Properties

Label 1764.2.bm.a.1697.7
Level $1764$
Weight $2$
Character 1764.1697
Analytic conductor $14.086$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(1685,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1685"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1697.7
Root \(-0.213160 + 1.71888i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1697
Dual form 1764.2.bm.a.1685.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.44376 - 0.956855i) q^{3} -2.86804 q^{5} +(1.16886 - 2.76293i) q^{9} +2.71286i q^{11} +(-3.18987 - 1.84167i) q^{13} +(-4.14074 + 2.74429i) q^{15} +(3.22192 - 5.58052i) q^{17} +(-2.73867 + 1.58117i) q^{19} +2.99146i q^{23} +3.22563 q^{25} +(-0.956179 - 5.10742i) q^{27} +(-2.48332 + 1.43375i) q^{29} +(-8.26739 + 4.77318i) q^{31} +(2.59581 + 3.91671i) q^{33} +(-1.70640 - 2.95556i) q^{37} +(-6.36761 + 0.393320i) q^{39} +(-0.794538 + 1.37618i) q^{41} +(-4.67828 - 8.10302i) q^{43} +(-3.35232 + 7.92418i) q^{45} +(-5.65372 + 9.79254i) q^{47} +(-0.688093 - 11.1398i) q^{51} +(-2.16419 - 1.24950i) q^{53} -7.78058i q^{55} +(-2.44102 + 4.90333i) q^{57} +(4.33680 + 7.51156i) q^{59} +(0.566915 + 0.327308i) q^{61} +(9.14867 + 5.28199i) q^{65} +(-3.86146 - 6.68825i) q^{67} +(2.86240 + 4.31894i) q^{69} +7.86582i q^{71} +(-11.0769 - 6.39527i) q^{73} +(4.65702 - 3.08646i) q^{75} +(-2.59566 + 4.49581i) q^{79} +(-6.26755 - 6.45894i) q^{81} +(-7.92948 - 13.7343i) q^{83} +(-9.24057 + 16.0051i) q^{85} +(-2.21342 + 4.44616i) q^{87} +(3.14826 + 5.45295i) q^{89} +(-7.36885 + 14.8020i) q^{93} +(7.85460 - 4.53486i) q^{95} +(-13.2065 + 7.62477i) q^{97} +(7.49544 + 3.17095i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{13} - 3 q^{15} + 9 q^{17} + 16 q^{25} + 9 q^{27} + 6 q^{29} - 6 q^{31} + 27 q^{33} + q^{37} - 3 q^{39} - 6 q^{41} - 2 q^{43} + 15 q^{45} + 18 q^{47} + 15 q^{51} + 15 q^{57} + 15 q^{59} - 3 q^{61}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.44376 0.956855i 0.833552 0.552440i
\(4\) 0 0
\(5\) −2.86804 −1.28262 −0.641312 0.767280i \(-0.721610\pi\)
−0.641312 + 0.767280i \(0.721610\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.16886 2.76293i 0.389619 0.920976i
\(10\) 0 0
\(11\) 2.71286i 0.817958i 0.912544 + 0.408979i \(0.134115\pi\)
−0.912544 + 0.408979i \(0.865885\pi\)
\(12\) 0 0
\(13\) −3.18987 1.84167i −0.884712 0.510789i −0.0125026 0.999922i \(-0.503980\pi\)
−0.872209 + 0.489133i \(0.837313\pi\)
\(14\) 0 0
\(15\) −4.14074 + 2.74429i −1.06913 + 0.708574i
\(16\) 0 0
\(17\) 3.22192 5.58052i 0.781429 1.35348i −0.149680 0.988735i \(-0.547824\pi\)
0.931109 0.364741i \(-0.118842\pi\)
\(18\) 0 0
\(19\) −2.73867 + 1.58117i −0.628294 + 0.362746i −0.780091 0.625666i \(-0.784827\pi\)
0.151797 + 0.988412i \(0.451494\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.99146i 0.623763i 0.950121 + 0.311882i \(0.100959\pi\)
−0.950121 + 0.311882i \(0.899041\pi\)
\(24\) 0 0
\(25\) 3.22563 0.645126
\(26\) 0 0
\(27\) −0.956179 5.10742i −0.184017 0.982923i
\(28\) 0 0
\(29\) −2.48332 + 1.43375i −0.461142 + 0.266240i −0.712524 0.701648i \(-0.752448\pi\)
0.251383 + 0.967888i \(0.419115\pi\)
\(30\) 0 0
\(31\) −8.26739 + 4.77318i −1.48487 + 0.857289i −0.999852 0.0172169i \(-0.994519\pi\)
−0.485016 + 0.874506i \(0.661186\pi\)
\(32\) 0 0
\(33\) 2.59581 + 3.91671i 0.451873 + 0.681811i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.70640 2.95556i −0.280530 0.485892i 0.690986 0.722868i \(-0.257177\pi\)
−0.971515 + 0.236977i \(0.923843\pi\)
\(38\) 0 0
\(39\) −6.36761 + 0.393320i −1.01963 + 0.0629816i
\(40\) 0 0
\(41\) −0.794538 + 1.37618i −0.124086 + 0.214923i −0.921375 0.388674i \(-0.872933\pi\)
0.797289 + 0.603597i \(0.206267\pi\)
\(42\) 0 0
\(43\) −4.67828 8.10302i −0.713431 1.23570i −0.963562 0.267487i \(-0.913807\pi\)
0.250131 0.968212i \(-0.419526\pi\)
\(44\) 0 0
\(45\) −3.35232 + 7.92418i −0.499735 + 1.18127i
\(46\) 0 0
\(47\) −5.65372 + 9.79254i −0.824680 + 1.42839i 0.0774831 + 0.996994i \(0.475312\pi\)
−0.902163 + 0.431394i \(0.858022\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.688093 11.1398i −0.0963523 1.55989i
\(52\) 0 0
\(53\) −2.16419 1.24950i −0.297275 0.171632i 0.343943 0.938990i \(-0.388237\pi\)
−0.641218 + 0.767359i \(0.721571\pi\)
\(54\) 0 0
\(55\) 7.78058i 1.04913i
\(56\) 0 0
\(57\) −2.44102 + 4.90333i −0.323320 + 0.649462i
\(58\) 0 0
\(59\) 4.33680 + 7.51156i 0.564604 + 0.977922i 0.997086 + 0.0762801i \(0.0243043\pi\)
−0.432483 + 0.901642i \(0.642362\pi\)
\(60\) 0 0
\(61\) 0.566915 + 0.327308i 0.0725860 + 0.0419075i 0.535854 0.844311i \(-0.319990\pi\)
−0.463268 + 0.886218i \(0.653323\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.14867 + 5.28199i 1.13475 + 0.655150i
\(66\) 0 0
\(67\) −3.86146 6.68825i −0.471752 0.817099i 0.527725 0.849415i \(-0.323045\pi\)
−0.999478 + 0.0323159i \(0.989712\pi\)
\(68\) 0 0
\(69\) 2.86240 + 4.31894i 0.344592 + 0.519939i
\(70\) 0 0
\(71\) 7.86582i 0.933501i 0.884389 + 0.466750i \(0.154575\pi\)
−0.884389 + 0.466750i \(0.845425\pi\)
\(72\) 0 0
\(73\) −11.0769 6.39527i −1.29646 0.748510i −0.316667 0.948537i \(-0.602564\pi\)
−0.979790 + 0.200027i \(0.935897\pi\)
\(74\) 0 0
\(75\) 4.65702 3.08646i 0.537746 0.356394i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.59566 + 4.49581i −0.292034 + 0.505819i −0.974291 0.225295i \(-0.927666\pi\)
0.682256 + 0.731113i \(0.260999\pi\)
