + 9.19402i −0.859732 + 0.363710i
\(640\) 0 0
\(641\) 12.4451i 0.491553i 0.969326 + 0.245777i \(0.0790430\pi\)
−0.969326 + 0.245777i \(0.920957\pi\)
\(642\) 0 0
\(643\) −12.3358 + 7.12209i −0.486477 + 0.280868i −0.723112 0.690731i \(-0.757289\pi\)
0.236635 + 0.971599i \(0.423956\pi\)
\(644\) 0 0
\(645\) 41.6086 20.7139i 1.63834 0.815610i
\(646\) 0 0
\(647\) −10.1910 17.6513i −0.400649 0.693945i 0.593155 0.805088i \(-0.297882\pi\)
−0.993804 + 0.111143i \(0.964549\pi\)
\(648\) 0 0
\(649\) 20.3778 + 11.7651i 0.799899 + 0.461822i
\(650\) 0 0
\(651\) 14.7466 41.1865i 0.577965 1.61423i
\(652\) 0 0
\(653\) 8.72186i 0.341313i −0.985331 0.170656i \(-0.945411\pi\)
0.985331 0.170656i \(-0.0545888\pi\)
\(654\) 0 0
\(655\) 2.23113 0.0871773
\(656\) 0 0
\(657\) 30.6170 + 23.1296i 1.19448 + 0.902373i
\(658\) 0 0
\(659\) 16.7524 + 9.67200i 0.652581 + 0.376768i 0.789444 0.613822i \(-0.210369\pi\)
−0.136864 + 0.990590i \(0.543702\pi\)
\(660\) 0 0
\(661\) −31.8948 18.4145i −1.24056 0.716240i −0.271355 0.962479i \(-0.587472\pi\)
−0.969209 + 0.246239i \(0.920805\pi\)
\(662\) 0 0
\(663\) −18.3210 36.8018i −0.711528 1.42926i
\(664\) 0 0
\(665\) −5.73812 23.3000i −0.222515 0.903537i
\(666\) 0 0
\(667\) 4.28900 7.42877i 0.166071 0.287643i
\(668\) 0 0
\(669\) 10.0776 + 20.2430i 0.389621 + 0.782641i
\(670\) 0 0
\(671\) −0.887942 1.53796i −0.0342786 0.0593723i
\(672\) 0 0
\(673\) 8.79204 15.2283i 0.338908 0.587006i −0.645319 0.763913i \(-0.723276\pi\)
0.984228 + 0.176907i \(0.0566091\pi\)
\(674\) 0 0
\(675\) −3.08428 + 16.4746i −0.118714 + 0.634110i
\(676\) 0 0
\(677\) 20.4146 + 35.3590i 0.784595 + 1.35896i 0.929241 + 0.369475i \(0.120462\pi\)
−0.144646 + 0.989484i \(0.546204\pi\)
\(678\) 0 0
\(679\) 9.64790 + 39.1760i 0.370253 + 1.50344i
\(680\) 0 0
\(681\) −13.3805 8.86797i −0.512741 0.339822i
\(682\) 0 0
\(683\) −8.56287 + 4.94377i −0.327649 + 0.189168i −0.654797 0.755805i \(-0.727246\pi\)
0.327148 + 0.944973i \(0.393912\pi\)
\(684\) 0 0
\(685\) 47.3847i 1.81048i
\(686\) 0 0
\(687\) −12.8391 + 19.3724i −0.489843 + 0.739102i
\(688\) 0 0
\(689\) −4.60233 + 7.97148i −0.175335 + 0.303689i
\(690\) 0 0
\(691\) −37.9217 + 21.8941i −1.44261 + 0.832891i −0.998023 0.0628444i \(-0.979983\pi\)
−0.444587 + 0.895736i \(0.646649\pi\)
\(692\) 0 0
\(693\) −19.7864 8.49444i −0.751622 0.322677i
\(694\) 0 0
\(695\) 28.4459 16.4233i 1.07902 0.622970i
