Properties

Label 1008.2.cx.i.223.7
Level $1008$
Weight $2$
Character 1008.223
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(223,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-6,0,20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 223.7
Character \(\chi\) \(=\) 1008.223
Dual form 1008.2.cx.i.895.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.940521 - 1.45445i) q^{3} +(-3.48918 + 2.01448i) q^{5} +(-2.54444 - 0.725126i) q^{7} +(-1.23084 - 2.73588i) q^{9} +(4.95331 + 2.85980i) q^{11} +(1.74224 - 1.00589i) q^{13} +(-0.351689 + 6.96949i) q^{15} +4.18025i q^{17} +3.22849 q^{19} +(-3.44776 + 3.01877i) q^{21} +(3.63065 - 2.09616i) q^{23} +(5.61625 - 9.72763i) q^{25} +(-5.13683 - 0.782952i) q^{27} +(1.27096 - 2.20137i) q^{29} +(3.10138 + 5.37176i) q^{31} +(8.81812 - 4.51464i) q^{33} +(10.3388 - 2.59563i) q^{35} +3.21605 q^{37} +(0.175608 - 3.48006i) q^{39} +(5.51107 - 3.18181i) q^{41} +(-3.71365 - 2.14408i) q^{43} +(9.80600 + 7.06646i) q^{45} +(-2.92547 + 5.06707i) q^{47} +(5.94838 + 3.69008i) q^{49} +(6.07997 + 3.93161i) q^{51} +13.9105 q^{53} -23.0440 q^{55} +(3.03646 - 4.69567i) q^{57} +(4.26142 + 7.38100i) q^{59} +(-10.9025 - 6.29455i) q^{61} +(1.14795 + 7.85380i) q^{63} +(-4.05267 + 7.01943i) q^{65} +(4.54387 - 2.62341i) q^{67} +(0.365949 - 7.25208i) q^{69} +12.5319i q^{71} +7.93971i q^{73} +(-8.86614 - 17.3176i) q^{75} +(-10.5297 - 10.8684i) q^{77} +(4.48851 + 2.59144i) q^{79} +(-5.97005 + 6.73487i) q^{81} +(2.68950 - 4.65836i) q^{83} +(-8.42103 - 14.5857i) q^{85} +(-2.00641 - 3.91898i) q^{87} -3.51148i q^{89} +(-5.16244 + 1.29607i) q^{91} +(10.7299 + 0.541442i) q^{93} +(-11.2648 + 6.50372i) q^{95} +(-9.29978 - 5.36923i) q^{97} +(1.72731 - 17.0716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{7} + 20 q^{9} + 24 q^{15} + 10 q^{21} + 18 q^{23} + 24 q^{25} - 6 q^{29} - 12 q^{37} - 12 q^{39} + 42 q^{43} + 12 q^{49} - 42 q^{51} + 96 q^{53} - 22 q^{57} + 18 q^{63} + 42 q^{65} + 36 q^{67}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.940521 1.45445i 0.543010 0.839726i
\(4\) 0 0
\(5\) −3.48918 + 2.01448i −1.56041 + 0.900902i −0.563193 + 0.826325i \(0.690427\pi\)
−0.997215 + 0.0745770i \(0.976239\pi\)
\(6\) 0 0
\(7\) −2.54444 0.725126i −0.961709 0.274072i
\(8\) 0 0
\(9\) −1.23084 2.73588i −0.410281 0.911959i
\(10\) 0 0
\(11\) 4.95331 + 2.85980i 1.49348 + 0.862261i 0.999972 0.00747985i \(-0.00238093\pi\)
0.493508 + 0.869741i \(0.335714\pi\)
\(12\) 0 0
\(13\) 1.74224 1.00589i 0.483212 0.278982i −0.238542 0.971132i \(-0.576670\pi\)
0.721754 + 0.692150i \(0.243336\pi\)
\(14\) 0 0
\(15\) −0.351689 + 6.96949i −0.0908057 + 1.79951i
\(16\) 0 0
\(17\) 4.18025i 1.01386i 0.861987 + 0.506930i \(0.169220\pi\)
−0.861987 + 0.506930i \(0.830780\pi\)
\(18\) 0 0
\(19\) 3.22849 0.740666 0.370333 0.928899i \(-0.379244\pi\)
0.370333 + 0.928899i \(0.379244\pi\)
\(20\) 0 0
\(21\) −3.44776 + 3.01877i −0.752363 + 0.658749i
\(22\) 0 0
\(23\) 3.63065 2.09616i 0.757044 0.437079i −0.0711897 0.997463i \(-0.522680\pi\)
0.828233 + 0.560383i \(0.189346\pi\)
\(24\) 0 0
\(25\) 5.61625 9.72763i 1.12325 1.94553i
\(26\) 0 0
\(27\) −5.13683 0.782952i −0.988583 0.150679i
\(28\) 0 0
\(29\) 1.27096 2.20137i 0.236011 0.408784i −0.723555 0.690267i \(-0.757493\pi\)
0.959566 + 0.281483i \(0.0908264\pi\)
\(30\) 0 0
\(31\) 3.10138 + 5.37176i 0.557025 + 0.964796i 0.997743 + 0.0671502i \(0.0213907\pi\)
−0.440718 + 0.897646i \(0.645276\pi\)
\(32\) 0 0
\(33\) 8.81812 4.51464i 1.53504 0.785898i
\(34\) 0 0
\(35\) 10.3388 2.59563i 1.74757 0.438742i
\(36\) 0 0
\(37\) 3.21605 0.528716 0.264358 0.964425i \(-0.414840\pi\)
0.264358 + 0.964425i \(0.414840\pi\)
\(38\) 0 0
\(39\) 0.175608 3.48006i 0.0281198 0.557256i
\(40\) 0 0
\(41\) 5.51107 3.18181i 0.860684 0.496916i −0.00355743 0.999994i \(-0.501132\pi\)
0.864241 + 0.503078i \(0.167799\pi\)
\(42\) 0 0
\(43\) −3.71365 2.14408i −0.566327 0.326969i 0.189354 0.981909i \(-0.439361\pi\)
−0.755681 + 0.654940i \(0.772694\pi\)
\(44\) 0 0
\(45\) 9.80600 + 7.06646i 1.46179 + 1.05341i
\(46\) 0 0
\(47\) −2.92547 + 5.06707i −0.426724 + 0.739108i −0.996580 0.0826368i \(-0.973666\pi\)