\(80\) 0 0
\(81\) −6.26755 6.45894i −0.696394 0.717660i
\(82\) 0 0
\(83\) −7.92948 13.7343i −0.870373 1.50753i −0.861611 0.507569i \(-0.830544\pi\)
−0.00876173 0.999962i \(-0.502789\pi\)
\(84\) 0 0
\(85\) −9.24057 + 16.0051i −1.00228 + 1.73600i
\(86\) 0 0
\(87\) −2.21342 + 4.44616i −0.237304 + 0.476678i
\(88\) 0 0
\(89\) 3.14826 + 5.45295i 0.333715 + 0.578012i 0.983237 0.182331i \(-0.0583643\pi\)
−0.649522 + 0.760343i \(0.725031\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.36885 + 14.8020i −0.764114 + 1.53490i
\(94\) 0 0
\(95\) 7.85460 4.53486i 0.805865 0.465267i
\(96\) 0 0
\(97\) −13.2065 + 7.62477i −1.34092 + 0.774178i −0.986942 0.161077i \(-0.948503\pi\)
−0.353974 + 0.935255i \(0.615170\pi\)
\(98\) 0 0
\(99\) 7.49544 + 3.17095i 0.753320 + 0.318692i
\(100\) 0 0
\(101\) 3.48902 0.347170 0.173585 0.984819i \(-0.444465\pi\)
0.173585 + 0.984819i \(0.444465\pi\)
\(102\) 0 0
\(103\) 3.33894i 0.328996i −0.986377 0.164498i \(-0.947400\pi\)
0.986377 0.164498i \(-0.0526004\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.10776 1.79427i 0.300439 0.173458i −0.342201 0.939627i \(-0.611172\pi\)
0.642640 + 0.766168i \(0.277839\pi\)
\(108\) 0 0
\(109\) 6.89673 11.9455i 0.660587 1.14417i −0.319875 0.947460i \(-0.603641\pi\)
0.980462 0.196710i \(-0.0630258\pi\)
\(110\) 0 0
\(111\) −5.29166 2.63434i −0.502262 0.250040i
\(112\) 0 0
\(113\) −5.28607 3.05191i −0.497271 0.287100i 0.230315 0.973116i \(-0.426024\pi\)
−0.727586 + 0.686016i \(0.759358\pi\)
\(114\) 0 0
\(115\) 8.57963i 0.800054i
\(116\) 0 0
\(117\) −8.81692 + 6.66074i −0.815125 + 0.615785i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.64039 0.330945
\(122\) 0 0
\(123\) 0.169687 + 2.74712i 0.0153001 + 0.247700i
\(124\) 0 0
\(125\) 5.08895 0.455170
\(126\) 0 0
\(127\) −13.3819 −1.18745 −0.593727 0.804666i \(-0.702344\pi\)
−0.593727 + 0.804666i \(0.702344\pi\)
\(128\) 0 0
\(129\) −14.5077 7.22234i −1.27733 0.635891i
\(130\) 0 0
\(131\) 0.777928 0.0679679 0.0339839 0.999422i \(-0.489180\pi\)
0.0339839 + 0.999422i \(0.489180\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.74235 + 14.6483i 0.236024 + 1.26072i
\(136\) 0 0
\(137\) 16.5217i 1.41154i 0.708440 + 0.705771i \(0.249399\pi\)
−0.708440 + 0.705771i \(0.750601\pi\)
\(138\) 0 0
\(139\) 9.91826 + 5.72631i 0.841256 + 0.485699i 0.857691 0.514165i \(-0.171898\pi\)
−0.0164348 + 0.999865i \(0.505232\pi\)
\(140\) 0 0
\(141\) 1.20745 + 19.5478i 0.101685 + 1.64622i
\(142\) 0 0
\(143\) 4.99620 8.65368i 0.417804 0.723657i
\(144\) 0 0
\(145\) 7.12226 4.11204i 0.591472 0.341486i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.90494i 0.401829i −0.979609 0.200914i \(-0.935609\pi\)
0.979609 0.200914i \(-0.0643913\pi\)
\(150\) 0 0
\(151\) 9.85629 0.802093 0.401047 0.916058i \(-0.368647\pi\)
0.401047 + 0.916058i \(0.368647\pi\)
\(152\) 0 0
\(153\) −11.6526 15.4248i −0.942059 1.24702i
\(154\) 0 0
\(155\) 23.7112 13.6897i 1.90453 1.09958i
\(156\) 0 0
\(157\) 13.3514 7.70843i 1.06556 0.615200i 0.138593 0.990349i \(-0.455742\pi\)
0.926964 + 0.375149i \(0.122409\pi\)
\(158\) 0 0
\(159\) −4.32015 + 0.266851i −0.342610 + 0.0211626i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.72053 9.90825i −0.448066 0.776074i 0.550194 0.835037i \(-0.314554\pi\)
−0.998260 + 0.0589632i \(0.981221\pi\)
\(164\) 0 0
\(165\) −7.44489 11.2333i −0.579584 0.874508i
\(166\) 0 0
\(167\) −6.49103 + 11.2428i −0.502291 + 0.869993i 0.497706 + 0.867346i \(0.334176\pi\)
−0.999996 + 0.00264735i \(0.999157\pi\)
\(168\) 0 0
\(169\) 0.283528 + 0.491084i 0.0218098 + 0.0377757i
\(170\) 0 0
\(171\) 1.16755 + 9.41491i 0.0892848 + 0.719976i
\(172\) 0 0
\(173\) 9.79984 16.9738i 0.745068 1.29050i −0.205095 0.978742i \(-0.565750\pi\)
0.950163 0.311754i \(-0.100916\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.4488 + 6.69517i 1.01087 + 0.503239i
\(178\) 0 0
\(179\) 16.2630 + 9.38942i 1.21555 + 0.701799i 0.963963 0.266036i \(-0.0857140\pi\)
0.251588 + 0.967835i \(0.419047\pi\)
\(180\) 0 0
\(181\) 4.47775i 0.332829i 0.986056 + 0.166414i \(0.0532190\pi\)
−0.986056 + 0.166414i \(0.946781\pi\)
\(182\) 0 0
\(183\) 1.13167 0.0699021i 0.0836556 0.00516731i
\(184\) 0 0
\(185\) 4.89400 + 8.47666i 0.359814 + 0.623217i
\(186\) 0 0
\(187\) 15.1392 + 8.74061i 1.10709 + 0.639177i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.90050 3.40665i −0.426945 0.246497i 0.271099 0.962551i \(-0.412613\pi\)
−0.698044 + 0.716055i \(0.745946\pi\)
\(192\) 0 0
\(193\) 7.97694 + 13.8165i 0.574193 + 0.994531i 0.996129 + 0.0879053i \(0.0280173\pi\)
−0.421936 + 0.906626i \(0.638649\pi\)
\(194\) 0 0
\(195\) 18.2625 1.12806i 1.30781 0.0807817i
\(196\) 0 0
\(197\) 25.9511i 1.84894i −0.381254 0.924470i \(-0.624508\pi\)
0.381254 0.924470i \(-0.375492\pi\)
\(198\) 0 0
\(199\) −2.75706 1.59179i −0.195443 0.112839i 0.399085 0.916914i \(-0.369328\pi\)
−0.594528 + 0.804075i \(0.702661\pi\)
\(200\) 0 0
\(201\) −11.9747 5.96133i −0.844629 0.420480i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.27876 3.94693i 0.159156 0.275666i
\(206\) 0 0
\(207\) 8.26520 + 3.49659i 0.574471 + 0.243030i
\(208\) 0 0
\(209\) −4.28950 7.42963i −0.296711 0.513918i
\(210\) 0 0
\(211\) −0.0552411 + 0.0956804i −0.00380295 + 0.00658691i −0.867921 0.496703i \(-0.834544\pi\)
0.864118 + 0.503290i \(0.167877\pi\)
\(212\) 0 0