\(696\) 0 0
\(697\) 5.11987 8.86787i 0.193929 0.335894i
\(698\) 0 0
\(699\) 16.3480 + 32.8387i 0.618339 + 1.24207i
\(700\) 0 0
\(701\) 29.6742i 1.12078i −0.828229 0.560389i \(-0.810651\pi\)
0.828229 0.560389i \(-0.189349\pi\)
\(702\) 0 0
\(703\) 9.34651 5.39621i 0.352510 0.203522i
\(704\) 0 0
\(705\) 3.46300 56.0638i 0.130424 2.11149i
\(706\) 0 0
\(707\) −6.39329 6.65872i −0.240445 0.250427i
\(708\) 0 0
\(709\) −23.5269 40.7498i −0.883572 1.53039i −0.847342 0.531048i \(-0.821799\pi\)
−0.0362296 0.999343i \(-0.511535\pi\)
\(710\) 0 0
\(711\) −9.38766 + 12.4266i −0.352065 + 0.466033i
\(712\) 0 0
\(713\) 14.2788 24.7316i 0.534745 0.926206i
\(714\) 0 0
\(715\) 14.3293 + 24.8191i 0.535885 + 0.928180i
\(716\) 0 0
\(717\) 15.4374 + 0.953551i 0.576521 + 0.0356110i
\(718\) 0 0
\(719\) 0.909148 1.57469i 0.0339055 0.0587261i −0.848575 0.529076i \(-0.822539\pi\)
0.882480 + 0.470349i \(0.155872\pi\)
\(720\) 0 0
\(721\) −6.37230 + 6.11829i −0.237317 + 0.227857i
\(722\) 0 0
\(723\) 17.6151 26.5786i 0.655113 0.988470i
\(724\) 0 0
\(725\) −8.01029 4.62474i −0.297495 0.171759i
\(726\) 0 0
\(727\) 21.7854 + 12.5778i 0.807976 + 0.466485i 0.846252 0.532782i \(-0.178853\pi\)
−0.0382766 + 0.999267i \(0.512187\pi\)
\(728\) 0 0
\(729\) −25.1714 9.76721i −0.932276 0.361748i
\(730\) 0 0
\(731\) −60.2921 −2.22998
\(732\) 0 0
\(733\) 4.44032i 0.164007i −0.996632 0.0820034i \(-0.973868\pi\)
0.996632 0.0820034i \(-0.0261319\pi\)
\(734\) 0 0
\(735\) −20.3726 + 28.1802i −0.751455 + 1.03944i
\(736\) 0 0
\(737\) 18.1443 + 10.4756i 0.668353 + 0.385874i
\(738\) 0 0
\(739\) 8.97608 + 15.5470i 0.330191 + 0.571907i 0.982549 0.186004i \(-0.0595536\pi\)
−0.652358 + 0.757911i \(0.726220\pi\)
\(740\) 0 0
\(741\) −16.8169 11.1455i −0.617783 0.409439i
\(742\) 0 0
\(743\) 31.3712 18.1122i 1.15090 0.664472i 0.201793 0.979428i \(-0.435323\pi\)
0.949106 + 0.314956i \(0.101990\pi\)
\(744\) 0 0
\(745\) 14.0676i 0.515395i
\(746\) 0 0
\(747\) −47.2152 5.85519i −1.72751 0.214230i
\(748\) 0 0
\(749\) −2.27035 9.21892i −0.0829568 0.336852i
\(750\) 0 0
\(751\) −11.9642 −0.436580 −0.218290 0.975884i \(-0.570048\pi\)
−0.218290 + 0.975884i \(0.570048\pi\)
\(752\) 0 0
\(753\) −9.14177 6.05875i −0.333145 0.220793i
\(754\) 0 0
\(755\) −28.2682 −1.02878
\(756\) 0 0
\(757\) −49.4440 −1.79707 −0.898537 0.438898i \(-0.855369\pi\)
−0.898537 + 0.438898i \(0.855369\pi\)