0.569855 + 0.821745i \(0.306999\pi\)
\(48\) 0 0
\(49\) 5.94838 + 3.69008i 0.849769 + 0.527155i
\(50\) 0 0
\(51\) 6.07997 + 3.93161i 0.851365 + 0.550536i
\(52\) 0 0
\(53\) 13.9105 1.91076 0.955379 0.295383i \(-0.0954472\pi\)
0.955379 + 0.295383i \(0.0954472\pi\)
\(54\) 0 0
\(55\) −23.0440 −3.10725
\(56\) 0 0
\(57\) 3.03646 4.69567i 0.402189 0.621957i
\(58\) 0 0
\(59\) 4.26142 + 7.38100i 0.554790 + 0.960925i 0.997920 + 0.0644671i \(0.0205348\pi\)
−0.443130 + 0.896457i \(0.646132\pi\)
\(60\) 0 0
\(61\) −10.9025 6.29455i −1.39592 0.805934i −0.401957 0.915659i \(-0.631670\pi\)
−0.993962 + 0.109724i \(0.965003\pi\)
\(62\) 0 0
\(63\) 1.14795 + 7.85380i 0.144628 + 0.989486i
\(64\) 0 0
\(65\) −4.05267 + 7.01943i −0.502672 + 0.870653i
\(66\) 0 0
\(67\) 4.54387 2.62341i 0.555122 0.320500i −0.196063 0.980591i \(-0.562816\pi\)
0.751185 + 0.660091i \(0.229482\pi\)
\(68\) 0 0
\(69\) 0.365949 7.25208i 0.0440551 0.873048i
\(70\) 0 0
\(71\) 12.5319i 1.48727i 0.668587 + 0.743634i \(0.266899\pi\)
−0.668587 + 0.743634i \(0.733101\pi\)
\(72\) 0 0
\(73\) 7.93971i 0.929273i 0.885502 + 0.464636i \(0.153815\pi\)
−0.885502 + 0.464636i \(0.846185\pi\)
\(74\) 0 0
\(75\) −8.86614 17.3176i −1.02377 1.99966i
\(76\) 0 0
\(77\) −10.5297 10.8684i −1.19997 1.23857i
\(78\) 0 0
\(79\) 4.48851 + 2.59144i 0.504997 + 0.291560i 0.730775 0.682619i \(-0.239159\pi\)
−0.225778 + 0.974179i \(0.572492\pi\)
\(80\) 0 0
\(81\) −5.97005 + 6.73487i −0.663339 + 0.748319i
\(82\) 0 0
\(83\) 2.68950 4.65836i 0.295211 0.511321i −0.679823 0.733377i \(-0.737943\pi\)
0.975034 + 0.222055i \(0.0712766\pi\)
\(84\) 0 0
\(85\) −8.42103 14.5857i −0.913389 1.58204i
\(86\) 0 0
\(87\) −2.00641 3.91898i −0.215110 0.420159i
\(88\) 0 0
\(89\) 3.51148i 0.372216i −0.982529 0.186108i \(-0.940413\pi\)
0.982529 0.186108i \(-0.0595874\pi\)
\(90\) 0 0
\(91\) −5.16244 + 1.29607i −0.541170 + 0.135865i
\(92\) 0 0
\(93\) 10.7299 + 0.541442i 1.11263 + 0.0561449i
\(94\) 0 0
\(95\) −11.2648 + 6.50372i −1.15574 + 0.667268i
\(96\) 0 0
\(97\) −9.29978 5.36923i −0.944250 0.545163i −0.0529598 0.998597i \(-0.516866\pi\)
−0.891290 + 0.453434i \(0.850199\pi\)
\(98\) 0 0
\(99\) 1.72731 17.0716i 0.173601 1.71576i
\(100\) 0 0
\(101\) 2.98052 + 1.72080i 0.296573 + 0.171226i 0.640902 0.767623i \(-0.278560\pi\)
−0.344330 + 0.938849i \(0.611894\pi\)
\(102\) 0 0
\(103\) 0.562042 + 0.973484i 0.0553796 + 0.0959203i 0.892386 0.451273i \(-0.149030\pi\)
−0.837007 + 0.547193i \(0.815696\pi\)
\(104\) 0 0
\(105\) 5.94861 17.4785i 0.580525 1.70572i
\(106\) 0 0
\(107\) 2.50195i 0.241872i −0.992660 0.120936i \(-0.961410\pi\)
0.992660 0.120936i \(-0.0385897\pi\)
\(108\) 0 0
\(109\) −11.1266 −1.06573 −0.532867 0.846199i \(-0.678885\pi\)
−0.532867 + 0.846199i \(0.678885\pi\)
\(110\) 0 0
\(111\) 3.02476 4.67758i 0.287098 0.443976i
\(112\) 0 0
\(113\) −0.599354 1.03811i −0.0563825 0.0976574i 0.836457 0.548033i \(-0.184623\pi\)
−0.892839 + 0.450376i \(0.851290\pi\)
\(114\) 0 0
\(115\) −8.44533 + 14.6277i −0.787532 + 1.36404i
\(116\) 0 0
\(117\) −4.89641 3.52848i −0.452673 0.326208i
\(118\) 0 0
\(119\) 3.03121 10.6364i 0.277871 0.975039i
\(120\) 0 0
\(121\) 10.8569 + 18.8047i 0.986989 + 1.70951i
\(122\) 0 0
\(123\) 0.555483 11.0081i 0.0500862 0.992569i
\(124\) 0 0
\(125\) 25.1105i 2.24595i
\(126\) 0 0
\(127\) 3.48012i 0.308811i 0.988008 + 0.154405i \(0.0493462\pi\)
−0.988008 + 0.154405i \(0.950654\pi\)
\(128\) 0 0
\(129\) −6.61122 + 3.38477i −0.582085 + 0.298012i
\(130\) 0 0
\(131\) 2.73241 + 4.73267i 0.238732 + 0.413495i 0.960351 0.278795i \(-0.0899350\pi\)
−0.721619 + 0.692290i \(0.756602\pi\)
\(132\) 0 0
\(133\) −8.21471 2.34106i −0.712306 0.202996i
\(134\) 0 0
\(135\) 19.5005 7.61617i 1.67834 0.655495i
\(136\) 0 0
\(137\) −4.49760 + 7.79007i −0.384256 + 0.665551i −0.991666 0.128838i \(-0.958875\pi\)
0.607410 + 0.794389i \(0.292209\pi\)
\(138\) 0 0
\(139\) 3.12779 + 5.41748i 0.265295 + 0.459505i 0.967641 0.252331i \(-0.0811972\pi\)
−0.702346 + 0.711836i \(0.747864\pi\)
\(140\) 0 0
\(141\) 4.61832 + 9.02064i 0.388933 + 0.759675i
\(142\) 0 0
\(143\) 11.5065 0.962223
\(144\) 0 0
\(145\) 10.2413i 0.850493i