\(213\) 7.52645 + 11.3563i 0.515704 + 0.778122i
\(214\) 0 0
\(215\) 13.4175 + 23.2397i 0.915064 + 1.58494i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −22.1117 + 1.36582i −1.49417 + 0.0922933i
\(220\) 0 0
\(221\) −20.5550 + 11.8674i −1.38268 + 0.798290i
\(222\) 0 0
\(223\) 11.3064 6.52775i 0.757132 0.437130i −0.0711331 0.997467i \(-0.522661\pi\)
0.828265 + 0.560336i \(0.189328\pi\)
\(224\) 0 0
\(225\) 3.77030 8.91219i 0.251353 0.594146i
\(226\) 0 0
\(227\) −9.26784 −0.615128 −0.307564 0.951527i \(-0.599514\pi\)
−0.307564 + 0.951527i \(0.599514\pi\)
\(228\) 0 0
\(229\) 13.4180i 0.886689i 0.896351 + 0.443344i \(0.146208\pi\)
−0.896351 + 0.443344i \(0.853792\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.3415 10.5895i 1.20159 0.693738i 0.240681 0.970604i \(-0.422629\pi\)
0.960909 + 0.276866i \(0.0892958\pi\)
\(234\) 0 0
\(235\) 16.2151 28.0853i 1.05776 1.83209i
\(236\) 0 0
\(237\) 0.554346 + 8.97452i 0.0360086 + 0.582958i
\(238\) 0 0
\(239\) −7.73342 4.46489i −0.500233 0.288810i 0.228577 0.973526i \(-0.426593\pi\)
−0.728810 + 0.684716i \(0.759926\pi\)
\(240\) 0 0
\(241\) 18.4094i 1.18585i −0.805257 0.592926i \(-0.797973\pi\)
0.805257 0.592926i \(-0.202027\pi\)
\(242\) 0 0
\(243\) −15.2291 3.32799i −0.976945 0.213491i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11.6480 0.741145
\(248\) 0 0
\(249\) −24.5899 12.2415i −1.55832 0.775776i
\(250\) 0 0
\(251\) −6.33194 −0.399669 −0.199834 0.979830i \(-0.564040\pi\)
−0.199834 + 0.979830i \(0.564040\pi\)
\(252\) 0 0
\(253\) −8.11542 −0.510212
\(254\) 0 0
\(255\) 1.97348 + 31.9494i 0.123584 + 2.00075i
\(256\) 0 0
\(257\) −16.3857 −1.02211 −0.511054 0.859548i \(-0.670745\pi\)
−0.511054 + 0.859548i \(0.670745\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.05869 + 8.53709i 0.0655313 + 0.528433i
\(262\) 0 0
\(263\) 12.0854i 0.745217i 0.927989 + 0.372609i \(0.121537\pi\)
−0.927989 + 0.372609i \(0.878463\pi\)
\(264\) 0 0
\(265\) 6.20698 + 3.58360i 0.381292 + 0.220139i
\(266\) 0 0
\(267\) 9.76300 + 4.86029i 0.597486 + 0.297445i
\(268\) 0 0
\(269\) 12.6652 21.9368i 0.772212 1.33751i −0.164136 0.986438i \(-0.552484\pi\)
0.936348 0.351072i \(-0.114183\pi\)
\(270\) 0 0
\(271\) 0.195591 0.112924i 0.0118813 0.00685967i −0.494048 0.869435i \(-0.664483\pi\)
0.505929 + 0.862575i \(0.331150\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.75069i 0.527686i
\(276\) 0 0
\(277\) −20.4339 −1.22776 −0.613878 0.789401i \(-0.710391\pi\)
−0.613878 + 0.789401i \(0.710391\pi\)
\(278\) 0 0
\(279\) 3.52456 + 28.4214i 0.211010 + 1.70154i
\(280\) 0 0
\(281\) 8.96635 5.17672i 0.534887 0.308817i −0.208117 0.978104i \(-0.566733\pi\)
0.743004 + 0.669287i \(0.233400\pi\)
\(282\) 0 0
\(283\) −11.8781 + 6.85783i −0.706080 + 0.407656i −0.809608 0.586971i \(-0.800320\pi\)
0.103528 + 0.994627i \(0.466987\pi\)
\(284\) 0 0
\(285\) 7.00092 14.0629i 0.414699 0.833017i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −12.2615 21.2375i −0.721264 1.24927i
\(290\) 0 0
\(291\) −11.7711 + 23.6450i −0.690036 + 1.38609i
\(292\) 0 0
\(293\) 4.21527 7.30105i 0.246258 0.426532i −0.716226 0.697868i \(-0.754132\pi\)
0.962485 + 0.271336i \(0.0874655\pi\)
\(294\) 0 0
\(295\) −12.4381 21.5434i −0.724175 1.25431i
\(296\) 0 0
\(297\) 13.8557 2.59398i 0.803990 0.150518i
\(298\) 0 0
\(299\) 5.50930 9.54239i 0.318611 0.551851i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5.03729 3.33849i 0.289385 0.191791i
\(304\) 0 0
\(305\) −1.62593 0.938732i −0.0931006 0.0537516i
\(306\) 0 0
\(307\) 5.34345i 0.304967i −0.988306 0.152484i \(-0.951273\pi\)
0.988306 0.152484i \(-0.0487271\pi\)
\(308\) 0 0
\(309\) −3.19488 4.82061i −0.181751 0.274235i
\(310\) 0 0
\(311\) 4.70867 + 8.15565i 0.267004 + 0.462465i 0.968087 0.250615i \(-0.0806329\pi\)
−0.701083 + 0.713080i \(0.747300\pi\)
\(312\) 0 0
\(313\) −14.3347 8.27614i −0.810245 0.467795i 0.0367961 0.999323i \(-0.488285\pi\)
−0.847041 + 0.531528i \(0.821618\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.9725 13.2632i −1.29026 0.744934i −0.311563 0.950225i \(-0.600853\pi\)
−0.978701 + 0.205291i \(0.934186\pi\)
\(318\) 0 0
\(319\) −3.88956 6.73691i −0.217773 0.377194i
\(320\) 0 0
\(321\) 2.76999 5.56416i 0.154606 0.310561i
\(322\) 0 0
\(323\) 20.3776i 1.13384i
\(324\) 0 0
\(325\) −10.2894 5.94056i −0.570751 0.329523i
\(326\) 0 0
\(327\) −1.47291 23.8455i −0.0814521 1.31866i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.82000 15.2767i 0.484791 0.839682i −0.515056 0.857156i \(-0.672229\pi\)
0.999847 + 0.0174739i \(0.00556238\pi\)
\(332\) 0 0
\(333\) −10.1605 + 1.26002i −0.556794 + 0.0690485i
\(334\) 0 0
\(335\) 11.0748 + 19.1821i 0.605081 + 1.04803i
\(336\) 0 0
\(337\) 7.31169 12.6642i 0.398293 0.689864i −0.595222 0.803561i \(-0.702936\pi\)
0.993515 + 0.113697i \(0.0362694\pi\)
\(338\) 0 0
\(339\) −10.5520 + 0.651786i −0.573107 + 0.0354002i
\(340\) 0 0
\(341\) −12.9490 22.4283i −0.701226 1.21456i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.20946 12.3869i −0.441982 0.666887i
\(346\) 0 0
\(347\) 1.05563 0.609467i 0.0566691 0.0327179i −0.471398 0.881921i \(-0.656250\pi\)
0.528067 + 0.849203i \(0.322917\pi\)
\(348\) 0 0
\(349\) −10.6857 + 6.16942i −0.571995 + 0.330241i −0.757946 0.652318i \(-0.773797\pi\)
0.185951 + 0.982559i \(0.440463\pi\)
\(350\) 0 0
\(351\) −6.35611 + 18.0530i −0.339264 + 0.963597i