\(758\) 0 0
\(759\) −11.7167 7.76528i −0.425289 0.281862i
\(760\) 0 0
\(761\) 29.2384 1.05989 0.529945 0.848032i \(-0.322212\pi\)
0.529945 + 0.848032i \(0.322212\pi\)
\(762\) 0 0
\(763\) −10.1601 + 35.0512i −0.367821 + 1.26894i
\(764\) 0 0
\(765\) 33.4201 44.2388i 1.20831 1.59946i
\(766\) 0 0
\(767\) 31.9479i 1.15357i
\(768\) 0 0
\(769\) 4.54689 2.62515i 0.163965 0.0946653i −0.415772 0.909469i \(-0.636489\pi\)
0.579737 + 0.814804i \(0.303155\pi\)
\(770\) 0 0
\(771\) 23.6569 + 15.6787i 0.851981 + 0.564654i
\(772\) 0 0
\(773\) 15.6829 + 27.1635i 0.564073 + 0.977003i 0.997135 + 0.0756393i \(0.0240997\pi\)
−0.433062 + 0.901364i \(0.642567\pi\)
\(774\) 0 0
\(775\) −26.6676 15.3965i −0.957927 0.553059i
\(776\) 0 0
\(777\) −14.7240 5.27186i −0.528222 0.189127i
\(778\) 0 0
\(779\) 5.02520i 0.180047i
\(780\) 0 0
\(781\) −21.3389 −0.763565
\(782\) 0 0
\(783\) 9.69725 11.3125i 0.346551 0.404274i
\(784\) 0 0
\(785\) −38.2923 22.1081i −1.36671 0.789071i
\(786\) 0 0
\(787\) 1.59324 + 0.919855i 0.0567927 + 0.0327893i 0.528128 0.849165i \(-0.322894\pi\)
−0.471335 + 0.881954i \(0.656228\pi\)
\(788\) 0 0
\(789\) −11.5640 + 17.4483i −0.411688 + 0.621178i
\(790\) 0 0
\(791\) −15.5107 4.49602i −0.551498 0.159860i
\(792\) 0 0
\(793\) −1.20559 + 2.08814i −0.0428118 + 0.0741522i
\(794\) 0 0
\(795\) −12.3904 0.765337i −0.439440 0.0271437i
\(796\) 0 0
\(797\) 6.39659 + 11.0792i 0.226579 + 0.392446i 0.956792 0.290773i \(-0.0939126\pi\)
−0.730213 + 0.683219i \(0.760579\pi\)
\(798\) 0 0
\(799\) −36.4316 + 63.1015i −1.28886 + 2.23237i
\(800\) 0 0
\(801\) −18.7460 2.32470i −0.662357 0.0821394i
\(802\) 0 0
\(803\) 17.3495 + 30.0502i 0.612250 + 1.06045i
\(804\) 0 0
\(805\) −16.3740 + 15.7213i −0.577109 + 0.554105i
\(806\) 0 0
\(807\) 2.70486 43.7901i 0.0952158 1.54149i
\(808\) 0 0
\(809\) −12.9217 + 7.46032i −0.454301 + 0.262291i −0.709645 0.704559i \(-0.751145\pi\)
0.255344 + 0.966850i \(0.417811\pi\)
\(810\) 0 0
\(811\) 37.5478i 1.31848i −0.751933 0.659240i \(-0.770878\pi\)
0.751933 0.659240i \(-0.229122\pi\)
\(812\) 0 0
\(813\) 0.174333 + 0.350187i 0.00611413 + 0.0122816i
\(814\) 0 0
\(815\) 16.4067 28.4172i 0.574701 0.995411i
\(816\) 0 0
\(817\) −25.6245 + 14.7943i −0.896489 + 0.517588i
\(818\) 0 0
\(819\) 3.44427 + 29.0321i 0.120353 + 1.01446i
\(820\) 0 0
\(821\) −2.88164 + 1.66371i −0.100570 + 0.0580640i −0.549441 0.835532i \(-0.685159\pi\)