\(146\) 0 0
\(147\) 10.9616 5.18102i 0.904099 0.427323i
\(148\) 0 0
\(149\) −6.32221 10.9504i −0.517936 0.897091i −0.999783 0.0208358i \(-0.993367\pi\)
0.481847 0.876255i \(-0.339966\pi\)
\(150\) 0 0
\(151\) 13.8107 + 7.97363i 1.12390 + 0.648884i 0.942394 0.334505i \(-0.108569\pi\)
0.181507 + 0.983390i \(0.441903\pi\)
\(152\) 0 0
\(153\) 11.4367 5.14523i 0.924600 0.415967i
\(154\) 0 0
\(155\) −21.6426 12.4953i −1.73837 1.00365i
\(156\) 0 0
\(157\) 15.3782 8.87858i 1.22731 0.708588i 0.260844 0.965381i \(-0.415999\pi\)
0.966467 + 0.256793i \(0.0826658\pi\)
\(158\) 0 0
\(159\) 13.0831 20.2322i 1.03756 1.60451i
\(160\) 0 0
\(161\) −10.7580 + 2.70088i −0.847847 + 0.212859i
\(162\) 0 0
\(163\) 10.1287i 0.793339i −0.917962 0.396669i \(-0.870166\pi\)
0.917962 0.396669i \(-0.129834\pi\)
\(164\) 0 0
\(165\) −21.6734 + 33.5163i −1.68727 + 2.60924i
\(166\) 0 0
\(167\) 7.08298 + 12.2681i 0.548098 + 0.949333i 0.998405 + 0.0564595i \(0.0179812\pi\)
−0.450307 + 0.892874i \(0.648685\pi\)
\(168\) 0 0
\(169\) −4.47639 + 7.75334i −0.344338 + 0.596410i
\(170\) 0 0
\(171\) −3.97376 8.83275i −0.303881 0.675457i
\(172\) 0 0
\(173\) −9.42612 5.44217i −0.716654 0.413761i 0.0968656 0.995297i \(-0.469118\pi\)
−0.813520 + 0.581537i \(0.802452\pi\)
\(174\) 0 0
\(175\) −21.3440 + 20.6789i −1.61345 + 1.56318i
\(176\) 0 0
\(177\) 14.7432 + 0.743962i 1.10817 + 0.0559196i
\(178\) 0 0
\(179\) 11.7278i 0.876578i 0.898834 + 0.438289i \(0.144415\pi\)
−0.898834 + 0.438289i \(0.855585\pi\)
\(180\) 0 0
\(181\) 17.6522i 1.31208i −0.754727 0.656039i \(-0.772231\pi\)
0.754727 0.656039i \(-0.227769\pi\)
\(182\) 0 0
\(183\) −19.4091 + 9.93694i −1.43476 + 0.734560i
\(184\) 0 0
\(185\) −11.2214 + 6.47867i −0.825012 + 0.476321i
\(186\) 0 0
\(187\) −11.9547 + 20.7061i −0.874213 + 1.51418i
\(188\) 0 0
\(189\) 12.5026 + 5.71702i 0.909432 + 0.415852i
\(190\) 0 0
\(191\) −0.581366 0.335652i −0.0420662 0.0242869i 0.478819 0.877913i \(-0.341065\pi\)
−0.520886 + 0.853626i \(0.674398\pi\)
\(192\) 0 0
\(193\) −7.45526 12.9129i −0.536642 0.929491i −0.999082 0.0428402i \(-0.986359\pi\)
0.462440 0.886650i \(-0.346974\pi\)
\(194\) 0 0
\(195\) 6.39778 + 12.4963i 0.458154 + 0.894880i
\(196\) 0 0
\(197\) 8.84703 0.630325 0.315163 0.949038i \(-0.397941\pi\)
0.315163 + 0.949038i \(0.397941\pi\)
\(198\) 0 0
\(199\) −4.99197 −0.353872 −0.176936 0.984222i \(-0.556619\pi\)
−0.176936 + 0.984222i \(0.556619\pi\)
\(200\) 0 0
\(201\) 0.457996 9.07619i 0.0323045 0.640185i
\(202\) 0 0
\(203\) −4.83016 + 4.67965i −0.339010 + 0.328447i
\(204\) 0 0
\(205\) −12.8194 + 22.2038i −0.895345 + 1.55078i
\(206\) 0 0
\(207\) −10.2036 7.35298i −0.709199 0.511068i
\(208\) 0 0
\(209\) 15.9917 + 9.23282i 1.10617 + 0.638648i
\(210\) 0 0
\(211\) 1.47412 0.851085i 0.101483 0.0585911i −0.448400 0.893833i \(-0.648006\pi\)
0.549882 + 0.835242i \(0.314673\pi\)
\(212\) 0 0
\(213\) 18.2271 + 11.7865i 1.24890 + 0.807601i
\(214\) 0 0
\(215\) 17.2768 1.17827
\(216\) 0 0
\(217\) −3.99610 15.9170i −0.271273 1.08052i
\(218\) 0 0
\(219\) 11.5479 + 7.46746i 0.780335 + 0.504604i
\(220\) 0 0
\(221\) 4.20486 + 7.28302i 0.282849 + 0.489909i
\(222\) 0 0
\(223\) 10.0164 17.3488i 0.670745 1.16176i −0.306948 0.951726i \(-0.599308\pi\)
0.977693 0.210038i \(-0.0673588\pi\)
\(224\) 0 0
\(225\) −33.5263 3.39220i −2.23509 0.226146i
\(226\) 0 0
\(227\) 5.16212 8.94105i 0.342622 0.593438i −0.642297 0.766456i \(-0.722018\pi\)
0.984919 + 0.173018i \(0.0553517\pi\)
\(228\) 0 0
\(229\) 2.90563 1.67756i 0.192009 0.110857i −0.400914 0.916116i \(-0.631307\pi\)
0.592923 + 0.805259i \(0.297974\pi\)
\(230\) 0 0
\(231\) −25.7109 + 5.09301i −1.69165 + 0.335095i
\(232\) 0 0
\(233\) −20.1788 −1.32196 −0.660978 0.750405i \(-0.729858\pi\)
−0.660978 + 0.750405i \(0.729858\pi\)
\(234\) 0 0
\(235\) 23.5732i 1.53775i
\(236\) 0 0
\(237\) 7.99066 4.09101i 0.519049 0.265739i
\(238\) 0 0
\(239\) −2.94777 + 1.70189i −0.190675 + 0.110086i −0.592299 0.805719i \(-0.701779\pi\)
0.401623 + 0.915805i \(0.368446\pi\)
\(240\) 0 0
\(241\) 1.83067 + 1.05694i 0.117924 + 0.0680832i 0.557802 0.829974i \(-0.311645\pi\)
−0.439878 + 0.898058i \(0.644978\pi\)
