Properties

Label 756.2.w.a.341.1
Level $756$
Weight $2$
Character 756.341
Analytic conductor $6.037$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(341,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.341"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 341.1
Root \(-0.213160 - 1.71888i\) of defining polynomial
Character \(\chi\) \(=\) 756.341
Dual form 756.2.w.a.521.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.43402 - 2.48379i) q^{5} +(2.56899 - 0.632668i) q^{7} +(2.34941 + 1.35643i) q^{11} +(-3.18987 - 1.84167i) q^{13} +(-3.22192 - 5.58052i) q^{17} +(2.73867 + 1.58117i) q^{19} +(-2.59068 + 1.49573i) q^{23} +(-1.61282 + 2.79348i) q^{25} +(2.48332 - 1.43375i) q^{29} -9.54636i q^{31} +(-5.25540 - 5.47359i) q^{35} +(-1.70640 + 2.95556i) q^{37} +(0.794538 - 1.37618i) q^{41} +(-4.67828 - 8.10302i) q^{43} -11.3074 q^{47} +(6.19946 - 3.25064i) q^{49} +(-2.16419 + 1.24950i) q^{53} -7.78058i q^{55} +8.67361 q^{59} -0.654617i q^{61} +10.5640i q^{65} +7.72292 q^{67} -7.86582i q^{71} +(11.0769 - 6.39527i) q^{73} +(6.89378 + 1.99827i) q^{77} +5.19132 q^{79} +(7.92948 + 13.7343i) q^{83} +(-9.24057 + 16.0051i) q^{85} +(-3.14826 + 5.45295i) q^{89} +(-9.35993 - 2.71312i) q^{91} -9.06971i q^{95} +(-13.2065 + 7.62477i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{7} + 6 q^{11} - 3 q^{13} - 9 q^{17} - 21 q^{23} - 8 q^{25} - 6 q^{29} + 15 q^{35} + q^{37} + 6 q^{41} - 2 q^{43} + 36 q^{47} - 5 q^{49} + 30 q^{59} + 14 q^{67} - 3 q^{77} + 2 q^{79} + 6 q^{85}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.43402 2.48379i −0.641312 1.11079i −0.985140 0.171753i \(-0.945057\pi\)
0.343828 0.939033i \(-0.388276\pi\)
\(6\) 0 0
\(7\) 2.56899 0.632668i 0.970989 0.239126i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.34941 + 1.35643i 0.708373 + 0.408979i 0.810458 0.585797i \(-0.199218\pi\)
−0.102086 + 0.994776i \(0.532552\pi\)
\(12\) 0 0
\(13\) −3.18987 1.84167i −0.884712 0.510789i −0.0125026 0.999922i \(-0.503980\pi\)
−0.872209 + 0.489133i \(0.837313\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.22192 5.58052i −0.781429 1.35348i −0.931109 0.364741i \(-0.881158\pi\)
0.149680 0.988735i \(-0.452176\pi\)
\(18\) 0 0
\(19\) 2.73867 + 1.58117i 0.628294 + 0.362746i 0.780091 0.625666i \(-0.215173\pi\)
−0.151797 + 0.988412i \(0.548506\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.59068 + 1.49573i −0.540195 + 0.311882i −0.745158 0.666888i \(-0.767626\pi\)
0.204963 + 0.978770i \(0.434293\pi\)
\(24\) 0 0
\(25\) −1.61282 + 2.79348i −0.322563 + 0.558696i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.48332 1.43375i 0.461142 0.266240i −0.251383 0.967888i \(-0.580885\pi\)
0.712524 + 0.701648i \(0.247552\pi\)
\(30\) 0 0
\(31\) 9.54636i 1.71458i −0.514836 0.857289i \(-0.672147\pi\)
0.514836 0.857289i \(-0.327853\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.25540 5.47359i −0.888325 0.925205i
\(36\) 0 0
\(37\) −1.70640 + 2.95556i −0.280530 + 0.485892i −0.971515 0.236977i \(-0.923843\pi\)
0.690986 + 0.722868i \(0.257177\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.794538 1.37618i 0.124086 0.214923i −0.797289 0.603597i \(-0.793733\pi\)
0.921375 + 0.388674i \(0.127067\pi\)
\(42\) 0 0
\(43\) −4.67828 8.10302i −0.713431 1.23570i −0.963562 0.267487i \(-0.913807\pi\)
0.250131 0.968212i \(-0.419526\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.3074 −1.64936 −0.824680 0.565599i \(-0.808645\pi\)
−0.824680 + 0.565599i \(0.808645\pi\)
\(48\) 0 0
\(49\) 6.19946 3.25064i 0.885637 0.464378i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.16419 + 1.24950i −0.297275 + 0.171632i −0.641218 0.767359i \(-0.721571\pi\)
0.343943 + 0.938990i \(0.388237\pi\)
\(54\) 0 0
\(55\) 7.78058i 1.04913i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.67361 1.12921 0.564604 0.825362i \(-0.309029\pi\)
0.564604 + 0.825362i \(0.309029\pi\)
\(60\) 0 0
\(61\) 0.654617i 0.0838151i −0.999121 0.0419075i \(-0.986657\pi\)
0.999121 0.0419075i \(-0.0133435\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.5640i 1.31030i
\(66\) 0 0
\(67\) 7.72292 0.943505 0.471752 0.881731i \(-0.343622\pi\)
0.471752 + 0.881731i \(0.343622\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.86582i 0.933501i −0.884389 0.466750i \(-0.845425\pi\)
0.884389 0.466750i \(-0.154575\pi\)
\(72\) 0 0
\(73\) 11.0769 6.39527i 1.29646 0.748510i 0.316667 0.948537i \(-0.397436\pi\)
0.979790 + 0.200027i \(0.0641028\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.89378 + 1.99827i 0.785619 + 0.227724i
\(78\) 0 0
\(79\) 5.19132 0.584069 0.292034 0.956408i \(-0.405668\pi\)
0.292034 + 0.956408i \(0.405668\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.92948 + 13.7343i 0.870373 + 1.50753i 0.861611 + 0.507569i \(0.169456\pi\)
0.00876173 + 0.999962i \(0.497211\pi\)
\(84\) 0 0