\(352\) 0 0
\(353\) 22.2969 1.18674 0.593372 0.804928i \(-0.297796\pi\)
0.593372 + 0.804928i \(0.297796\pi\)
\(354\) 0 0
\(355\) 22.5595i 1.19733i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.4819 + 6.05173i −0.553214 + 0.319398i −0.750417 0.660965i \(-0.770147\pi\)
0.197204 + 0.980363i \(0.436814\pi\)
\(360\) 0 0
\(361\) −4.49979 + 7.79387i −0.236831 + 0.410204i
\(362\) 0 0
\(363\) 5.25583 3.48333i 0.275860 0.182827i
\(364\) 0 0
\(365\) 31.7691 + 18.3419i 1.66287 + 0.960058i
\(366\) 0 0
\(367\) 14.7275i 0.768769i −0.923173 0.384385i \(-0.874414\pi\)
0.923173 0.384385i \(-0.125586\pi\)
\(368\) 0 0
\(369\) 2.87358 + 3.80381i 0.149593 + 0.198018i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −9.08558 −0.470433 −0.235217 0.971943i \(-0.575580\pi\)
−0.235217 + 0.971943i \(0.575580\pi\)
\(374\) 0 0
\(375\) 7.34720 4.86939i 0.379408 0.251454i
\(376\) 0 0
\(377\) 10.5620 0.543970
\(378\) 0 0
\(379\) 21.2298 1.09050 0.545250 0.838273i \(-0.316435\pi\)
0.545250 + 0.838273i \(0.316435\pi\)
\(380\) 0 0
\(381\) −19.3202 + 12.8046i −0.989806 + 0.655998i
\(382\) 0 0
\(383\) −6.70454 −0.342586 −0.171293 0.985220i \(-0.554794\pi\)
−0.171293 + 0.985220i \(0.554794\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −27.8563 + 3.45448i −1.41602 + 0.175601i
\(388\) 0 0
\(389\) 7.69794i 0.390301i 0.980773 + 0.195151i \(0.0625195\pi\)
−0.980773 + 0.195151i \(0.937480\pi\)
\(390\) 0 0
\(391\) 16.6939 + 9.63825i 0.844249 + 0.487427i
\(392\) 0 0
\(393\) 1.12314 0.744364i 0.0566548 0.0375482i
\(394\) 0 0
\(395\) 7.44444 12.8942i 0.374571 0.648775i
\(396\) 0 0
\(397\) 0.0428112 0.0247170i 0.00214863 0.00124051i −0.498925 0.866645i \(-0.666272\pi\)
0.501074 + 0.865404i \(0.332938\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.3272i 1.01509i 0.861625 + 0.507546i \(0.169447\pi\)
−0.861625 + 0.507546i \(0.830553\pi\)
\(402\) 0 0
\(403\) 35.1626 1.75157
\(404\) 0 0
\(405\) 17.9755 + 18.5245i 0.893212 + 0.920488i
\(406\) 0 0
\(407\) 8.01803 4.62921i 0.397439 0.229461i
\(408\) 0 0
\(409\) −12.1144 + 6.99428i −0.599021 + 0.345845i −0.768656 0.639662i \(-0.779074\pi\)
0.169636 + 0.985507i \(0.445741\pi\)
\(410\) 0 0
\(411\) 15.8088 + 23.8532i 0.779792 + 1.17659i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 22.7420 + 39.3903i 1.11636 + 1.93360i
\(416\) 0 0
\(417\) 19.7988 1.22295i 0.969551 0.0598880i
\(418\) 0 0
\(419\) 10.6718 18.4842i 0.521353 0.903010i −0.478339 0.878176i \(-0.658761\pi\)
0.999692 0.0248344i \(-0.00790585\pi\)
\(420\) 0 0
\(421\) 3.97287 + 6.88121i 0.193626 + 0.335370i 0.946449 0.322853i \(-0.104642\pi\)
−0.752823 + 0.658223i \(0.771309\pi\)
\(422\) 0 0
\(423\) 20.4477 + 27.0669i 0.994200 + 1.31604i
\(424\) 0 0
\(425\) 10.3927 18.0007i 0.504121 0.873163i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.06702 17.2744i −0.0515163 0.834018i
\(430\) 0 0
\(431\) 27.6515 + 15.9646i 1.33193 + 0.768989i 0.985595 0.169123i \(-0.0540934\pi\)
0.346333 + 0.938112i \(0.387427\pi\)
\(432\) 0 0
\(433\) 18.5300i 0.890493i 0.895408 + 0.445247i \(0.146884\pi\)
−0.895408 + 0.445247i \(0.853116\pi\)
\(434\) 0 0
\(435\) 6.34817 12.7517i 0.304372 0.611400i
\(436\) 0 0
\(437\) −4.73002 8.19263i −0.226267 0.391907i
\(438\) 0 0
\(439\) −1.80316 1.04106i −0.0860603 0.0496869i 0.456352 0.889799i \(-0.349156\pi\)
−0.542413 + 0.840112i \(0.682489\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.13895 + 1.23493i 0.101625 + 0.0586731i 0.549951 0.835197i \(-0.314646\pi\)
−0.448326 + 0.893870i \(0.647980\pi\)
\(444\) 0 0
\(445\) −9.02933 15.6393i −0.428031 0.741372i
\(446\) 0 0
\(447\) −4.69332 7.08154i −0.221986 0.334945i
\(448\) 0 0
\(449\) 37.5094i 1.77018i −0.465424 0.885088i \(-0.654098\pi\)
0.465424 0.885088i \(-0.345902\pi\)
\(450\) 0 0
\(451\) −3.73338 2.15547i −0.175798 0.101497i
\(452\) 0 0
\(453\) 14.2301 9.43104i 0.668587 0.443109i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.92345 + 5.06356i −0.136753 + 0.236864i −0.926266 0.376871i \(-0.877000\pi\)
0.789513 + 0.613734i \(0.210333\pi\)
\(458\) 0 0
\(459\) −31.5828 11.1197i −1.47416 0.519023i
\(460\) 0 0
\(461\) 3.82830 + 6.63081i 0.178302 + 0.308827i 0.941299 0.337574i \(-0.109606\pi\)
−0.762997 + 0.646402i \(0.776273\pi\)
\(462\) 0 0
\(463\) 4.89449 8.47751i 0.227466 0.393983i −0.729590 0.683885i \(-0.760289\pi\)
0.957057 + 0.289901i \(0.0936225\pi\)
\(464\) 0 0
\(465\) 21.1341 42.4527i 0.980071 1.96870i
\(466\) 0 0
\(467\) 14.0806 + 24.3883i 0.651572 + 1.12856i 0.982741 + 0.184985i \(0.0592235\pi\)
−0.331169 + 0.943571i \(0.607443\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 11.9003 23.9044i 0.548337 1.10146i
\(472\) 0 0
\(473\) 21.9824 12.6915i 1.01075 0.583557i
\(474\) 0 0
\(475\) −8.83394 + 5.10028i −0.405329 + 0.234017i
\(476\) 0 0
\(477\) −5.98190 + 4.51903i −0.273893 + 0.206912i
\(478\) 0 0
\(479\) 29.6105 1.35294 0.676470 0.736470i \(-0.263509\pi\)
0.676470 + 0.736470i \(0.263509\pi\)
\(480\) 0 0
\(481\) 12.5705i 0.573165i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 37.8767 21.8681i 1.71989 0.992980i
\(486\) 0 0
\(487\) −14.6701 + 25.4094i −0.664767 + 1.15141i 0.314582 + 0.949230i \(0.398136\pi\)
−0.979348 + 0.202180i \(0.935198\pi\)
\(488\) 0 0
\(489\) −17.7398 8.83136i −0.802221 0.399368i
\(490\) 0 0
\(491\) −8.63745 4.98683i −0.389803 0.225053i 0.292272 0.956335i \(-0.405589\pi\)