\(242\) 0 0
\(243\) 4.18056 + 15.0174i 0.268183 + 0.963368i
\(244\) 0 0
\(245\) −28.1886 0.892469i −1.80090 0.0570177i
\(246\) 0 0
\(247\) 5.62482 3.24749i 0.357899 0.206633i
\(248\) 0 0
\(249\) −4.24581 8.29303i −0.269067 0.525549i
\(250\) 0 0
\(251\) 1.31087 0.0827413 0.0413707 0.999144i \(-0.486828\pi\)
0.0413707 + 0.999144i \(0.486828\pi\)
\(252\) 0 0
\(253\) 23.9784 1.50751
\(254\) 0 0
\(255\) −29.1342 1.47015i −1.82446 0.0920643i
\(256\) 0 0
\(257\) 9.71045 5.60633i 0.605721 0.349713i −0.165568 0.986198i \(-0.552946\pi\)
0.771289 + 0.636485i \(0.219612\pi\)
\(258\) 0 0
\(259\) −8.18306 2.33204i −0.508471 0.144906i
\(260\) 0 0
\(261\) −7.58703 0.767656i −0.469625 0.0475167i
\(262\) 0 0
\(263\) 1.54810 + 0.893798i 0.0954601 + 0.0551139i 0.546970 0.837152i \(-0.315781\pi\)
−0.451510 + 0.892266i \(0.649114\pi\)
\(264\) 0 0
\(265\) −48.5363 + 28.0225i −2.98156 + 1.72141i
\(266\) 0 0
\(267\) −5.10726 3.30262i −0.312559 0.202117i
\(268\) 0 0
\(269\) 22.8546i 1.39347i −0.717330 0.696734i \(-0.754636\pi\)
0.717330 0.696734i \(-0.245364\pi\)
\(270\) 0 0
\(271\) 13.4933 0.819657 0.409828 0.912163i \(-0.365589\pi\)
0.409828 + 0.912163i \(0.365589\pi\)
\(272\) 0 0
\(273\) −2.97031 + 8.72748i −0.179771 + 0.528211i
\(274\) 0 0
\(275\) 55.6381 32.1227i 3.35510 1.93707i
\(276\) 0 0
\(277\) 10.0276 17.3684i 0.602503 1.04357i −0.389938 0.920841i \(-0.627504\pi\)
0.992441 0.122724i \(-0.0391630\pi\)
\(278\) 0 0
\(279\) 10.8792 15.0968i 0.651318 0.903821i
\(280\) 0 0
\(281\) −7.99902 + 13.8547i −0.477181 + 0.826502i −0.999658 0.0261512i \(-0.991675\pi\)
0.522477 + 0.852654i \(0.325008\pi\)
\(282\) 0 0
\(283\) −9.43384 16.3399i −0.560783 0.971305i −0.997428 0.0716713i \(-0.977167\pi\)
0.436645 0.899634i \(-0.356167\pi\)
\(284\) 0 0
\(285\) −1.13542 + 22.5009i −0.0672567 + 1.33284i
\(286\) 0 0
\(287\) −16.3298 + 4.09973i −0.963918 + 0.242000i
\(288\) 0 0
\(289\) −0.474525 −0.0279132
\(290\) 0 0
\(291\) −16.5559 + 8.47618i −0.970524 + 0.496883i
\(292\) 0 0
\(293\) −13.2893 + 7.67260i −0.776371 + 0.448238i −0.835143 0.550034i \(-0.814615\pi\)
0.0587718 + 0.998271i \(0.481282\pi\)
\(294\) 0 0
\(295\) −29.7377 17.1691i −1.73140 0.999623i
\(296\) 0 0
\(297\) −23.2052 18.5685i −1.34650 1.07745i
\(298\) 0 0
\(299\) 4.21699 7.30404i 0.243875 0.422404i
\(300\) 0 0
\(301\) 7.89445 + 8.14835i 0.455029 + 0.469663i
\(302\) 0 0
\(303\) 5.30606 2.71656i 0.304825 0.156062i
\(304\) 0 0
\(305\) 50.7209 2.90427
\(306\) 0 0
\(307\) 12.8290 0.732192 0.366096 0.930577i \(-0.380694\pi\)
0.366096 + 0.930577i \(0.380694\pi\)
\(308\) 0 0
\(309\) 1.94449 + 0.0981216i 0.110618 + 0.00558194i
\(310\) 0 0
\(311\) −1.01728 1.76198i −0.0576846 0.0999127i 0.835741 0.549124i \(-0.185038\pi\)
−0.893426 + 0.449211i \(0.851705\pi\)
\(312\) 0 0
\(313\) −8.42991 4.86701i −0.476487 0.275100i 0.242465 0.970160i \(-0.422044\pi\)
−0.718951 + 0.695061i \(0.755378\pi\)
\(314\) 0 0
\(315\) −19.8267 25.0908i −1.11711 1.41371i
\(316\) 0 0
\(317\) −11.5075 + 19.9315i −0.646325 + 1.11947i 0.337669 + 0.941265i \(0.390361\pi\)
−0.983994 + 0.178202i \(0.942972\pi\)
\(318\) 0 0
\(319\) 12.5909 7.26938i 0.704957 0.407007i
\(320\) 0 0
\(321\) −3.63895 2.35313i −0.203107 0.131339i
\(322\) 0 0
\(323\) 13.4959i 0.750932i
\(324\) 0 0
\(325\) 22.5972i 1.25347i
\(326\) 0 0
\(327\) −10.4648 + 16.1830i −0.578703 + 0.894924i
\(328\) 0 0
\(329\) 11.1180 10.7715i 0.612953 0.593854i
\(330\) 0 0
\(331\) −18.3921 10.6187i −1.01092 0.583656i −0.0994598 0.995042i \(-0.531711\pi\)
−0.911461 + 0.411386i \(0.865045\pi\)
\(332\) 0 0
\(333\) −3.95845 8.79872i −0.216922 0.482167i
\(334\) 0 0
\(335\) −10.5696 + 18.3071i −0.577478 + 1.00022i
\(336\) 0 0
\(337\) −13.0884 22.6698i −0.712971 1.23490i −0.963737 0.266854i \(-0.914016\pi\)
0.250766 0.968048i \(-0.419318\pi\)
\(338\) 0 0
\(339\) −2.07359 0.104636i −0.112622 0.00568303i
\(340\) 0 0
\(341\) 35.4773i 1.92120i
\(342\) 0 0
\(343\) −12.4596 13.7025i −0.672753 0.739867i
\(344\) 0 0
\(345\) 13.3323 + 26.0410i 0.717787 + 1.40200i
\(346\) 0 0
\(347\) 13.1001 7.56336i 0.703251 0.406022i −0.105306 0.994440i \(-0.533582\pi\)