0.448872 + 0.893596i \(0.351826\pi\)
\(822\) 0 0
\(823\) 25.4654 44.1073i 0.887667 1.53748i 0.0450407 0.998985i \(-0.485658\pi\)
0.842626 0.538499i \(-0.181008\pi\)
\(824\) 0 0
\(825\) −8.37314 + 12.6338i −0.291515 + 0.439854i
\(826\) 0 0
\(827\) 16.9198i 0.588360i −0.955750 0.294180i \(-0.904954\pi\)
0.955750 0.294180i \(-0.0950465\pi\)
\(828\) 0 0
\(829\) −4.65467 + 2.68737i −0.161663 + 0.0933364i −0.578649 0.815577i \(-0.696420\pi\)
0.416986 + 0.908913i \(0.363087\pi\)
\(830\) 0 0
\(831\) −29.5016 19.5523i −1.02340 0.678262i
\(832\) 0 0
\(833\) 39.9483 20.9466i 1.38413 0.725757i
\(834\) 0 0
\(835\) −18.6165 32.2447i −0.644251 1.11588i
\(836\) 0 0
\(837\) 32.2837 37.6610i 1.11589 1.30176i
\(838\) 0 0
\(839\) −11.8714 + 20.5618i −0.409846 + 0.709874i −0.994872 0.101140i \(-0.967751\pi\)
0.585026 + 0.811014i \(0.301084\pi\)
\(840\) 0 0
\(841\) −10.3887 17.9938i −0.358232 0.620477i
\(842\) 0 0
\(843\) 7.99183 + 16.0534i 0.275253 + 0.552909i
\(844\) 0 0
\(845\) 0.813168 1.40845i 0.0279738 0.0484521i
\(846\) 0 0
\(847\) 6.67066 + 6.94761i 0.229207 + 0.238723i
\(848\) 0 0
\(849\) −10.5871 21.2667i −0.363349 0.729870i
\(850\) 0 0
\(851\) −8.84146 5.10462i −0.303081 0.174984i
\(852\) 0 0
\(853\) 10.3810 + 5.99345i 0.355437 + 0.205212i 0.667077 0.744988i \(-0.267545\pi\)
−0.311640 + 0.950200i \(0.600878\pi\)
\(854\) 0 0
\(855\) 3.34858 27.0023i 0.114519 0.923459i
\(856\) 0 0
\(857\) 55.0635 1.88093 0.940467 0.339885i \(-0.110388\pi\)
0.940467 + 0.339885i \(0.110388\pi\)
\(858\) 0 0
\(859\) 39.1210i 1.33479i −0.744704 0.667395i \(-0.767409\pi\)
0.744704 0.667395i \(-0.232591\pi\)
\(860\) 0 0
\(861\) −5.55376 + 4.71000i −0.189272 + 0.160516i
\(862\) 0 0
\(863\) 39.2319 + 22.6506i 1.33547 + 0.771034i 0.986132 0.165963i \(-0.0530733\pi\)
0.349338 + 0.936997i \(0.386407\pi\)
\(864\) 0 0
\(865\) −28.1063 48.6815i −0.955643 1.65522i
\(866\) 0 0
\(867\) −38.0238 + 18.9293i −1.29136 + 0.642873i
\(868\) 0 0
\(869\) −12.1965 + 7.04166i −0.413738 + 0.238872i
\(870\) 0 0
\(871\) 28.4462i 0.963863i
\(872\) 0 0
\(873\) −5.63020 + 45.4009i −0.190553 + 1.53659i
\(874\) 0 0
\(875\) −9.32502 9.71217i −0.315243 0.328331i
\(876\) 0 0
\(877\) −4.05651 −0.136979 −0.0684893 0.997652i \(-0.521818\pi\)
−0.0684893 + 0.997652i \(0.521818\pi\)
\(878\) 0 0
\(879\) 0.900239 14.5743i 0.0303643 0.491580i
\(880\) 0 0