−0.682075 + 0.731283i \(0.738922\pi\)
\(492\) 0 0
\(493\) 18.4777i 0.832192i
\(494\) 0 0
\(495\) −21.4972 9.09439i −0.966227 0.408762i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −19.5957 −0.877223 −0.438611 0.898677i \(-0.644530\pi\)
−0.438611 + 0.898677i \(0.644530\pi\)
\(500\) 0 0
\(501\) 1.38627 + 22.4428i 0.0619338 + 1.00267i
\(502\) 0 0
\(503\) 21.2907 0.949304 0.474652 0.880174i \(-0.342574\pi\)
0.474652 + 0.880174i \(0.342574\pi\)
\(504\) 0 0
\(505\) −10.0066 −0.445289
\(506\) 0 0
\(507\) 0.879241 + 0.437711i 0.0390485 + 0.0194394i
\(508\) 0 0
\(509\) −43.6614 −1.93526 −0.967630 0.252375i \(-0.918788\pi\)
−0.967630 + 0.252375i \(0.918788\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 10.6944 + 12.4756i 0.472168 + 0.550813i
\(514\) 0 0
\(515\) 9.57621i 0.421978i
\(516\) 0 0
\(517\) −26.5658 15.3378i −1.16836 0.674554i
\(518\) 0 0
\(519\) −2.09292 33.8831i −0.0918689 1.48730i
\(520\) 0 0
\(521\) 2.60043 4.50408i 0.113927 0.197327i −0.803423 0.595408i \(-0.796990\pi\)
0.917350 + 0.398081i \(0.130324\pi\)
\(522\) 0 0
\(523\) 34.7043 20.0365i 1.51751 0.876137i 0.517726 0.855547i \(-0.326779\pi\)
0.999788 0.0205902i \(-0.00655454\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 61.5152i 2.67964i
\(528\) 0 0
\(529\) 14.0511 0.610919
\(530\) 0 0
\(531\) 25.8230 3.20233i 1.12062 0.138969i
\(532\) 0 0
\(533\) 5.06895 2.92656i 0.219561 0.126763i
\(534\) 0 0
\(535\) −8.91317 + 5.14602i −0.385350 + 0.222482i
\(536\) 0 0
\(537\) 32.4640 2.00527i 1.40093 0.0865336i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.12096 7.13771i −0.177174 0.306874i 0.763738 0.645527i \(-0.223362\pi\)
−0.940911 + 0.338653i \(0.890029\pi\)
\(542\) 0 0
\(543\) 4.28456 + 6.46478i 0.183868 + 0.277430i
\(544\) 0 0
\(545\) −19.7801 + 34.2601i −0.847285 + 1.46754i
\(546\) 0 0
\(547\) −2.53756 4.39518i −0.108498 0.187925i 0.806664 0.591011i \(-0.201271\pi\)
−0.915162 + 0.403086i \(0.867938\pi\)
\(548\) 0 0
\(549\) 1.56697 1.18377i 0.0668767 0.0505220i
\(550\) 0 0
\(551\) 4.53400 7.85312i 0.193155 0.334554i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 15.1767 + 7.55537i 0.644214 + 0.320708i
\(556\) 0 0
\(557\) −37.6102 21.7142i −1.59359 0.920062i −0.992684 0.120745i \(-0.961472\pi\)
−0.600910 0.799316i \(-0.705195\pi\)
\(558\) 0 0
\(559\) 34.4635i 1.45765i
\(560\) 0 0
\(561\) 30.2208 1.86670i 1.27592 0.0788122i
\(562\) 0 0
\(563\) 4.99118 + 8.64498i 0.210353 + 0.364343i 0.951825 0.306641i \(-0.0992052\pi\)
−0.741472 + 0.670984i \(0.765872\pi\)
\(564\) 0 0
\(565\) 15.1606 + 8.75300i 0.637813 + 0.368241i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.0597 8.11739i −0.589415 0.340299i 0.175451 0.984488i \(-0.443862\pi\)
−0.764866 + 0.644189i \(0.777195\pi\)
\(570\) 0 0
\(571\) 6.31028 + 10.9297i 0.264077 + 0.457395i 0.967321 0.253553i \(-0.0815994\pi\)
−0.703244 + 0.710948i \(0.748266\pi\)
\(572\) 0 0
\(573\) −11.7785 + 0.727547i −0.492056 + 0.0303937i
\(574\) 0 0
\(575\) 9.64936i 0.402406i
\(576\) 0 0
\(577\) 4.18012 + 2.41339i 0.174020 + 0.100471i 0.584480 0.811408i \(-0.301298\pi\)
−0.410460 + 0.911879i \(0.634632\pi\)
\(578\) 0 0
\(579\) 24.7371 + 12.3148i 1.02804 + 0.511786i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.38971 5.87115i 0.140387 0.243158i
\(584\) 0 0
\(585\) 25.2872 19.1032i 1.04550 0.789822i
\(586\) 0 0
\(587\) 5.26032 + 9.11114i 0.217117 + 0.376057i 0.953925 0.300044i \(-0.0970015\pi\)
−0.736809 + 0.676101i \(0.763668\pi\)
\(588\) 0 0
\(589\) 15.0944 26.1443i 0.621955 1.07726i
\(590\) 0 0
\(591\) −24.8315 37.4671i −1.02143 1.54119i
\(592\) 0 0
\(593\) 14.7342 + 25.5205i 0.605063 + 1.04800i 0.992042 + 0.125911i \(0.0401853\pi\)
−0.386979 + 0.922089i \(0.626481\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.50362 + 0.339952i −0.225248 + 0.0139133i
\(598\) 0 0
\(599\) −7.11658 + 4.10876i −0.290776 + 0.167879i −0.638292 0.769795i \(-0.720359\pi\)
0.347516 + 0.937674i \(0.387025\pi\)
\(600\) 0 0
\(601\) 32.7131 18.8869i 1.33439 0.770413i 0.348425 0.937337i \(-0.386717\pi\)
0.985970 + 0.166924i \(0.0533833\pi\)
\(602\) 0 0
\(603\) −22.9926 + 2.85133i −0.936333 + 0.116115i
\(604\) 0 0
\(605\) −10.4408 −0.424478
\(606\) 0 0
\(607\) 35.6221i 1.44586i −0.690923 0.722929i \(-0.742796\pi\)
0.690923 0.722929i \(-0.257204\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0693 20.8246i 1.45921 0.842474i
\(612\) 0 0
\(613\) 11.9660 20.7256i 0.483301 0.837101i −0.516516 0.856278i \(-0.672771\pi\)
0.999816 + 0.0191767i \(0.00610451\pi\)
\(614\) 0 0
\(615\) −0.486667 7.87885i −0.0196243 0.317706i
\(616\) 0 0
\(617\) −1.98622 1.14675i −0.0799623 0.0461663i 0.459486 0.888185i \(-0.348034\pi\)
−0.539448 + 0.842019i \(0.681367\pi\)
\(618\) 0 0
\(619\) 10.5171i 0.422717i 0.977409 + 0.211359i \(0.0677888\pi\)
−0.977409 + 0.211359i \(0.932211\pi\)
\(620\) 0 0
\(621\) 15.2787 2.86037i 0.613112 0.114783i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −30.7235 −1.22894
\(626\) 0 0
\(627\) −13.3021 6.62214i −0.531233 0.264463i
\(628\) 0 0
\(629\) −21.9914 −0.876856
\(630\) 0 0
\(631\) −2.02836 −0.0807477 −0.0403739 0.999185i \(-0.512855\pi\)
−0.0403739 + 0.999185i \(0.512855\pi\)
\(632\) 0 0
\(633\) 0.0117976 + 0.190997i 0.000468914 + 0.00759144i
\(634\) 0 0
\(635\) 38.3799 1.52306