\(85\) −9.24057 + 16.0051i −1.00228 + 1.73600i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.14826 + 5.45295i −0.333715 + 0.578012i −0.983237 0.182331i \(-0.941636\pi\)
0.649522 + 0.760343i \(0.274969\pi\)
\(90\) 0 0
\(91\) −9.35993 2.71312i −0.981188 0.284412i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.06971i 0.930533i
\(96\) 0 0
\(97\) −13.2065 + 7.62477i −1.34092 + 0.774178i −0.986942 0.161077i \(-0.948503\pi\)
−0.353974 + 0.935255i \(0.615170\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.74451 3.02158i 0.173585 0.300658i −0.766086 0.642739i \(-0.777798\pi\)
0.939671 + 0.342080i \(0.111131\pi\)
\(102\) 0 0
\(103\) −2.89161 + 1.66947i −0.284919 + 0.164498i −0.635648 0.771979i \(-0.719267\pi\)
0.350729 + 0.936477i \(0.385934\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.10776 + 1.79427i 0.300439 + 0.173458i 0.642640 0.766168i \(-0.277839\pi\)
−0.342201 + 0.939627i \(0.611172\pi\)
\(108\) 0 0
\(109\) 6.89673 + 11.9455i 0.660587 + 1.14417i 0.980462 + 0.196710i \(0.0630258\pi\)
−0.319875 + 0.947460i \(0.603641\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.28607 + 3.05191i 0.497271 + 0.287100i 0.727586 0.686016i \(-0.240642\pi\)
−0.230315 + 0.973116i \(0.573976\pi\)
\(114\) 0 0
\(115\) 7.43018 + 4.28981i 0.692867 + 0.400027i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −11.8077 12.2979i −1.08241 1.12735i
\(120\) 0 0
\(121\) −1.82019 3.15267i −0.165472 0.286606i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.08895 −0.455170
\(126\) 0 0
\(127\) −13.3819 −1.18745 −0.593727 0.804666i \(-0.702344\pi\)
−0.593727 + 0.804666i \(0.702344\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.388964 + 0.673705i 0.0339839 + 0.0588619i 0.882517 0.470280i \(-0.155847\pi\)
−0.848533 + 0.529142i \(0.822514\pi\)
\(132\) 0 0
\(133\) 8.03598 + 2.32935i 0.696808 + 0.201980i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.3082 + 8.26083i 1.22243 + 0.705771i 0.965435 0.260642i \(-0.0839343\pi\)
0.256995 + 0.966413i \(0.417268\pi\)
\(138\) 0 0
\(139\) 9.91826 + 5.72631i 0.841256 + 0.485699i 0.857691 0.514165i \(-0.171898\pi\)
−0.0164348 + 0.999865i \(0.505232\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.99620 8.65368i −0.417804 0.723657i
\(144\) 0 0
\(145\) −7.12226 4.11204i −0.591472 0.341486i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.24781 2.45247i 0.347994 0.200914i −0.315807 0.948823i \(-0.602275\pi\)
0.663801 + 0.747909i \(0.268942\pi\)
\(150\) 0 0
\(151\) −4.92814 + 8.53579i −0.401047 + 0.694633i −0.993852 0.110712i \(-0.964687\pi\)
0.592806 + 0.805345i \(0.298020\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −23.7112 + 13.6897i −1.90453 + 1.09958i
\(156\) 0 0
\(157\) 15.4169i 1.23040i 0.788371 + 0.615200i \(0.210925\pi\)
−0.788371 + 0.615200i \(0.789075\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.70915 + 5.48157i −0.449944 + 0.432008i
\(162\) 0 0
\(163\) −5.72053 + 9.90825i −0.448066 + 0.776074i −0.998260 0.0589632i \(-0.981221\pi\)
0.550194 + 0.835037i \(0.314554\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.49103 11.2428i 0.502291 0.869993i −0.497706 0.867346i \(-0.665824\pi\)
0.999996 0.00264735i \(-0.000842678\pi\)
\(168\) 0 0
\(169\) 0.283528 + 0.491084i 0.0218098 + 0.0377757i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.5997 1.49014 0.745068 0.666988i \(-0.232417\pi\)
0.745068 + 0.666988i \(0.232417\pi\)
\(174\) 0 0
\(175\) −2.37597 + 8.19681i −0.179606 + 0.619620i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.2630 9.38942i 1.21555 0.701799i 0.251588 0.967835i \(-0.419047\pi\)
0.963963 + 0.266036i \(0.0857140\pi\)
\(180\) 0 0
\(181\) 4.47775i 0.332829i 0.986056 + 0.166414i \(0.0532190\pi\)
−0.986056 + 0.166414i \(0.946781\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.78801 0.719629
\(186\) 0 0
\(187\) 17.4812i 1.27835i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.81331i 0.492994i −0.969144 0.246497i \(-0.920720\pi\)
0.969144 0.246497i \(-0.0792795\pi\)
\(192\) 0 0
\(193\) −15.9539 −1.14839 −0.574193 0.818720i \(-0.694684\pi\)
−0.574193 + 0.818720i \(0.694684\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.9511i 1.84894i 0.381254 + 0.924470i \(0.375492\pi\)
−0.381254 + 0.924470i \(0.624508\pi\)
\(198\) 0 0
\(199\) 2.75706 1.59179i 0.195443 0.112839i −0.399085 0.916914i \(-0.630672\pi\)
0.594528 + 0.804075i \(0.297339\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.47256 5.25441i 0.384098 0.368787i
\(204\) 0 0
\(205\) −4.55752 −0.318311
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.28950 + 7.42963i 0.296711 + 0.513918i
\(210\) 0 0
\(211\) −0.0552411 + 0.0956804i −0.00380295 + 0.00658691i −0.867921 0.496703i \(-0.834544\pi\)
0.864118 + 0.503290i \(0.167877\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.4175 + 23.2397i −0.915064 + 1.58494i
\(216\) 0 0
\(217\) −6.03968 24.5245i −0.410000 1.66483i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 23.7349i 1.59658i
\(222\) 0 0