0.808557 + 0.588417i \(0.200249\pi\)
\(348\) 0 0
\(349\) 18.8255 + 10.8689i 1.00771 + 0.581799i 0.910519 0.413467i \(-0.135682\pi\)
0.0971868 + 0.995266i \(0.469016\pi\)
\(350\) 0 0
\(351\) −9.73717 + 3.80296i −0.519731 + 0.202987i
\(352\) 0 0
\(353\) −17.9454 10.3608i −0.955136 0.551448i −0.0604636 0.998170i \(-0.519258\pi\)
−0.894673 + 0.446722i \(0.852591\pi\)
\(354\) 0 0
\(355\) −25.2453 43.7262i −1.33988 2.32074i
\(356\) 0 0
\(357\) −12.6192 14.4125i −0.667880 0.762791i
\(358\) 0 0
\(359\) 8.70585i 0.459477i 0.973252 + 0.229739i \(0.0737871\pi\)
−0.973252 + 0.229739i \(0.926213\pi\)
\(360\) 0 0
\(361\) −8.57686 −0.451414
\(362\) 0 0
\(363\) 37.5615 + 1.89540i 1.97147 + 0.0994827i
\(364\) 0 0
\(365\) −15.9944 27.7031i −0.837184 1.45005i
\(366\) 0 0
\(367\) −10.5062 + 18.1973i −0.548419 + 0.949890i 0.449964 + 0.893047i \(0.351437\pi\)
−0.998383 + 0.0568434i \(0.981896\pi\)
\(368\) 0 0
\(369\) −15.4883 11.1613i −0.806289 0.581033i
\(370\) 0 0
\(371\) −35.3946 10.0869i −1.83759 0.523685i
\(372\) 0 0
\(373\) 6.05267 + 10.4835i 0.313395 + 0.542817i 0.979095 0.203403i \(-0.0652002\pi\)
−0.665700 + 0.746220i \(0.731867\pi\)
\(374\) 0 0
\(375\) 36.5219 + 23.6169i 1.88598 + 1.21957i
\(376\) 0 0
\(377\) 5.11376i 0.263372i
\(378\) 0 0
\(379\) 32.3259i 1.66047i 0.557414 + 0.830234i \(0.311794\pi\)
−0.557414 + 0.830234i \(0.688206\pi\)
\(380\) 0 0
\(381\) 5.06166 + 3.27312i 0.259316 + 0.167687i
\(382\) 0 0
\(383\) −2.70529 4.68571i −0.138234 0.239428i 0.788594 0.614914i \(-0.210809\pi\)
−0.926828 + 0.375486i \(0.877476\pi\)
\(384\) 0 0
\(385\) 58.6342 + 16.7098i 2.98827 + 0.851610i
\(386\) 0 0
\(387\) −1.29502 + 12.7991i −0.0658294 + 0.650616i
\(388\) 0 0
\(389\) −8.74076 + 15.1394i −0.443174 + 0.767600i −0.997923 0.0644180i \(-0.979481\pi\)
0.554749 + 0.832018i \(0.312814\pi\)
\(390\) 0 0
\(391\) 8.76248 + 15.1771i 0.443138 + 0.767537i
\(392\) 0 0
\(393\) 9.45331 + 0.477026i 0.476857 + 0.0240628i
\(394\) 0 0
\(395\) −20.8816 −1.05067
\(396\) 0 0
\(397\) 12.6177i 0.633264i −0.948549 0.316632i \(-0.897448\pi\)
0.948549 0.316632i \(-0.102552\pi\)
\(398\) 0 0
\(399\) −11.1311 + 9.74606i −0.557250 + 0.487913i
\(400\) 0 0
\(401\) 5.40011 + 9.35327i 0.269669 + 0.467080i 0.968776 0.247937i \(-0.0797525\pi\)
−0.699108 + 0.715017i \(0.746419\pi\)
\(402\) 0 0
\(403\) 10.8067 + 6.23927i 0.538322 + 0.310800i
\(404\) 0 0
\(405\) 7.26335 35.5257i 0.360919 1.76529i
\(406\) 0 0
\(407\) 15.9301 + 9.19725i 0.789626 + 0.455891i
\(408\) 0 0
\(409\) 9.66191 5.57831i 0.477751 0.275830i −0.241728 0.970344i \(-0.577714\pi\)
0.719479 + 0.694515i \(0.244381\pi\)
\(410\) 0 0
\(411\) 7.10018 + 13.8683i 0.350226 + 0.684071i
\(412\) 0 0
\(413\) −5.49080 21.8706i −0.270184 1.07618i
\(414\) 0 0
\(415\) 21.6718i 1.06383i
\(416\) 0 0
\(417\) 10.8212 + 0.546051i 0.529916 + 0.0267402i
\(418\) 0 0
\(419\) 7.36007 + 12.7480i 0.359563 + 0.622781i 0.987888 0.155170i \(-0.0495925\pi\)
−0.628325 + 0.777951i \(0.716259\pi\)
\(420\) 0 0
\(421\) 7.90063 13.6843i 0.385053 0.666932i −0.606723 0.794913i \(-0.707516\pi\)
0.991777 + 0.127981i \(0.0408497\pi\)
\(422\) 0 0
\(423\) 17.4637 + 1.76698i 0.849113 + 0.0859133i
\(424\) 0 0
\(425\) 40.6640 + 23.4773i 1.97249 + 1.13882i
\(426\) 0 0
\(427\) 23.1764 + 23.9218i 1.12158 + 1.15766i
\(428\) 0 0
\(429\) 10.8221 16.7356i 0.522496 0.808004i
\(430\) 0 0
\(431\) 0.798303i 0.0384529i −0.999815 0.0192265i \(-0.993880\pi\)
0.999815 0.0192265i \(-0.00612035\pi\)
\(432\) 0 0
\(433\) 31.2293i 1.50079i 0.660992 + 0.750393i \(0.270136\pi\)
−0.660992 + 0.750393i \(0.729864\pi\)
\(434\) 0 0
\(435\) 14.8954 + 9.63214i 0.714181 + 0.461826i
\(436\) 0 0
\(437\) 11.7215 6.76743i 0.560717 0.323730i
\(438\) 0 0
\(439\) −2.94795 + 5.10600i −0.140698 + 0.243696i −0.927760 0.373178i \(-0.878268\pi\)
0.787062 + 0.616874i \(0.211601\pi\)
\(440\) 0 0
\(441\) 2.77409 20.8160i 0.132100 0.991236i
\(442\) 0 0
\(443\) 2.02844 + 1.17112i 0.0963742 + 0.0556417i 0.547413 0.836863i \(-0.315613\pi\)
−0.451038 + 0.892505i \(0.648946\pi\)
\(444\) 0 0
\(445\) 7.07379 + 12.2522i 0.335330 + 0.580809i
\(446\) 0 0
\(447\) −21.8730 1.10374i −1.03456 0.0522049i