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 21.7327 + 9.19402i 0.859732 + 0.363710i
\(640\) 0 0
\(641\) 12.4451i 0.491553i −0.969326 0.245777i \(-0.920957\pi\)
0.969326 0.245777i \(-0.0790430\pi\)
\(642\) 0 0
\(643\) −12.3358 7.12209i −0.486477 0.280868i 0.236635 0.971599i \(-0.423956\pi\)
−0.723112 + 0.690731i \(0.757289\pi\)
\(644\) 0 0
\(645\) 41.6086 + 20.7139i 1.63834 + 0.815610i
\(646\) 0 0
\(647\) −10.1910 + 17.6513i −0.400649 + 0.693945i −0.993804 0.111143i \(-0.964549\pi\)
0.593155 + 0.805088i \(0.297882\pi\)
\(648\) 0 0
\(649\) −20.3778 + 11.7651i −0.799899 + 0.461822i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.72186i 0.341313i 0.985331 + 0.170656i \(0.0545888\pi\)
−0.985331 + 0.170656i \(0.945411\pi\)
\(654\) 0 0
\(655\) −2.23113 −0.0871773
\(656\) 0 0
\(657\) −30.6170 + 23.1296i −1.19448 + 0.902373i
\(658\) 0 0
\(659\) −16.7524 + 9.67200i −0.652581 + 0.376768i −0.789444 0.613822i \(-0.789631\pi\)
0.136864 + 0.990590i \(0.456298\pi\)
\(660\) 0 0
\(661\) 31.8948 18.4145i 1.24056 0.716240i 0.271355 0.962479i \(-0.412528\pi\)
0.969209 + 0.246239i \(0.0791949\pi\)
\(662\) 0 0
\(663\) −18.3210 + 36.8018i −0.711528 + 1.42926i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.28900 7.42877i −0.166071 0.287643i
\(668\) 0 0
\(669\) 10.0776 20.2430i 0.389621 0.782641i
\(670\) 0 0
\(671\) −0.887942 + 1.53796i −0.0342786 + 0.0593723i
\(672\) 0 0
\(673\) 8.79204 + 15.2283i 0.338908 + 0.587006i 0.984228 0.176907i \(-0.0566091\pi\)
−0.645319 + 0.763913i \(0.723276\pi\)
\(674\) 0 0
\(675\) −3.08428 16.4746i −0.118714 0.634110i
\(676\) 0 0
\(677\) −20.4146 + 35.3590i −0.784595 + 1.35896i 0.144646 + 0.989484i \(0.453796\pi\)
−0.929241 + 0.369475i \(0.879538\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −13.3805 + 8.86797i −0.512741 + 0.339822i
\(682\) 0 0
\(683\) 8.56287 + 4.94377i 0.327649 + 0.189168i 0.654797 0.755805i \(-0.272754\pi\)
−0.327148 + 0.944973i \(0.606088\pi\)
\(684\) 0 0
\(685\) 47.3847i 1.81048i
\(686\) 0 0
\(687\) 12.8391 + 19.3724i 0.489843 + 0.739102i
\(688\) 0 0
\(689\) 4.60233 + 7.97148i 0.175335 + 0.303689i
\(690\) 0 0
\(691\) −37.9217 21.8941i −1.44261 0.832891i −0.444587 0.895736i \(-0.646649\pi\)
−0.998023 + 0.0628444i \(0.979983\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.4459 16.4233i −1.07902 0.622970i
\(696\) 0 0
\(697\) 5.11987 + 8.86787i 0.193929 + 0.335894i
\(698\) 0 0
\(699\) 16.3480 32.8387i 0.618339 1.24207i
\(700\) 0 0
\(701\) 29.6742i 1.12078i 0.828229 + 0.560389i \(0.189349\pi\)
−0.828229 + 0.560389i \(0.810651\pi\)
\(702\) 0 0
\(703\) 9.34651 + 5.39621i 0.352510 + 0.203522i
\(704\) 0 0
\(705\) −3.46300 56.0638i −0.130424 2.11149i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.5269 + 40.7498i −0.883572 + 1.53039i −0.0362296 + 0.999343i \(0.511535\pi\)
−0.847342 + 0.531048i \(0.821799\pi\)
\(710\) 0 0
\(711\) 9.38766 + 12.4266i 0.352065 + 0.466033i
\(712\) 0 0
\(713\) −14.2788 24.7316i −0.534745 0.926206i
\(714\) 0 0
\(715\) −14.3293 + 24.8191i −0.535885 + 0.928180i
\(716\) 0 0
\(717\) −15.4374 + 0.953551i −0.576521 + 0.0356110i
\(718\) 0 0
\(719\) 0.909148 + 1.57469i 0.0339055 + 0.0587261i 0.882480 0.470349i \(-0.155872\pi\)
−0.848575 + 0.529076i \(0.822539\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −17.6151 26.5786i −0.655113 0.988470i
\(724\) 0 0
\(725\) −8.01029 + 4.62474i −0.297495 + 0.171759i
\(726\) 0 0
\(727\) 21.7854 12.5778i 0.807976 0.466485i −0.0382766 0.999267i \(-0.512187\pi\)
0.846252 + 0.532782i \(0.178853\pi\)
\(728\) 0 0
\(729\) −25.1714 + 9.76721i −0.932276 + 0.361748i
\(730\) 0 0
\(731\) −60.2921 −2.22998
\(732\) 0 0
\(733\) 4.44032i 0.164007i −0.996632 0.0820034i \(-0.973868\pi\)
0.996632 0.0820034i \(-0.0261319\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 18.1443 10.4756i 0.668353 0.385874i
\(738\) 0 0
\(739\) −8.97608 + 15.5470i −0.330191 + 0.571907i −0.982549 0.186004i \(-0.940446\pi\)
0.652358 + 0.757911i \(0.273780\pi\)
\(740\) 0 0
\(741\) 16.8169 11.1455i 0.617783 0.409439i
\(742\) 0 0
\(743\) −31.3712 18.1122i −1.15090 0.664472i −0.201793 0.979428i \(-0.564677\pi\)
−0.949106 + 0.314956i \(0.898010\pi\)
\(744\) 0 0
\(745\) 14.0676i 0.515395i
\(746\) 0 0
\(747\) −47.2152 + 5.85519i −1.72751 + 0.214230i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 11.9642 0.436580 0.218290 0.975884i \(-0.429952\pi\)
0.218290 + 0.975884i \(0.429952\pi\)
\(752\) 0 0
\(753\) −9.14177 + 6.05875i −0.333145 + 0.220793i
\(754\) 0 0
\(755\) −28.2682 −1.02878
\(756\) 0 0
\(757\) −49.4440 −1.79707 −0.898537 0.438898i \(-0.855369\pi\)
−0.898537 + 0.438898i \(0.855369\pi\)
\(758\) 0 0
\(759\) −11.7167 + 7.76528i −0.425289 + 0.281862i
\(760\) 0 0
\(761\) −29.2384 −1.05989 −0.529945 0.848032i \(-0.677788\pi\)
−0.529945 + 0.848032i \(0.677788\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 33.4201 + 44.2388i 1.20831 + 1.59946i
\(766\) 0 0
\(767\) 31.9479i 1.15357i
\(768\) 0 0
\(769\) −4.54689 2.62515i −0.163965 0.0946653i 0.415772 0.909469i \(-0.363511\pi\)
−0.579737 + 0.814804i \(0.696845\pi\)
\(770\) 0 0
\(771\) −23.6569 + 15.6787i −0.851981 + 0.564654i
\(772\) 0 0
\(773\) −15.6829 + 27.1635i −0.564073 + 0.977003i 0.433062 + 0.901364i \(0.357433\pi\)
−0.997135 + 0.0756393i \(0.975900\pi\)
\(774\) 0 0
\(775\) −26.6676 + 15.3965i −0.957927 + 0.553059i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.02520i 0.180047i