\(223\) 11.3064 6.52775i 0.757132 0.437130i −0.0711331 0.997467i \(-0.522661\pi\)
0.828265 + 0.560336i \(0.189328\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.63392 + 8.02618i −0.307564 + 0.532716i −0.977829 0.209406i \(-0.932847\pi\)
0.670265 + 0.742122i \(0.266180\pi\)
\(228\) 0 0
\(229\) 11.6204 6.70902i 0.767895 0.443344i −0.0642281 0.997935i \(-0.520459\pi\)
0.832123 + 0.554591i \(0.187125\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.3415 + 10.5895i 1.20159 + 0.693738i 0.960909 0.276866i \(-0.0892958\pi\)
0.240681 + 0.970604i \(0.422629\pi\)
\(234\) 0 0
\(235\) 16.2151 + 28.0853i 1.05776 + 1.83209i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.73342 + 4.46489i 0.500233 + 0.288810i 0.728810 0.684716i \(-0.240074\pi\)
−0.228577 + 0.973526i \(0.573407\pi\)
\(240\) 0 0
\(241\) 15.9430 + 9.20469i 1.02698 + 0.592926i 0.916117 0.400910i \(-0.131306\pi\)
0.110860 + 0.993836i \(0.464639\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −16.9641 10.7367i −1.08379 0.685942i
\(246\) 0 0
\(247\) −5.82401 10.0875i −0.370573 0.641851i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.33194 0.399669 0.199834 0.979830i \(-0.435960\pi\)
0.199834 + 0.979830i \(0.435960\pi\)
\(252\) 0 0
\(253\) −8.11542 −0.510212
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.19283 14.1904i −0.511054 0.885172i −0.999918 0.0128120i \(-0.995922\pi\)
0.488863 0.872360i \(-0.337412\pi\)
\(258\) 0 0
\(259\) −2.51383 + 8.67241i −0.156202 + 0.538877i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.4663 + 6.04270i 0.645377 + 0.372609i 0.786683 0.617357i \(-0.211797\pi\)
−0.141306 + 0.989966i \(0.545130\pi\)
\(264\) 0 0
\(265\) 6.20698 + 3.58360i 0.381292 + 0.220139i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.6652 21.9368i −0.772212 1.33751i −0.936348 0.351072i \(-0.885817\pi\)
0.164136 0.986438i \(-0.447516\pi\)
\(270\) 0 0
\(271\) −0.195591 0.112924i −0.0118813 0.00685967i 0.494048 0.869435i \(-0.335517\pi\)
−0.505929 + 0.862575i \(0.668850\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.57832 + 4.37534i −0.456990 + 0.263843i
\(276\) 0 0
\(277\) 10.2170 17.6963i 0.613878 1.06327i −0.376702 0.926335i \(-0.622942\pi\)
0.990580 0.136934i \(-0.0437248\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.96635 + 5.17672i −0.534887 + 0.308817i −0.743004 0.669287i \(-0.766600\pi\)
0.208117 + 0.978104i \(0.433267\pi\)
\(282\) 0 0
\(283\) 13.7157i 0.815311i −0.913136 0.407656i \(-0.866346\pi\)
0.913136 0.407656i \(-0.133654\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.17050 4.03808i 0.0690923 0.238360i
\(288\) 0 0
\(289\) −12.2615 + 21.2375i −0.721264 + 1.24927i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.21527 + 7.30105i −0.246258 + 0.426532i −0.962485 0.271336i \(-0.912535\pi\)
0.716226 + 0.697868i \(0.245868\pi\)
\(294\) 0 0
\(295\) −12.4381 21.5434i −0.724175 1.25431i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.0186 0.637222
\(300\) 0 0
\(301\) −17.1450 17.8568i −0.988221 1.02925i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.62593 + 0.938732i −0.0931006 + 0.0537516i
\(306\) 0 0
\(307\) 5.34345i 0.304967i −0.988306 0.152484i \(-0.951273\pi\)
0.988306 0.152484i \(-0.0487271\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.41734 0.534008 0.267004 0.963695i \(-0.413966\pi\)
0.267004 + 0.963695i \(0.413966\pi\)
\(312\) 0 0
\(313\) 16.5523i 0.935590i 0.883837 + 0.467795i \(0.154951\pi\)
−0.883837 + 0.467795i \(0.845049\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26.5264i 1.48987i −0.667138 0.744934i \(-0.732481\pi\)
0.667138 0.744934i \(-0.267519\pi\)
\(318\) 0 0
\(319\) 7.77911 0.435547
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.3776i 1.13384i
\(324\) 0 0
\(325\) 10.2894 5.94056i 0.570751 0.329523i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −29.0488 + 7.15386i −1.60151 + 0.394405i
\(330\) 0 0
\(331\) −17.6400 −0.969582 −0.484791 0.874630i \(-0.661104\pi\)
−0.484791 + 0.874630i \(0.661104\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.0748 19.1821i −0.605081 1.04803i
\(336\) 0 0
\(337\) 7.31169 12.6642i 0.398293 0.689864i −0.595222 0.803561i \(-0.702936\pi\)
0.993515 + 0.113697i \(0.0362694\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.9490 22.4283i 0.701226 1.21456i
\(342\) 0 0
\(343\) 13.8698 12.2731i 0.748899 0.662684i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.21893i 0.0654358i −0.999465 0.0327179i \(-0.989584\pi\)
0.999465 0.0327179i \(-0.0104163\pi\)
\(348\) 0 0
\(349\) −10.6857 + 6.16942i −0.571995 + 0.330241i −0.757946 0.652318i \(-0.773797\pi\)
0.185951 + 0.982559i \(0.440463\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.1484 19.3097i 0.593372 1.02775i −0.400402 0.916339i \(-0.631130\pi\)
0.993774 0.111411i \(-0.0355370\pi\)
\(354\) 0 0
\(355\) −19.5371 + 11.2797i −1.03692 + 0.598666i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.4819 6.05173i −0.553214 0.319398i 0.197204 0.980363i \(-0.436814\pi\)