\(448\) 0 0
\(449\) 23.9242 1.12905 0.564527 0.825415i \(-0.309059\pi\)
0.564527 + 0.825415i \(0.309059\pi\)
\(450\) 0 0
\(451\) 36.3974 1.71389
\(452\) 0 0
\(453\) 24.5865 12.5876i 1.15517 0.591419i
\(454\) 0 0
\(455\) 15.4018 14.9218i 0.722045 0.699547i
\(456\) 0 0
\(457\) −7.24703 + 12.5522i −0.339002 + 0.587168i −0.984245 0.176809i \(-0.943423\pi\)
0.645244 + 0.763977i \(0.276756\pi\)
\(458\) 0 0
\(459\) 3.27294 21.4732i 0.152768 1.00229i
\(460\) 0 0
\(461\) 16.2137 + 9.36101i 0.755149 + 0.435986i 0.827551 0.561390i \(-0.189733\pi\)
−0.0724022 + 0.997376i \(0.523067\pi\)
\(462\) 0 0
\(463\) −1.88529 + 1.08847i −0.0876166 + 0.0505855i −0.543168 0.839624i \(-0.682775\pi\)
0.455552 + 0.890209i \(0.349442\pi\)
\(464\) 0 0
\(465\) −38.5291 + 19.7259i −1.78675 + 0.914766i
\(466\) 0 0
\(467\) −20.8089 −0.962923 −0.481461 0.876467i \(-0.659894\pi\)
−0.481461 + 0.876467i \(0.659894\pi\)
\(468\) 0 0
\(469\) −13.4639 + 3.38023i −0.621706 + 0.156084i
\(470\) 0 0
\(471\) 1.55003 30.7172i 0.0714216 1.41538i
\(472\) 0 0
\(473\) −12.2633 21.2406i −0.563865 0.976643i
\(474\) 0 0
\(475\) 18.1320 31.4055i 0.831953 1.44099i
\(476\) 0 0
\(477\) −17.1217 38.0575i −0.783947 1.74253i
\(478\) 0 0
\(479\) 15.5470 26.9281i 0.710359 1.23038i −0.254364 0.967109i \(-0.581866\pi\)
0.964723 0.263269i \(-0.0848005\pi\)
\(480\) 0 0
\(481\) 5.60315 3.23498i 0.255481 0.147502i
\(482\) 0 0
\(483\) −6.18981 + 18.1871i −0.281646 + 0.827544i
\(484\) 0 0
\(485\) 43.2648 1.96455
\(486\) 0 0
\(487\) 19.1545i 0.867972i 0.900920 + 0.433986i \(0.142893\pi\)
−0.900920 + 0.433986i \(0.857107\pi\)
\(488\) 0 0
\(489\) −14.7316 9.52622i −0.666187 0.430791i
\(490\) 0 0
\(491\) −33.4660 + 19.3216i −1.51030 + 0.871972i −0.510371 + 0.859954i \(0.670492\pi\)
−0.999928 + 0.0120176i \(0.996175\pi\)
\(492\) 0 0
\(493\) 9.20228 + 5.31294i 0.414450 + 0.239283i
\(494\) 0 0
\(495\) 28.3635 + 63.0456i 1.27485 + 2.83369i
\(496\) 0 0
\(497\) 9.08723 31.8868i 0.407618 1.43032i
\(498\) 0 0
\(499\) 37.8146 21.8323i 1.69281 0.977346i 0.740584 0.671964i \(-0.234549\pi\)
0.952230 0.305382i \(-0.0987843\pi\)
\(500\) 0 0
\(501\) 24.5050 + 1.23655i 1.09480 + 0.0552451i
\(502\) 0 0
\(503\) −34.6828 −1.54643 −0.773215 0.634144i \(-0.781353\pi\)
−0.773215 + 0.634144i \(0.781353\pi\)
\(504\) 0 0
\(505\) −13.8661 −0.617032
\(506\) 0 0
\(507\) 7.06669 + 13.8029i 0.313843 + 0.613006i
\(508\) 0 0
\(509\) −9.03205 + 5.21466i −0.400339 + 0.231136i −0.686630 0.727007i \(-0.740911\pi\)
0.286291 + 0.958143i \(0.407577\pi\)
\(510\) 0 0
\(511\) 5.75729 20.2021i 0.254688 0.893690i
\(512\) 0 0
\(513\) −16.5842 2.52775i −0.732210 0.111603i
\(514\) 0 0
\(515\) −3.92213 2.26444i −0.172830 0.0997832i
\(516\) 0 0
\(517\) −28.9816 + 16.7325i −1.27461 + 0.735896i
\(518\) 0 0
\(519\) −16.7808 + 8.59133i −0.736596 + 0.377118i
\(520\) 0 0
\(521\) 8.72877i 0.382414i −0.981550 0.191207i \(-0.938760\pi\)
0.981550 0.191207i \(-0.0612402\pi\)
\(522\) 0 0
\(523\) 10.6357 0.465068 0.232534 0.972588i \(-0.425298\pi\)
0.232534 + 0.972588i \(0.425298\pi\)
\(524\) 0 0
\(525\) 10.0020 + 50.4927i 0.436521 + 2.20368i
\(526\) 0 0
\(527\) −22.4553 + 12.9646i −0.978169 + 0.564746i
\(528\) 0 0
\(529\) −2.71224 + 4.69773i −0.117923 + 0.204249i
\(530\) 0 0
\(531\) 14.9484 20.7436i 0.648704 0.900195i
\(532\) 0 0
\(533\) 6.40108 11.0870i 0.277262 0.480231i
\(534\) 0 0
\(535\) 5.04012 + 8.72974i 0.217903 + 0.377420i
\(536\) 0 0
\(537\) 17.0575 + 11.0303i 0.736086 + 0.475991i
\(538\) 0 0
\(539\) 18.9113 + 35.2893i 0.814569 + 1.52002i
\(540\) 0 0
\(541\) 35.8565 1.54159 0.770797 0.637081i \(-0.219858\pi\)
0.770797 + 0.637081i \(0.219858\pi\)
\(542\) 0 0
\(543\) −25.6742 16.6023i −1.10179 0.712471i
\(544\) 0 0
\(545\) 38.8226 22.4143i 1.66298 0.960121i
\(546\) 0 0
\(547\) 35.5209 + 20.5080i 1.51876 + 0.876859i 0.999756 + 0.0220901i \(0.00703206\pi\)
0.519009 + 0.854769i \(0.326301\pi\)
\(548\) 0 0
\(549\) −3.80189 + 37.5754i −0.162261 + 1.60368i
\(550\) 0 0
\(551\) 4.10328 7.10709i 0.174806 0.302772i
\(552\) 0 0
\(553\) −9.54165 9.84852i −0.405752 0.418802i
\(554\) 0 0
\(555\) −1.13105 + 22.4142i −0.0480104 + 0.951432i