\(881\) −54.3727 −1.83186 −0.915931 0.401336i \(-0.868546\pi\)
−0.915931 + 0.401336i \(0.868546\pi\)
\(882\) 0 0
\(883\) −23.1175 −0.777965 −0.388982 0.921245i \(-0.627173\pi\)
−0.388982 + 0.921245i \(0.627173\pi\)
\(884\) 0 0
\(885\) 38.5715 19.2020i 1.29657 0.645467i
\(886\) 0 0
\(887\) −25.5636 −0.858342 −0.429171 0.903223i \(-0.641194\pi\)
−0.429171 + 0.903223i \(0.641194\pi\)
\(888\) 0 0
\(889\) 24.5211 + 25.5392i 0.822412 + 0.856556i
\(890\) 0 0
\(891\) −17.5222 17.0030i −0.587016 0.569621i
\(892\) 0 0
\(893\) 35.7580i 1.19660i
\(894\) 0 0
\(895\) −46.6428 + 26.9292i −1.55910 + 0.900144i
\(896\) 0 0
\(897\) −1.17660 + 19.0485i −0.0392856 + 0.636010i
\(898\) 0 0
\(899\) 13.6871 + 23.7067i 0.456489 + 0.790663i
\(900\) 0 0
\(901\) 13.9457 + 8.05155i 0.464598 + 0.268236i
\(902\) 0 0
\(903\) 40.3677 + 14.4534i 1.34335 + 0.480980i
\(904\) 0 0
\(905\) 12.8424i 0.426895i
\(906\) 0 0
\(907\) 37.0130 1.22900 0.614498 0.788918i \(-0.289359\pi\)
0.614498 + 0.788918i \(0.289359\pi\)
\(908\) 0 0
\(909\) −4.07817 9.63991i −0.135264 0.319736i
\(910\) 0 0
\(911\) −3.16266 1.82596i −0.104784 0.0604969i 0.446692 0.894688i \(-0.352602\pi\)
−0.551476 + 0.834191i \(0.685935\pi\)
\(912\) 0 0
\(913\) −37.2591 21.5116i −1.23310 0.711929i
\(914\) 0 0
\(915\) −3.24568 0.200482i −0.107299 0.00662772i
\(916\) 0 0
\(917\) 1.42548 + 1.48466i 0.0470734 + 0.0490278i
\(918\) 0 0
\(919\) −17.3994 + 30.1367i −0.573954 + 0.994117i 0.422201 + 0.906502i \(0.361258\pi\)
−0.996154 + 0.0876145i \(0.972076\pi\)
\(920\) 0 0
\(921\) −5.11291 + 7.71464i −0.168476 + 0.254206i
\(922\) 0 0
\(923\) 14.4863 + 25.0910i 0.476822 + 0.825879i
\(924\) 0 0
\(925\) −5.50420 + 9.53356i −0.180977 + 0.313461i
\(926\) 0 0
\(927\) −9.22526 + 3.90275i −0.302997 + 0.128183i
\(928\) 0 0
\(929\) −25.1736 43.6019i −0.825917 1.43053i −0.901216 0.433370i \(-0.857324\pi\)
0.0752987 0.997161i \(-0.476009\pi\)
\(930\) 0 0
\(931\) 11.8385 18.7048i 0.387990 0.613027i
\(932\) 0 0
\(933\) 14.6019 7.26925i 0.478046 0.237985i
\(934\) 0 0
\(935\) 43.4197 25.0684i 1.41998 0.819824i
\(936\) 0 0
\(937\) 6.48087i 0.211721i 0.994381 + 0.105860i \(0.0337596\pi\)
−0.994381 + 0.105860i \(0.966240\pi\)
\(938\) 0 0
\(939\) 28.6148 + 1.76751i 0.933810 + 0.0576804i
\(940\) 0 0
\(941\) 0.334024 0.578547i 0.0108889 0.0188601i −0.860530 0.509400i \(-0.829867\pi\)
0.871418 + 0.490540i \(0.163201\pi\)
\(942\) 0 0