−0.750417 + 0.660965i \(0.770147\pi\)
\(360\) 0 0
\(361\) −4.49979 7.79387i −0.236831 0.410204i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −31.7691 18.3419i −1.66287 0.960058i
\(366\) 0 0
\(367\) 12.7544 + 7.36375i 0.665774 + 0.384385i 0.794473 0.607299i \(-0.207747\pi\)
−0.128700 + 0.991684i \(0.541080\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.76928 + 4.57917i −0.247609 + 0.237739i
\(372\) 0 0
\(373\) 4.54279 + 7.86834i 0.235217 + 0.407407i 0.959336 0.282268i \(-0.0910867\pi\)
−0.724119 + 0.689675i \(0.757753\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.5620 −0.543970
\(378\) 0 0
\(379\) 21.2298 1.09050 0.545250 0.838273i \(-0.316435\pi\)
0.545250 + 0.838273i \(0.316435\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.35227 5.80630i −0.171293 0.296688i 0.767579 0.640954i \(-0.221461\pi\)
−0.938872 + 0.344266i \(0.888128\pi\)
\(384\) 0 0
\(385\) −4.92253 19.9883i −0.250875 1.01870i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.66661 + 3.84897i 0.338011 + 0.195151i 0.659392 0.751799i \(-0.270814\pi\)
−0.321381 + 0.946950i \(0.604147\pi\)
\(390\) 0 0
\(391\) 16.6939 + 9.63825i 0.844249 + 0.487427i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.44444 12.8942i −0.374571 0.648775i
\(396\) 0 0
\(397\) −0.0428112 0.0247170i −0.00214863 0.00124051i 0.498925 0.866645i \(-0.333728\pi\)
−0.501074 + 0.865404i \(0.667062\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.6039 + 10.1636i −0.879096 + 0.507546i −0.870360 0.492416i \(-0.836114\pi\)
−0.00873572 + 0.999962i \(0.502781\pi\)
\(402\) 0 0
\(403\) −17.5813 + 30.4517i −0.875786 + 1.51691i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.01803 + 4.62921i −0.397439 + 0.229461i
\(408\) 0 0
\(409\) 13.9886i 0.691689i −0.938292 0.345845i \(-0.887592\pi\)
0.938292 0.345845i \(-0.112408\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 22.2824 5.48752i 1.09645 0.270023i
\(414\) 0 0
\(415\) 22.7420 39.3903i 1.11636 1.93360i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.6718 + 18.4842i −0.521353 + 0.903010i 0.478339 + 0.878176i \(0.341239\pi\)
−0.999692 + 0.0248344i \(0.992094\pi\)
\(420\) 0 0
\(421\) 3.97287 + 6.88121i 0.193626 + 0.335370i 0.946449 0.322853i \(-0.104642\pi\)
−0.752823 + 0.658223i \(0.771309\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 20.7854 1.00824
\(426\) 0 0
\(427\) −0.414155 1.68171i −0.0200424 0.0813835i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.6515 15.9646i 1.33193 0.768989i 0.346333 0.938112i \(-0.387427\pi\)
0.985595 + 0.169123i \(0.0540934\pi\)
\(432\) 0 0
\(433\) 18.5300i 0.890493i 0.895408 + 0.445247i \(0.146884\pi\)
−0.895408 + 0.445247i \(0.853116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.46004 −0.452535
\(438\) 0 0
\(439\) 2.08211i 0.0993739i 0.998765 + 0.0496869i \(0.0158224\pi\)
−0.998765 + 0.0496869i \(0.984178\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.46985i 0.117346i 0.998277 + 0.0586731i \(0.0186870\pi\)
−0.998277 + 0.0586731i \(0.981313\pi\)
\(444\) 0 0
\(445\) 18.0587 0.856063
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.5094i 1.77018i 0.465424 + 0.885088i \(0.345902\pi\)
−0.465424 + 0.885088i \(0.654098\pi\)
\(450\) 0 0
\(451\) 3.73338 2.15547i 0.175798 0.101497i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.68349 + 27.1388i 0.313327 + 1.27229i
\(456\) 0 0
\(457\) 5.84690 0.273506 0.136753 0.990605i \(-0.456333\pi\)
0.136753 + 0.990605i \(0.456333\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.82830 6.63081i −0.178302 0.308827i 0.762997 0.646402i \(-0.223727\pi\)
−0.941299 + 0.337574i \(0.890394\pi\)
\(462\) 0 0
\(463\) 4.89449 8.47751i 0.227466 0.393983i −0.729590 0.683885i \(-0.760289\pi\)
0.957057 + 0.289901i \(0.0936225\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.0806 + 24.3883i −0.651572 + 1.12856i 0.331169 + 0.943571i \(0.392557\pi\)
−0.982741 + 0.184985i \(0.940776\pi\)
\(468\) 0 0
\(469\) 19.8401 4.88605i 0.916132 0.225617i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.3830i 1.16711i
\(474\) 0 0
\(475\) −8.83394 + 5.10028i −0.405329 + 0.234017i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.8053 25.6435i 0.676470 1.17168i −0.299567 0.954075i \(-0.596842\pi\)
0.976037 0.217605i \(-0.0698245\pi\)
\(480\) 0 0
\(481\) 10.8864 6.28525i 0.496376 0.286583i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 37.8767 + 21.8681i 1.71989 + 0.992980i
\(486\) 0 0
\(487\) −14.6701 25.4094i −0.664767 1.15141i −0.979348 0.202180i \(-0.935198\pi\)
0.314582 0.949230i \(-0.398136\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.63745 + 4.98683i 0.389803 + 0.225053i 0.682075 0.731283i \(-0.261078\pi\)
−0.292272 + 0.956335i \(0.594411\pi\)
\(492\) 0 0
\(493\) −16.0021 9.23883i −0.720699 0.416096i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.97645 20.2072i −0.223224 0.906419i