\(556\) 0 0
\(557\) −33.8693 −1.43509 −0.717545 0.696512i \(-0.754734\pi\)
−0.717545 + 0.696512i \(0.754734\pi\)
\(558\) 0 0
\(559\) −8.62679 −0.364874
\(560\) 0 0
\(561\) 18.8724 + 36.8620i 0.796791 + 1.55631i
\(562\) 0 0
\(563\) −14.7326 25.5176i −0.620904 1.07544i −0.989318 0.145775i \(-0.953432\pi\)
0.368414 0.929662i \(-0.379901\pi\)
\(564\) 0 0
\(565\) 4.18251 + 2.41477i 0.175960 + 0.101590i
\(566\) 0 0
\(567\) 20.0741 12.8074i 0.843033 0.537862i
\(568\) 0 0
\(569\) 9.11670 15.7906i 0.382192 0.661976i −0.609183 0.793029i \(-0.708503\pi\)
0.991375 + 0.131054i \(0.0418360\pi\)
\(570\) 0 0
\(571\) −21.9710 + 12.6850i −0.919459 + 0.530850i −0.883462 0.468502i \(-0.844794\pi\)
−0.0359963 + 0.999352i \(0.511460\pi\)
\(572\) 0 0
\(573\) −1.03497 + 0.529880i −0.0432367 + 0.0221360i
\(574\) 0 0
\(575\) 47.0902i 1.96380i
\(576\) 0 0
\(577\) 3.50461i 0.145899i −0.997336 0.0729493i \(-0.976759\pi\)
0.997336 0.0729493i \(-0.0232411\pi\)
\(578\) 0 0
\(579\) −25.7930 1.30154i −1.07192 0.0540904i
\(580\) 0 0
\(581\) −10.2212 + 9.90270i −0.424046 + 0.410833i
\(582\) 0 0
\(583\) 68.9032 + 39.7813i 2.85368 + 1.64757i
\(584\) 0 0
\(585\) 24.1925 + 2.44780i 1.00024 + 0.101204i
\(586\) 0 0
\(587\) −20.1658 + 34.9282i −0.832332 + 1.44164i 0.0638526 + 0.997959i \(0.479661\pi\)
−0.896184 + 0.443682i \(0.853672\pi\)
\(588\) 0 0
\(589\) 10.0128 + 17.3427i 0.412570 + 0.714592i
\(590\) 0 0
\(591\) 8.32082 12.8676i 0.342273 0.529301i
\(592\) 0 0
\(593\) 9.30611i 0.382156i −0.981575 0.191078i \(-0.938802\pi\)
0.981575 0.191078i \(-0.0611984\pi\)
\(594\) 0 0
\(595\) 10.8504 + 43.2187i 0.444823 + 1.77179i
\(596\) 0 0
\(597\) −4.69505 + 7.26057i −0.192156 + 0.297155i
\(598\) 0 0
\(599\) 0.0337880 0.0195075i 0.00138054 0.000797056i −0.499310 0.866424i \(-0.666413\pi\)
0.500690 + 0.865627i \(0.333080\pi\)
\(600\) 0 0
\(601\) −34.4552 19.8927i −1.40546 0.811441i −0.410511 0.911856i \(-0.634650\pi\)
−0.994946 + 0.100415i \(0.967983\pi\)
\(602\) 0 0
\(603\) −12.7701 9.20248i −0.520039 0.374754i
\(604\) 0 0
\(605\) −75.7632 43.7419i −3.08021 1.77836i
\(606\) 0 0
\(607\) −20.0081 34.6551i −0.812104 1.40661i −0.911389 0.411547i \(-0.864989\pi\)
0.0992843 0.995059i \(-0.468345\pi\)
\(608\) 0 0
\(609\) 2.26345 + 11.4265i 0.0917196 + 0.463026i
\(610\) 0 0
\(611\) 11.7708i 0.476194i
\(612\) 0 0
\(613\) 5.49560 0.221965 0.110983 0.993822i \(-0.464600\pi\)
0.110983 + 0.993822i \(0.464600\pi\)
\(614\) 0 0
\(615\) 20.2374 + 39.5283i 0.816053 + 1.59394i
\(616\) 0 0
\(617\) −18.1436 31.4256i −0.730432 1.26515i −0.956699 0.291080i \(-0.905985\pi\)
0.226266 0.974065i \(-0.427348\pi\)
\(618\) 0 0
\(619\) 16.5285 28.6281i 0.664335 1.15066i −0.315130 0.949048i \(-0.602048\pi\)
0.979465 0.201613i \(-0.0646185\pi\)
\(620\) 0 0
\(621\) −20.2912 + 7.92498i −0.814259 + 0.318018i
\(622\) 0 0
\(623\) −2.54626 + 8.93475i −0.102014 + 0.357963i
\(624\) 0 0
\(625\) −22.5033 38.9768i −0.900130 1.55907i
\(626\) 0 0
\(627\) 28.4692 14.5755i 1.13695 0.582088i
\(628\) 0 0
\(629\) 13.4439i 0.536044i
\(630\) 0 0
\(631\) 27.6502i 1.10074i −0.834921 0.550370i \(-0.814487\pi\)
0.834921 0.550370i \(-0.185513\pi\)
\(632\) 0 0
\(633\) 0.148583 2.94450i 0.00590564 0.117033i
\(634\) 0 0
\(635\) −7.01063 12.1428i −0.278208 0.481871i
\(636\) 0 0
\(637\) 14.0753 + 0.445634i 0.557685 + 0.0176567i
\(638\) 0 0
\(639\) 34.2859 15.4248i 1.35633 0.610197i
\(640\) 0 0
\(641\) −6.92939 + 12.0020i −0.273694 + 0.474052i −0.969805 0.243882i \(-0.921579\pi\)
0.696111 + 0.717935i \(0.254912\pi\)
\(642\) 0 0
\(643\) −18.7853 32.5370i −0.740819 1.28314i −0.952123 0.305715i \(-0.901104\pi\)
0.211304 0.977420i \(-0.432229\pi\)
\(644\) 0 0
\(645\) 16.2492 25.1282i 0.639811 0.989423i
\(646\) 0 0
\(647\) 19.3733 0.761641 0.380821 0.924649i \(-0.375642\pi\)
0.380821 + 0.924649i \(0.375642\pi\)
\(648\) 0 0
\(649\) 48.7472i 1.91350i
\(650\) 0 0
\(651\) −26.9089 9.15817i −1.05464 0.358937i
\(652\) 0 0
\(653\) −4.26860 7.39344i −0.167043 0.289328i 0.770336 0.637639i \(-0.220089\pi\)
−0.937379 + 0.348311i \(0.886755\pi\)
\(654\) 0 0
\(655\) −19.0677 11.0088i −0.745038 0.430148i
\(656\) 0 0