\(780\) 0 0
\(781\) −21.3389 −0.763565
\(782\) 0 0
\(783\) 9.69725 + 11.3125i 0.346551 + 0.404274i
\(784\) 0 0
\(785\) −38.2923 + 22.1081i −1.36671 + 0.789071i
\(786\) 0 0
\(787\) 1.59324 0.919855i 0.0567927 0.0327893i −0.471335 0.881954i \(-0.656228\pi\)
0.528128 + 0.849165i \(0.322894\pi\)
\(788\) 0 0
\(789\) 11.5640 + 17.4483i 0.411688 + 0.621178i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.20559 2.08814i −0.0428118 0.0741522i
\(794\) 0 0
\(795\) 12.3904 0.765337i 0.439440 0.0271437i
\(796\) 0 0
\(797\) −6.39659 + 11.0792i −0.226579 + 0.392446i −0.956792 0.290773i \(-0.906087\pi\)
0.730213 + 0.683219i \(0.239421\pi\)
\(798\) 0 0
\(799\) 36.4316 + 63.1015i 1.28886 + 2.23237i
\(800\) 0 0
\(801\) 18.7460 2.32470i 0.662357 0.0821394i
\(802\) 0 0
\(803\) 17.3495 30.0502i 0.612250 1.06045i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.70486 43.7901i −0.0952158 1.54149i
\(808\) 0 0
\(809\) −12.9217 7.46032i −0.454301 0.262291i 0.255344 0.966850i \(-0.417811\pi\)
−0.709645 + 0.704559i \(0.751145\pi\)
\(810\) 0 0
\(811\) 37.5478i 1.31848i 0.751933 + 0.659240i \(0.229122\pi\)
−0.751933 + 0.659240i \(0.770878\pi\)
\(812\) 0 0
\(813\) 0.174333 0.350187i 0.00611413 0.0122816i
\(814\) 0 0
\(815\) 16.4067 + 28.4172i 0.574701 + 0.995411i
\(816\) 0 0
\(817\) 25.6245 + 14.7943i 0.896489 + 0.517588i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.88164 1.66371i −0.100570 0.0580640i 0.448872 0.893596i \(-0.351826\pi\)
−0.549441 + 0.835532i \(0.685159\pi\)
\(822\) 0 0
\(823\) −25.4654 44.1073i −0.887667 1.53748i −0.842626 0.538499i \(-0.818992\pi\)
−0.0450407 0.998985i \(-0.514342\pi\)
\(824\) 0 0
\(825\) 8.37314 + 12.6338i 0.291515 + 0.439854i
\(826\) 0 0
\(827\) 16.9198i 0.588360i −0.955750 0.294180i \(-0.904954\pi\)
0.955750 0.294180i \(-0.0950465\pi\)
\(828\) 0 0
\(829\) 4.65467 + 2.68737i 0.161663 + 0.0933364i 0.578649 0.815577i \(-0.303580\pi\)
−0.416986 + 0.908913i \(0.636913\pi\)
\(830\) 0 0
\(831\) −29.5016 + 19.5523i −1.02340 + 0.678262i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 18.6165 32.2447i 0.644251 1.11588i
\(836\) 0 0
\(837\) 32.2837 + 37.6610i 1.11589 + 1.30176i
\(838\) 0 0
\(839\) −11.8714 20.5618i −0.409846 0.709874i 0.585026 0.811014i \(-0.301084\pi\)
−0.994872 + 0.101140i \(0.967751\pi\)
\(840\) 0 0
\(841\) −10.3887 + 17.9938i −0.358232 + 0.620477i
\(842\) 0 0
\(843\) 7.99183 16.0534i 0.275253 0.552909i
\(844\) 0 0
\(845\) −0.813168 1.40845i −0.0279738 0.0484521i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −10.5871 + 21.2667i −0.363349 + 0.729870i
\(850\) 0 0
\(851\) 8.84146 5.10462i 0.303081 0.174984i
\(852\) 0 0
\(853\) −10.3810 + 5.99345i −0.355437 + 0.205212i −0.667077 0.744988i \(-0.732455\pi\)
0.311640 + 0.950200i \(0.399122\pi\)
\(854\) 0 0
\(855\) −3.34858 27.0023i −0.114519 0.923459i
\(856\) 0 0
\(857\) −55.0635 −1.88093 −0.940467 0.339885i \(-0.889612\pi\)
−0.940467 + 0.339885i \(0.889612\pi\)
\(858\) 0 0
\(859\) 39.1210i 1.33479i 0.744704 + 0.667395i \(0.232591\pi\)
−0.744704 + 0.667395i \(0.767409\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.2319 + 22.6506i −1.33547 + 0.771034i −0.986132 0.165963i \(-0.946927\pi\)
−0.349338 + 0.936997i \(0.613593\pi\)
\(864\) 0 0
\(865\) −28.1063 + 48.6815i −0.955643 + 1.65522i
\(866\) 0 0
\(867\) −38.0238 18.9293i −1.29136 0.642873i
\(868\) 0 0
\(869\) −12.1965 7.04166i −0.413738 0.238872i
\(870\) 0 0
\(871\) 28.4462i 0.963863i
\(872\) 0 0
\(873\) 5.63020 + 45.4009i 0.190553 + 1.53659i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −4.05651 −0.136979 −0.0684893 0.997652i \(-0.521818\pi\)
−0.0684893 + 0.997652i \(0.521818\pi\)
\(878\) 0 0
\(879\) −0.900239 14.5743i −0.0303643 0.491580i
\(880\) 0 0
\(881\) 54.3727 1.83186 0.915931 0.401336i \(-0.131454\pi\)
0.915931 + 0.401336i \(0.131454\pi\)
\(882\) 0 0
\(883\) 23.1175 0.777965 0.388982 0.921245i \(-0.372827\pi\)
0.388982 + 0.921245i \(0.372827\pi\)
\(884\) 0 0
\(885\) −38.5715 19.2020i −1.29657 0.645467i
\(886\) 0 0
\(887\) −25.5636 −0.858342 −0.429171 0.903223i \(-0.641194\pi\)
−0.429171 + 0.903223i \(0.641194\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 17.5222 17.0030i 0.587016 0.569621i
\(892\) 0 0
\(893\) 35.7580i 1.19660i
\(894\) 0 0
\(895\) −46.6428 26.9292i −1.55910 0.900144i
\(896\) 0 0
\(897\) −1.17660 19.0485i −0.0392856 0.636010i
\(898\) 0 0
\(899\) 13.6871 23.7067i 0.456489 0.790663i
\(900\) 0 0
\(901\) −13.9457 + 8.05155i −0.464598 + 0.268236i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.8424i 0.426895i
\(906\) 0 0
\(907\) −37.0130 −1.22900 −0.614498 0.788918i \(-0.710641\pi\)
−0.614498 + 0.788918i \(0.710641\pi\)
\(908\) 0 0
\(909\) 4.07817 9.63991i 0.135264 0.319736i
\(910\) 0 0
\(911\) 3.16266 1.82596i 0.104784 0.0604969i −0.446692 0.894688i \(-0.647398\pi\)
0.551476 + 0.834191i \(0.314065\pi\)
\(912\) 0 0
\(913\) 37.2591 21.5116i 1.23310 0.711929i
\(914\) 0 0
\(915\) −3.24568 + 0.200482i −0.107299 + 0.00662772i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17.3994 + 30.1367i 0.573954 + 0.994117i 0.996154 + 0.0876145i \(0.0279244\pi\)
−0.422201 + 0.906502i \(0.638742\pi\)
\(920\) 0 0
\(921\) −5.11291 7.71464i −0.168476 0.254206i
\(922\) 0 0
\(923\) 14.4863 25.0910i 0.476822 0.825879i
\(924\) 0 0