\(498\) 0 0
\(499\) 9.79784 + 16.9704i 0.438611 + 0.759697i 0.997583 0.0694898i \(-0.0221371\pi\)
−0.558971 + 0.829187i \(0.688804\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21.2907 −0.949304 −0.474652 0.880174i \(-0.657426\pi\)
−0.474652 + 0.880174i \(0.657426\pi\)
\(504\) 0 0
\(505\) −10.0066 −0.445289
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −21.8307 37.8119i −0.967630 1.67598i −0.702378 0.711804i \(-0.747878\pi\)
−0.265252 0.964179i \(-0.585455\pi\)
\(510\) 0 0
\(511\) 24.4105 23.4374i 1.07986 1.03681i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.29324 + 4.78810i 0.365444 + 0.210989i
\(516\) 0 0
\(517\) −26.5658 15.3378i −1.16836 0.674554i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.60043 4.50408i −0.113927 0.197327i 0.803423 0.595408i \(-0.203010\pi\)
−0.917350 + 0.398081i \(0.869676\pi\)
\(522\) 0 0
\(523\) −34.7043 20.0365i −1.51751 0.876137i −0.999788 0.0205902i \(-0.993445\pi\)
−0.517726 0.855547i \(-0.673221\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −53.2737 + 30.7576i −2.32064 + 1.33982i
\(528\) 0 0
\(529\) −7.02557 + 12.1686i −0.305460 + 0.529072i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.06895 + 2.92656i −0.219561 + 0.126763i
\(534\) 0 0
\(535\) 10.2920i 0.444964i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.9743 + 0.772057i 0.817282 + 0.0332549i
\(540\) 0 0
\(541\) −4.12096 + 7.13771i −0.177174 + 0.306874i −0.940911 0.338653i \(-0.890029\pi\)
0.763738 + 0.645527i \(0.223362\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.7801 34.2601i 0.847285 1.46754i
\(546\) 0 0
\(547\) −2.53756 4.39518i −0.108498 0.187925i 0.806664 0.591011i \(-0.201271\pi\)
−0.915162 + 0.403086i \(0.867938\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.06800 0.386310
\(552\) 0 0
\(553\) 13.3365 3.28438i 0.567124 0.139666i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −37.6102 + 21.7142i −1.59359 + 0.920062i −0.600910 + 0.799316i \(0.705195\pi\)
−0.992684 + 0.120745i \(0.961472\pi\)
\(558\) 0 0
\(559\) 34.4635i 1.45765i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.98237 0.420707 0.210353 0.977625i \(-0.432539\pi\)
0.210353 + 0.977625i \(0.432539\pi\)
\(564\) 0 0
\(565\) 17.5060i 0.736483i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.2348i 0.680598i −0.940317 0.340299i \(-0.889472\pi\)
0.940317 0.340299i \(-0.110528\pi\)
\(570\) 0 0
\(571\) −12.6206 −0.528154 −0.264077 0.964502i \(-0.585067\pi\)
−0.264077 + 0.964502i \(0.585067\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.64936i 0.402406i
\(576\) 0 0
\(577\) −4.18012 + 2.41339i −0.174020 + 0.100471i −0.584480 0.811408i \(-0.698702\pi\)
0.410460 + 0.911879i \(0.365368\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 29.0600 + 30.2665i 1.20561 + 1.25567i
\(582\) 0 0
\(583\) −6.77942 −0.280775
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.26032 9.11114i −0.217117 0.376057i 0.736809 0.676101i \(-0.236332\pi\)
−0.953925 + 0.300044i \(0.902999\pi\)
\(588\) 0 0
\(589\) 15.0944 26.1443i 0.621955 1.07726i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.7342 + 25.5205i −0.605063 + 1.04800i 0.386979 + 0.922089i \(0.373519\pi\)
−0.992042 + 0.125911i \(0.959815\pi\)
\(594\) 0 0
\(595\) −13.6130 + 46.9633i −0.558080 + 1.92531i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.21752i 0.335759i 0.985808 + 0.167879i \(0.0536919\pi\)
−0.985808 + 0.167879i \(0.946308\pi\)
\(600\) 0 0
\(601\) 32.7131 18.8869i 1.33439 0.770413i 0.348425 0.937337i \(-0.386717\pi\)
0.985970 + 0.166924i \(0.0533833\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.22038 + 9.04197i −0.212239 + 0.367608i
\(606\) 0 0
\(607\) −30.8497 + 17.8111i −1.25215 + 0.722929i −0.971536 0.236892i \(-0.923871\pi\)
−0.280613 + 0.959821i \(0.590538\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0693 + 20.8246i 1.45921 + 0.842474i
\(612\) 0 0
\(613\) 11.9660 + 20.7256i 0.483301 + 0.837101i 0.999816 0.0191767i \(-0.00610451\pi\)
−0.516516 + 0.856278i \(0.672771\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.98622 + 1.14675i 0.0799623 + 0.0461663i 0.539448 0.842019i \(-0.318633\pi\)
−0.459486 + 0.888185i \(0.651966\pi\)
\(618\) 0 0
\(619\) −9.10806 5.25854i −0.366084 0.211359i 0.305662 0.952140i \(-0.401122\pi\)
−0.671746 + 0.740781i \(0.734455\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.63796 + 16.0004i −0.185816 + 0.641043i
\(624\) 0 0
\(625\) 15.3617 + 26.6073i 0.614469 + 1.06429i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.9914 0.876856
\(630\) 0 0
\(631\) −2.02836 −0.0807477 −0.0403739 0.999185i \(-0.512855\pi\)
−0.0403739 + 0.999185i \(0.512855\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19.1899 + 33.2380i 0.761530 + 1.31901i
\(636\) 0 0
\(637\) −25.7621 1.04825i −1.02073 0.0415332i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.7778 6.22257i −0.425698 0.245777i 0.271814 0.962350i \(-0.412376\pi\)