\(943\) −4.11679 + 2.37683i −0.134061 + 0.0774003i
\(944\) 0 0
\(945\) −32.9810 + 21.6078i −1.07287 + 0.702902i
\(946\) 0 0
\(947\) 50.7461 29.2983i 1.64903 0.952067i 0.671569 0.740942i \(-0.265621\pi\)
0.977459 0.211125i \(-0.0677127\pi\)
\(948\) 0 0
\(949\) 23.5560 40.8002i 0.764661 1.32443i
\(950\) 0 0
\(951\) −45.8576 2.83257i −1.48703 0.0918524i
\(952\) 0 0
\(953\) 48.3707i 1.56688i −0.621467 0.783441i \(-0.713463\pi\)
0.621467 0.783441i \(-0.286537\pi\)
\(954\) 0 0
\(955\) 16.9228 9.77041i 0.547610 0.316163i
\(956\) 0 0
\(957\) 12.0618 6.00470i 0.389903 0.194105i
\(958\) 0 0
\(959\) 31.5313 30.2744i 1.01820 0.977610i
\(960\) 0 0
\(961\) 30.0665 + 52.0767i 0.969887 + 1.67989i
\(962\) 0 0
\(963\) 1.32490 10.6838i 0.0426944 0.344279i
\(964\) 0 0
\(965\) 22.8781 39.6261i 0.736474 1.27561i
\(966\) 0 0
\(967\) −8.51390 14.7465i −0.273788 0.474216i 0.696040 0.718003i \(-0.254943\pi\)
−0.969829 + 0.243787i \(0.921610\pi\)
\(968\) 0 0
\(969\) −19.4984 + 29.4203i −0.626379 + 0.945115i
\(970\) 0 0
\(971\) 13.5651 23.4955i 0.435325 0.754006i −0.561997 0.827139i \(-0.689967\pi\)
0.997322 + 0.0731339i \(0.0233000\pi\)
\(972\) 0 0
\(973\) 29.1028 + 8.43589i 0.932994 + 0.270442i
\(974\) 0 0
\(975\) 20.5396 + 1.26870i 0.657792 + 0.0406311i
\(976\) 0 0
\(977\) 5.49838 + 3.17449i 0.175909 + 0.101561i 0.585369 0.810767i \(-0.300950\pi\)
−0.409460 + 0.912328i \(0.634283\pi\)
\(978\) 0 0
\(979\) −14.7931 8.54080i −0.472789 0.272965i
\(980\) 0 0
\(981\) −24.9432 + 33.0177i −0.796376 + 1.05418i
\(982\) 0 0
\(983\) −19.9660 −0.636817 −0.318408 0.947954i \(-0.603148\pi\)
−0.318408 + 0.947954i \(0.603148\pi\)
\(984\) 0 0
\(985\) 74.4288i 2.37150i
\(986\) 0 0
\(987\) 39.5191 33.5151i 1.25791 1.06680i
\(988\) 0 0
\(989\) 24.2399 + 13.9949i 0.770784 + 0.445012i
\(990\) 0 0
\(991\) −6.38803 11.0644i −0.202922 0.351472i 0.746546 0.665333i \(-0.231711\pi\)
−0.949469 + 0.313861i \(0.898377\pi\)
\(992\) 0 0
\(993\) 1.88366 30.4952i 0.0597760 0.967737i
\(994\) 0 0
\(995\) −7.90734 + 4.56530i −0.250679 + 0.144730i
\(996\) 0 0
\(997\) 20.7669i 0.657694i 0.944383 + 0.328847i \(0.106660\pi\)
−0.944383 + 0.328847i \(0.893340\pi\)
\(998\) 0 0
\(999\) −13.4637 11.5413i −0.425972 0.365151i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.d.929.7 16
3.2 odd 2 3024.2.df.d.1601.1 16
4.3 odd 2 252.2.bm.a.173.2 yes 16
7.3 odd 6 1008.2.ca.d.353.4 16