\(925\) −5.50420 9.53356i −0.180977 0.313461i
\(926\) 0 0
\(927\) −9.22526 3.90275i −0.302997 0.128183i
\(928\) 0 0
\(929\) 25.1736 43.6019i 0.825917 1.43053i −0.0752987 0.997161i \(-0.523991\pi\)
0.901216 0.433370i \(-0.142676\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 14.6019 + 7.26925i 0.478046 + 0.237985i
\(934\) 0 0
\(935\) −43.4197 25.0684i −1.41998 0.819824i
\(936\) 0 0
\(937\) 6.48087i 0.211721i 0.994381 + 0.105860i \(0.0337596\pi\)
−0.994381 + 0.105860i \(0.966240\pi\)
\(938\) 0 0
\(939\) −28.6148 + 1.76751i −0.933810 + 0.0576804i
\(940\) 0 0
\(941\) −0.334024 0.578547i −0.0108889 0.0188601i 0.860530 0.509400i \(-0.170133\pi\)
−0.871418 + 0.490540i \(0.836799\pi\)
\(942\) 0 0
\(943\) −4.11679 2.37683i −0.134061 0.0774003i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −50.7461 29.2983i −1.64903 0.952067i −0.977459 0.211125i \(-0.932287\pi\)
−0.671569 0.740942i \(-0.734379\pi\)
\(948\) 0 0
\(949\) 23.5560 + 40.8002i 0.764661 + 1.32443i
\(950\) 0 0
\(951\) −45.8576 + 2.83257i −1.48703 + 0.0918524i
\(952\) 0 0
\(953\) 48.3707i 1.56688i 0.621467 + 0.783441i \(0.286537\pi\)
−0.621467 + 0.783441i \(0.713463\pi\)
\(954\) 0 0
\(955\) 16.9228 + 9.77041i 0.547610 + 0.316163i
\(956\) 0 0
\(957\) −12.0618 6.00470i −0.389903 0.194105i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.0665 52.0767i 0.969887 1.67989i
\(962\) 0 0
\(963\) −1.32490 10.6838i −0.0426944 0.344279i
\(964\) 0 0
\(965\) −22.8781 39.6261i −0.736474 1.27561i
\(966\) 0 0
\(967\) 8.51390 14.7465i 0.273788 0.474216i −0.696040 0.718003i \(-0.745057\pi\)
0.969829 + 0.243787i \(0.0783898\pi\)
\(968\) 0 0
\(969\) 19.4984 + 29.4203i 0.626379 + 0.945115i
\(970\) 0 0
\(971\) 13.5651 + 23.4955i 0.435325 + 0.754006i 0.997322 0.0731339i \(-0.0233000\pi\)
−0.561997 + 0.827139i \(0.689967\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −20.5396 + 1.26870i −0.657792 + 0.0406311i
\(976\) 0 0
\(977\) 5.49838 3.17449i 0.175909 0.101561i −0.409460 0.912328i \(-0.634283\pi\)
0.585369 + 0.810767i \(0.300950\pi\)
\(978\) 0 0
\(979\) −14.7931 + 8.54080i −0.472789 + 0.272965i
\(980\) 0 0
\(981\) −24.9432 33.0177i −0.796376 1.05418i
\(982\) 0 0
\(983\) −19.9660 −0.636817 −0.318408 0.947954i \(-0.603148\pi\)
−0.318408 + 0.947954i \(0.603148\pi\)
\(984\) 0 0
\(985\) 74.4288i 2.37150i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.2399 13.9949i 0.770784 0.445012i
\(990\) 0 0
\(991\) 6.38803 11.0644i 0.202922 0.351472i −0.746546 0.665333i \(-0.768289\pi\)
0.949469 + 0.313861i \(0.101623\pi\)
\(992\) 0 0
\(993\) −1.88366 30.4952i −0.0597760 0.967737i
\(994\) 0 0
\(995\) 7.90734 + 4.56530i 0.250679 + 0.144730i
\(996\) 0 0
\(997\) 20.7669i 0.657694i 0.944383 + 0.328847i \(0.106660\pi\)
−0.944383 + 0.328847i \(0.893340\pi\)
\(998\) 0 0
\(999\) −13.4637 + 11.5413i −0.425972 + 0.365151i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.bm.a.1697.7 16
3.2 odd 2 5292.2.bm.a.2285.8 16
7.2 even 3 252.2.w.a.5.5 16
7.3 odd 6 1764.2.x.b.293.8 16
7.4 even 3 1764.2.x.a.293.1 16
7.5 odd 6 1764.2.w.b.509.4 16
7.6 odd 2 252.2.bm.a.185.2 yes 16
9.2 odd 6 1764.2.w.b.1109.4 16
9.7 even 3 5292.2.w.b.521.8 16
21.2 odd 6 756.2.w.a.341.1 16
21.5 even 6 5292.2.w.b.1097.8 16
21.11 odd 6 5292.2.x.a.881.1 16
21.17 even 6 5292.2.x.b.881.8 16
21.20 even 2 756.2.bm.a.17.1 16
28.23 odd 6 1008.2.ca.d.257.4 16
28.27 even 2 1008.2.df.d.689.7 16
63.2 odd 6 252.2.bm.a.173.2 yes 16
63.11 odd 6 1764.2.x.b.1469.8 16
63.13 odd 6 2268.2.t.a.1781.1 16
63.16 even 3 756.2.bm.a.89.1 16
63.20 even 6 252.2.w.a.101.5 yes 16
63.23 odd 6 2268.2.t.a.2105.1 16
63.25 even 3 5292.2.x.b.4409.8 16
63.34 odd 6 756.2.w.a.521.1 16
63.38 even 6 1764.2.x.a.1469.1 16
63.41 even 6 2268.2.t.b.1781.8 16
63.47 even 6 inner 1764.2.bm.a.1685.7 16
63.52 odd 6 5292.2.x.a.4409.1 16
63.58 even 3 2268.2.t.b.2105.8 16
63.61 odd 6 5292.2.bm.a.4625.8 16
84.23 even 6 3024.2.ca.d.2609.1 16
84.83 odd 2 3024.2.df.d.17.1 16
252.79 odd 6 3024.2.df.d.1601.1 16
252.83 odd 6 1008.2.ca.d.353.4 16
252.191 even 6 1008.2.df.d.929.7 16
252.223 even 6 3024.2.ca.d.2033.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.5 16 7.2 even 3
252.2.w.a.101.5 yes 16 63.20 even 6
252.2.bm.a.173.2 yes 16 63.2 odd 6
252.2.bm.a.185.2 yes 16 7.6 odd 2
756.2.w.a.341.1 16 21.2 odd 6
756.2.w.a.521.1 16 63.34 odd 6
756.2.bm.a.17.1 16 21.20 even 2
756.2.bm.a.89.1 16 63.16 even 3
1008.2.ca.d.257.4 16 28.23 odd 6
1008.2.ca.d.353.4 16 252.83 odd 6
1008.2.df.d.689.7 16 28.27 even 2
1008.2.df.d.929.7 16 252.191 even 6
1764.2.w.b.509.4 16 7.5 odd 6
1764.2.w.b.1109.4 16 9.2 odd 6
1764.2.x.a.293.1 16 7.4 even 3
1764.2.x.a.1469.1 16 63.38 even 6
1764.2.x.b.293.8 16 7.3 odd 6
1764.2.x.b.1469.8 16 63.11 odd 6
1764.2.bm.a.1685.7 16 63.47 even 6 inner
1764.2.bm.a.1697.7 16 1.1 even 1 trivial
2268.2.t.a.1781.1 16 63.13 odd 6
2268.2.t.a.2105.1 16 63.23 odd 6
2268.2.t.b.1781.8 16 63.41 even 6
2268.2.t.b.2105.8 16 63.58 even 3
3024.2.ca.d.2033.1 16 252.223 even 6
3024.2.ca.d.2609.1 16 84.23 even 6
3024.2.df.d.17.1 16 84.83 odd 2
3024.2.df.d.1601.1 16 252.79 odd 6
5292.2.w.b.521.8 16 9.7 even 3
5292.2.w.b.1097.8 16 21.5 even 6
5292.2.x.a.881.1 16 21.11 odd 6
5292.2.x.a.4409.1 16 63.52 odd 6
5292.2.x.b.881.8 16 21.17 even 6
5292.2.x.b.4409.8 16 63.25 even 3
5292.2.bm.a.2285.8 16 3.2 odd 2
5292.2.bm.a.4625.8 16 63.61 odd 6