−0.697512 + 0.716573i \(0.745710\pi\)
\(642\) 0 0
\(643\) −12.3358 7.12209i −0.486477 0.280868i 0.236635 0.971599i \(-0.423956\pi\)
−0.723112 + 0.690731i \(0.757289\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.1910 + 17.6513i 0.400649 + 0.693945i 0.993804 0.111143i \(-0.0354512\pi\)
−0.593155 + 0.805088i \(0.702118\pi\)
\(648\) 0 0
\(649\) 20.3778 + 11.7651i 0.799899 + 0.461822i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.55335 + 4.36093i −0.295585 + 0.170656i −0.640458 0.767993i \(-0.721255\pi\)
0.344873 + 0.938650i \(0.387922\pi\)
\(654\) 0 0
\(655\) 1.11556 1.93221i 0.0435887 0.0754978i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.7524 9.67200i 0.652581 0.376768i −0.136864 0.990590i \(-0.543702\pi\)
0.789444 + 0.613822i \(0.210369\pi\)
\(660\) 0 0
\(661\) 36.8289i 1.43248i 0.697854 + 0.716240i \(0.254138\pi\)
−0.697854 + 0.716240i \(0.745862\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.73812 23.3000i −0.222515 0.903537i
\(666\) 0 0
\(667\) −4.28900 + 7.42877i −0.166071 + 0.287643i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.887942 1.53796i 0.0342786 0.0593723i
\(672\) 0 0
\(673\) 8.79204 + 15.2283i 0.338908 + 0.587006i 0.984228 0.176907i \(-0.0566091\pi\)
−0.645319 + 0.763913i \(0.723276\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −40.8291 −1.56919 −0.784595 0.620009i \(-0.787129\pi\)
−0.784595 + 0.620009i \(0.787129\pi\)
\(678\) 0 0
\(679\) −29.1035 + 27.9433i −1.11689 + 1.07237i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.56287 4.94377i 0.327649 0.189168i −0.327148 0.944973i \(-0.606088\pi\)
0.654797 + 0.755805i \(0.272754\pi\)
\(684\) 0 0
\(685\) 47.3847i 1.81048i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.20467 0.350670
\(690\) 0 0
\(691\) 43.7882i 1.66578i 0.553436 + 0.832891i \(0.313316\pi\)
−0.553436 + 0.832891i \(0.686684\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 32.8465i 1.24594i
\(696\) 0 0
\(697\) −10.2397 −0.387858
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.6742i 1.12078i −0.828229 0.560389i \(-0.810651\pi\)
0.828229 0.560389i \(-0.189349\pi\)
\(702\) 0 0
\(703\) −9.34651 + 5.39621i −0.352510 + 0.203522i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.56998 8.86612i 0.0966540 0.333445i
\(708\) 0 0
\(709\) 47.0538 1.76714 0.883572 0.468296i \(-0.155132\pi\)
0.883572 + 0.468296i \(0.155132\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.2788 + 24.7316i 0.534745 + 0.926206i
\(714\) 0 0
\(715\) −14.3293 + 24.8191i −0.535885 + 0.928180i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.909148 + 1.57469i −0.0339055 + 0.0587261i −0.882480 0.470349i \(-0.844128\pi\)
0.848575 + 0.529076i \(0.177461\pi\)
\(720\) 0 0
\(721\) −6.37230 + 6.11829i −0.237317 + 0.227857i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.24948i 0.343517i
\(726\) 0 0
\(727\) 21.7854 12.5778i 0.807976 0.466485i −0.0382766 0.999267i \(-0.512187\pi\)
0.846252 + 0.532782i \(0.178853\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −30.1460 + 52.2145i −1.11499 + 1.93122i
\(732\) 0 0
\(733\) −3.84543 + 2.22016i −0.142034 + 0.0820034i −0.569333 0.822107i \(-0.692799\pi\)
0.427299 + 0.904110i \(0.359465\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.1443 + 10.4756i 0.668353 + 0.385874i
\(738\) 0 0
\(739\) −8.97608 15.5470i −0.330191 0.571907i 0.652358 0.757911i \(-0.273780\pi\)
−0.982549 + 0.186004i \(0.940446\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.3712 + 18.1122i 1.15090 + 0.664472i 0.949106 0.314956i \(-0.101990\pi\)
0.201793 + 0.979428i \(0.435323\pi\)
\(744\) 0 0
\(745\) −12.1829 7.03378i −0.446345 0.257698i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.11899 + 2.64328i 0.333201 + 0.0965833i
\(750\) 0 0
\(751\) −5.98210 10.3613i −0.218290 0.378089i 0.735995 0.676986i \(-0.236714\pi\)
−0.954285 + 0.298897i \(0.903381\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 28.2682 1.02878
\(756\) 0 0
\(757\) −49.4440 −1.79707 −0.898537 0.438898i \(-0.855369\pi\)
−0.898537 + 0.438898i \(0.855369\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.6192 25.3212i −0.529945 0.917892i −0.999390 0.0349300i \(-0.988879\pi\)
0.469445 0.882962i \(-0.344454\pi\)
\(762\) 0 0
\(763\) 25.2752 + 26.3245i 0.915023 + 0.953012i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −27.6677 15.9740i −0.999023 0.576786i
\(768\) 0 0
\(769\) −4.54689 2.62515i −0.163965 0.0946653i 0.415772 0.909469i \(-0.363511\pi\)
−0.579737 + 0.814804i \(0.696845\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.6829 + 27.1635i 0.564073 + 0.977003i 0.997135 + 0.0756393i \(0.0240997\pi\)
−0.433062 + 0.901364i \(0.642567\pi\)
\(774\) 0 0
\(775\) 26.6676 + 15.3965i 0.957927 + 0.553059i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.35195 2.51260i 0.155925 0.0900233i
\(780\) 0 0