9.4 even 3 3024.2.ca.d.2609.1 16
9.5 odd 6 1008.2.ca.d.257.4 16
12.11 even 2 756.2.bm.a.89.1 16
21.17 even 6 3024.2.ca.d.2033.1 16
28.3 even 6 252.2.w.a.101.5 yes 16
28.11 odd 6 1764.2.w.b.1109.4 16
28.19 even 6 1764.2.x.a.1469.1 16
28.23 odd 6 1764.2.x.b.1469.8 16
28.27 even 2 1764.2.bm.a.1685.7 16
36.7 odd 6 2268.2.t.a.2105.1 16
36.11 even 6 2268.2.t.b.2105.8 16
36.23 even 6 252.2.w.a.5.5 16
36.31 odd 6 756.2.w.a.341.1 16
63.31 odd 6 3024.2.df.d.17.1 16
63.59 even 6 inner 1008.2.df.d.689.7 16
84.11 even 6 5292.2.w.b.521.8 16
84.23 even 6 5292.2.x.b.4409.8 16
84.47 odd 6 5292.2.x.a.4409.1 16
84.59 odd 6 756.2.w.a.521.1 16
84.83 odd 2 5292.2.bm.a.4625.8 16
252.23 even 6 1764.2.x.a.293.1 16
252.31 even 6 756.2.bm.a.17.1 16
252.59 odd 6 252.2.bm.a.185.2 yes 16
252.67 odd 6 5292.2.bm.a.2285.8 16
252.95 even 6 1764.2.bm.a.1697.7 16
252.103 even 6 5292.2.x.b.881.8 16
252.115 even 6 2268.2.t.b.1781.8 16
252.131 odd 6 1764.2.x.b.293.8 16
252.139 even 6 5292.2.w.b.1097.8 16
252.167 odd 6 1764.2.w.b.509.4 16
252.227 odd 6 2268.2.t.a.1781.1 16
252.247 odd 6 5292.2.x.a.881.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.5 16 36.23 even 6
252.2.w.a.101.5 yes 16 28.3 even 6
252.2.bm.a.173.2 yes 16 4.3 odd 2
252.2.bm.a.185.2 yes 16 252.59 odd 6
756.2.w.a.341.1 16 36.31 odd 6
756.2.w.a.521.1 16 84.59 odd 6
756.2.bm.a.17.1 16 252.31 even 6
756.2.bm.a.89.1 16 12.11 even 2
1008.2.ca.d.257.4 16 9.5 odd 6
1008.2.ca.d.353.4 16 7.3 odd 6
1008.2.df.d.689.7 16 63.59 even 6 inner
1008.2.df.d.929.7 16 1.1 even 1 trivial
1764.2.w.b.509.4 16 252.167 odd 6
1764.2.w.b.1109.4 16 28.11 odd 6
1764.2.x.a.293.1 16 252.23 even 6
1764.2.x.a.1469.1 16 28.19 even 6
1764.2.x.b.293.8 16 252.131 odd 6
1764.2.x.b.1469.8 16 28.23 odd 6
1764.2.bm.a.1685.7 16 28.27 even 2
1764.2.bm.a.1697.7 16 252.95 even 6
2268.2.t.a.1781.1 16 252.227 odd 6
2268.2.t.a.2105.1 16 36.7 odd 6
2268.2.t.b.1781.8 16 252.115 even 6
2268.2.t.b.2105.8 16 36.11 even 6
3024.2.ca.d.2033.1 16 21.17 even 6
3024.2.ca.d.2609.1 16 9.4 even 3
3024.2.df.d.17.1 16 63.31 odd 6
3024.2.df.d.1601.1 16 3.2 odd 2
5292.2.w.b.521.8 16 84.11 even 6
5292.2.w.b.1097.8 16 252.139 even 6
5292.2.x.a.881.1 16 252.247 odd 6
5292.2.x.a.4409.1 16 84.47 odd 6
5292.2.x.b.881.8 16 252.103 even 6
5292.2.x.b.4409.8 16 84.23 even 6
5292.2.bm.a.2285.8 16 252.67 odd 6
5292.2.bm.a.4625.8 16 84.83 odd 2