\(781\) 10.6694 18.4800i 0.381782 0.661266i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 38.2923 22.1081i 1.36671 0.789071i
\(786\) 0 0
\(787\) 1.83971i 0.0655786i 0.999462 + 0.0327893i \(0.0104390\pi\)
−0.999462 + 0.0327893i \(0.989561\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.5107 + 4.49602i 0.551498 + 0.159860i
\(792\) 0 0
\(793\) −1.20559 + 2.08814i −0.0428118 + 0.0741522i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.39659 11.0792i 0.226579 0.392446i −0.730213 0.683219i \(-0.760579\pi\)
0.956792 + 0.290773i \(0.0939126\pi\)
\(798\) 0 0
\(799\) 36.4316 + 63.1015i 1.28886 + 2.23237i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 34.6990 1.22450
\(804\) 0 0
\(805\) 21.8021 + 6.31967i 0.768423 + 0.222739i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.9217 + 7.46032i −0.454301 + 0.262291i −0.709645 0.704559i \(-0.751145\pi\)
0.255344 + 0.966850i \(0.417811\pi\)
\(810\) 0 0
\(811\) 37.5478i 1.31848i 0.751933 + 0.659240i \(0.229122\pi\)
−0.751933 + 0.659240i \(0.770878\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32.8134 1.14940
\(816\) 0 0
\(817\) 29.5887i 1.03518i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.32743i 0.116128i −0.998313 0.0580640i \(-0.981507\pi\)
0.998313 0.0580640i \(-0.0184927\pi\)
\(822\) 0 0
\(823\) 50.9307 1.77533 0.887667 0.460486i \(-0.152325\pi\)
0.887667 + 0.460486i \(0.152325\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 16.9198i 0.588360i 0.955750 + 0.294180i \(0.0950465\pi\)
−0.955750 + 0.294180i \(0.904954\pi\)
\(828\) 0 0
\(829\) −4.65467 + 2.68737i −0.161663 + 0.0933364i −0.578649 0.815577i \(-0.696420\pi\)
0.416986 + 0.908913i \(0.363087\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −38.1144 24.1229i −1.32059 0.835810i
\(834\) 0 0
\(835\) −37.2330 −1.28850
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11.8714 + 20.5618i 0.409846 + 0.709874i 0.994872 0.101140i \(-0.0322492\pi\)
−0.585026 + 0.811014i \(0.698916\pi\)
\(840\) 0 0
\(841\) −10.3887 + 17.9938i −0.358232 + 0.620477i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.813168 1.40845i 0.0279738 0.0484521i
\(846\) 0 0
\(847\) −6.67066 6.94761i −0.229207 0.238723i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10.2092i 0.349968i
\(852\) 0 0
\(853\) −10.3810 + 5.99345i −0.355437 + 0.205212i −0.667077 0.744988i \(-0.732455\pi\)
0.311640 + 0.950200i \(0.399122\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27.5318 + 47.6864i −0.940467 + 1.62894i −0.175884 + 0.984411i \(0.556278\pi\)
−0.764583 + 0.644526i \(0.777055\pi\)
\(858\) 0 0
\(859\) 33.8798 19.5605i 1.15596 0.667395i 0.205630 0.978630i \(-0.434076\pi\)
0.950333 + 0.311235i \(0.100742\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.2319 22.6506i −1.33547 0.771034i −0.349338 0.936997i \(-0.613593\pi\)
−0.986132 + 0.165963i \(0.946927\pi\)
\(864\) 0 0
\(865\) −28.1063 48.6815i −0.955643 1.65522i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.1965 + 7.04166i 0.413738 + 0.238872i
\(870\) 0 0
\(871\) −24.6351 14.2231i −0.834730 0.481931i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.0735 + 3.21962i −0.441965 + 0.108843i
\(876\) 0 0
\(877\) 2.02825 + 3.51304i 0.0684893 + 0.118627i 0.898236 0.439512i \(-0.144849\pi\)
−0.829747 + 0.558139i \(0.811515\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −54.3727 −1.83186 −0.915931 0.401336i \(-0.868546\pi\)
−0.915931 + 0.401336i \(0.868546\pi\)
\(882\) 0 0
\(883\) 23.1175 0.777965 0.388982 0.921245i \(-0.372827\pi\)
0.388982 + 0.921245i \(0.372827\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.7818 22.1387i −0.429171 0.743346i 0.567629 0.823285i \(-0.307861\pi\)
−0.996800 + 0.0799384i \(0.974528\pi\)
\(888\) 0 0
\(889\) −34.3781 + 8.46633i −1.15301 + 0.283952i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −30.9674 17.8790i −1.03628 0.598298i
\(894\) 0 0
\(895\) −46.6428 26.9292i −1.55910 0.900144i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.6871 23.7067i −0.456489 0.790663i
\(900\) 0 0
\(901\) 13.9457 + 8.05155i 0.464598 + 0.268236i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.1218 6.42118i 0.369702 0.213447i
\(906\) 0 0
\(907\) 18.5065 32.0542i 0.614498 1.06434i −0.375974 0.926630i \(-0.622692\pi\)
0.990472 0.137712i \(-0.0439748\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.16266 + 1.82596i −0.104784 + 0.0604969i −0.551476 0.834191i \(-0.685935\pi\)
0.446692 + 0.894688i \(0.352602\pi\)
\(912\) 0 0
\(913\) 43.0231i 1.42386i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.42548 + 1.48466i 0.0470734 + 0.0490278i
\(918\) 0 0
\(919\) 17.3994 30.1367i 0.573954 0.994117i −0.422201 0.906502i \(-0.638742\pi\)
0.996154 0.0876145i \(-0.0279244\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −14.4863 + 25.0910i −0.476822 + 0.825879i
\(924\) 0 0
\(925\) −5.50420 9.53356i −0.180977 0.313461i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 50.3471 1.65183 0.825917 0.563791i \(-0.190658\pi\)
0.825917 + 0.563791i \(0.190658\pi\)
\(930\) 0 0
\(931\) 22.1181 + 0.899977i 0.724891 + 0.0294955i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −43.4197 + 25.0684i −1.41998 + 0.819824i
\(936\) 0 0
\(937\) 6.48087i 0.211721i 0.994381 + 0.105860i \(0.0337596\pi\)
−0.994381 + 0.105860i \(0.966240\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.668048 −0.0217777 −0.0108889 0.999941i \(-0.503466\pi\)
−0.0108889 + 0.999941i \(0.503466\pi\)
\(942\) 0 0
\(943\) 4.75366i 0.154801i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 58.5966i 1.90413i −0.305890 0.952067i \(-0.598954\pi\)
0.305890 0.952067i \(-0.401046\pi\)
\(948\) 0 0
\(949\) −47.1120 −1.52932
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.3707i 1.56688i −0.621467 0.783441i \(-0.713463\pi\)
0.621467 0.783441i \(-0.286537\pi\)
\(954\) 0 0
\(955\) −16.9228 + 9.77041i −0.547610 + 0.316163i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 41.9840 + 12.1697i 1.35573 + 0.392980i
\(960\) 0 0
\(961\) −60.1330 −1.93977
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.8781 + 39.6261i 0.736474 + 1.27561i
\(966\) 0 0
\(967\) 8.51390 14.7465i 0.273788 0.474216i −0.696040 0.718003i \(-0.745057\pi\)
0.969829 + 0.243787i \(0.0783898\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.5651 + 23.4955i −0.435325 + 0.754006i −0.997322 0.0731339i \(-0.976700\pi\)
0.561997 + 0.827139i \(0.310033\pi\)
\(972\) 0 0
\(973\) 29.1028 + 8.43589i 0.932994 + 0.270442i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.34898i 0.203122i −0.994829 0.101561i \(-0.967616\pi\)
0.994829 0.101561i \(-0.0323837\pi\)
\(978\) 0 0
\(979\) −14.7931 + 8.54080i −0.472789 + 0.272965i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.98300 + 17.2911i −0.318408 + 0.551499i −0.980156 0.198227i \(-0.936482\pi\)
0.661748 + 0.749727i \(0.269815\pi\)
\(984\) 0 0
\(985\) 64.4572 37.2144i 2.05378 1.18575i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.2399 + 13.9949i 0.770784 + 0.445012i
\(990\) 0 0
\(991\) 6.38803 + 11.0644i 0.202922 + 0.351472i 0.949469 0.313861i \(-0.101623\pi\)
−0.746546 + 0.665333i \(0.768289\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.90734 4.56530i −0.250679 0.144730i
\(996\) 0 0
\(997\) −17.9846 10.3834i −0.569579 0.328847i 0.187402 0.982283i \(-0.439993\pi\)
−0.756981 + 0.653436i \(0.773327\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.w.a.341.1 16
3.2 odd 2 252.2.w.a.5.5 16
4.3 odd 2 3024.2.ca.d.2609.1 16
7.2 even 3 5292.2.x.a.881.1 16
7.3 odd 6 756.2.bm.a.17.1 16
7.4 even 3 5292.2.bm.a.2285.8 16
7.5 odd 6 5292.2.x.b.881.8 16
7.6 odd 2 5292.2.w.b.1097.8 16
9.2 odd 6 756.2.bm.a.89.1 16
9.4 even 3 2268.2.t.a.2105.1 16
9.5 odd 6 2268.2.t.b.2105.8 16
9.7 even 3 252.2.bm.a.173.2 yes 16
12.11 even 2 1008.2.ca.d.257.4 16
21.2 odd 6 1764.2.x.a.293.1 16
21.5 even 6 1764.2.x.b.293.8 16
21.11 odd 6 1764.2.bm.a.1697.7 16
21.17 even 6 252.2.bm.a.185.2 yes 16
21.20 even 2 1764.2.w.b.509.4 16
28.3 even 6 3024.2.df.d.17.1 16
36.7 odd 6 1008.2.df.d.929.7 16
36.11 even 6 3024.2.df.d.1601.1 16
63.2 odd 6 5292.2.x.b.4409.8 16
63.11 odd 6 5292.2.w.b.521.8 16
63.16 even 3 1764.2.x.b.1469.8 16
63.20 even 6 5292.2.bm.a.4625.8 16
63.25 even 3 1764.2.w.b.1109.4 16
63.31 odd 6 2268.2.t.b.1781.8 16
63.34 odd 6 1764.2.bm.a.1685.7 16
63.38 even 6 inner 756.2.w.a.521.1 16
63.47 even 6 5292.2.x.a.4409.1 16
63.52 odd 6 252.2.w.a.101.5 yes 16
63.59 even 6 2268.2.t.a.1781.1 16
63.61 odd 6 1764.2.x.a.1469.1 16
84.59 odd 6 1008.2.df.d.689.7 16
252.115 even 6 1008.2.ca.d.353.4 16
252.227 odd 6 3024.2.ca.d.2033.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.5 16 3.2 odd 2
252.2.w.a.101.5 yes 16 63.52 odd 6
252.2.bm.a.173.2 yes 16 9.7 even 3
252.2.bm.a.185.2 yes 16 21.17 even 6
756.2.w.a.341.1 16 1.1 even 1 trivial
756.2.w.a.521.1 16 63.38 even 6 inner
756.2.bm.a.17.1 16 7.3 odd 6
756.2.bm.a.89.1 16 9.2 odd 6
1008.2.ca.d.257.4 16 12.11 even 2
1008.2.ca.d.353.4 16 252.115 even 6
1008.2.df.d.689.7 16 84.59 odd 6
1008.2.df.d.929.7 16 36.7 odd 6
1764.2.w.b.509.4 16 21.20 even 2
1764.2.w.b.1109.4 16 63.25 even 3
1764.2.x.a.293.1 16 21.2 odd 6
1764.2.x.a.1469.1 16 63.61 odd 6
1764.2.x.b.293.8 16 21.5 even 6
1764.2.x.b.1469.8 16 63.16 even 3
1764.2.bm.a.1685.7 16 63.34 odd 6
1764.2.bm.a.1697.7 16 21.11 odd 6
2268.2.t.a.1781.1 16 63.59 even 6
2268.2.t.a.2105.1 16 9.4 even 3
2268.2.t.b.1781.8 16 63.31 odd 6
2268.2.t.b.2105.8 16 9.5 odd 6
3024.2.ca.d.2033.1 16 252.227 odd 6
3024.2.ca.d.2609.1 16 4.3 odd 2
3024.2.df.d.17.1 16 28.3 even 6
3024.2.df.d.1601.1 16 36.11 even 6
5292.2.w.b.521.8 16 63.11 odd 6
5292.2.w.b.1097.8 16 7.6 odd 2
5292.2.x.a.881.1 16 7.2 even 3
5292.2.x.a.4409.1 16 63.47 even 6
5292.2.x.b.881.8 16 7.5 odd 6
5292.2.x.b.4409.8 16 63.2 odd 6
5292.2.bm.a.2285.8 16 7.4 even 3
5292.2.bm.a.4625.8 16 63.20 even 6