\(657\) 21.7221 9.77253i 0.847459 0.381263i
\(658\) 0 0
\(659\) 4.61026 + 2.66174i 0.179590 + 0.103687i 0.587100 0.809514i \(-0.300269\pi\)
−0.407510 + 0.913201i \(0.633603\pi\)
\(660\) 0 0
\(661\) 12.3847 7.15033i 0.481710 0.278115i −0.239419 0.970916i \(-0.576957\pi\)
0.721129 + 0.692801i \(0.243624\pi\)
\(662\) 0 0
\(663\) 14.5475 + 0.734086i 0.564980 + 0.0285096i
\(664\) 0 0
\(665\) 33.3786 8.37997i 1.29437 0.324961i
\(666\) 0 0
\(667\) 10.6565i 0.412623i
\(668\) 0 0
\(669\) −15.8124 30.8852i −0.611343 1.19409i
\(670\) 0 0
\(671\) −36.0023 62.3577i −1.38985 2.40729i
\(672\) 0 0
\(673\) −18.3816 + 31.8378i −0.708558 + 1.22726i 0.256834 + 0.966456i \(0.417321\pi\)
−0.965392 + 0.260803i \(0.916013\pi\)
\(674\) 0 0
\(675\) −36.4660 + 45.5719i −1.40358 + 1.75406i
\(676\) 0 0
\(677\) −7.71366 4.45348i −0.296460 0.171161i 0.344391 0.938826i \(-0.388085\pi\)
−0.640852 + 0.767665i \(0.721419\pi\)
\(678\) 0 0
\(679\) 19.7694 + 20.4052i 0.758680 + 0.783080i
\(680\) 0 0
\(681\) −8.14922 15.9173i −0.312279 0.609951i
\(682\) 0 0
\(683\) 13.6622i 0.522768i −0.965235 0.261384i \(-0.915821\pi\)
0.965235 0.261384i \(-0.0841789\pi\)
\(684\) 0 0
\(685\) 36.2413i 1.38471i
\(686\) 0 0
\(687\) 0.292870 5.80387i 0.0111737 0.221431i
\(688\) 0 0
\(689\) 24.2355 13.9924i 0.923300 0.533068i
\(690\) 0 0
\(691\) −17.2087 + 29.8063i −0.654648 + 1.13388i 0.327334 + 0.944909i \(0.393850\pi\)
−0.981982 + 0.188975i \(0.939483\pi\)
\(692\) 0 0
\(693\) −16.7741 + 42.1853i −0.637196 + 1.60249i
\(694\) 0 0
\(695\) −21.8268 12.6017i −0.827938 0.478010i
\(696\) 0 0
\(697\) 13.3008 + 23.0377i 0.503804 + 0.872613i
\(698\) 0 0
\(699\) −18.9786 + 29.3490i −0.717835 + 1.11008i
\(700\) 0 0
\(701\) 18.0060 0.680078 0.340039 0.940411i \(-0.389560\pi\)
0.340039 + 0.940411i \(0.389560\pi\)
\(702\) 0 0
\(703\) 10.3830 0.391602
\(704\) 0 0
\(705\) −34.2860 22.1711i −1.29129 0.835012i
\(706\) 0 0
\(707\) −6.33596 6.53973i −0.238288 0.245952i
\(708\) 0 0
\(709\) 25.2917 43.8065i 0.949849 1.64519i 0.204111 0.978948i \(-0.434570\pi\)
0.745738 0.666239i \(-0.232097\pi\)
\(710\) 0 0
\(711\) 1.56522 15.4697i 0.0587005 0.580159i
\(712\) 0 0
\(713\) 22.5201 + 13.0020i 0.843385 + 0.486928i
\(714\) 0 0
\(715\) −40.1483 + 23.1796i −1.50146 + 0.866869i
\(716\) 0 0
\(717\) −0.297118 + 5.88804i −0.0110961 + 0.219893i
\(718\) 0 0
\(719\) −44.2317 −1.64956 −0.824782 0.565450i \(-0.808702\pi\)
−0.824782 + 0.565450i \(0.808702\pi\)
\(720\) 0 0
\(721\) −0.724184 2.88453i −0.0269700 0.107425i
\(722\) 0 0
\(723\) 3.25904 1.66854i 0.121205 0.0620537i
\(724\) 0 0
\(725\) −14.2761 24.7269i −0.530200 0.918332i
\(726\) 0 0
\(727\) 23.3313 40.4110i 0.865310 1.49876i −0.00142913 0.999999i \(-0.500455\pi\)
0.866739 0.498762i \(-0.166212\pi\)
\(728\) 0 0
\(729\) 25.7740 + 8.04378i 0.954592 + 0.297918i
\(730\) 0 0
\(731\) 8.96279 15.5240i 0.331501 0.574176i
\(732\) 0 0
\(733\) 29.4459 17.0006i 1.08761 0.627932i 0.154671 0.987966i \(-0.450568\pi\)
0.932939 + 0.360034i \(0.117235\pi\)
\(734\) 0 0
\(735\) −27.8100 + 40.1595i −1.02579 + 1.48130i
\(736\) 0 0
\(737\) 30.0096 1.10542
\(738\) 0 0
\(739\) 12.4853i 0.459279i 0.973276 + 0.229640i \(0.0737548\pi\)
−0.973276 + 0.229640i \(0.926245\pi\)
\(740\) 0 0
\(741\) 0.566949 11.2353i 0.0208274 0.412740i
\(742\) 0 0
\(743\) 24.6313 14.2209i 0.903636 0.521714i 0.0252578 0.999681i \(-0.491959\pi\)
0.878378 + 0.477967i \(0.158626\pi\)
\(744\) 0 0
\(745\) 44.1187 + 25.4719i 1.61638 + 0.933219i
\(746\) 0 0
\(747\) −16.0550 1.62445i −0.587424 0.0594356i
\(748\) 0 0
\(749\) −1.81423 + 6.36606i −0.0662904 + 0.232611i
\(750\) 0 0
\(751\) −3.91640 + 2.26113i −0.142911 + 0.0825100i −0.569751 0.821817i \(-0.692960\pi\)
0.426839 + 0.904327i \(0.359627\pi\)
\(752\) 0 0
\(753\) 1.23290 1.90659i 0.0449294 0.0694801i
\(754\) 0 0
\(755\) −64.2508 −2.33833
\(756\) 0 0
\(757\) −9.85242 −0.358092 −0.179046 0.983841i \(-0.557301\pi\)
−0.179046 + 0.983841i \(0.557301\pi\)
\(758\) 0 0
\(759\) 22.5521 34.8753i 0.818591 1.26589i
\(760\) 0 0
\(761\) 45.5417 26.2935i 1.65089 0.953139i 0.674176 0.738571i \(-0.264499\pi\)
0.976709 0.214568i \(-0.0688345\pi\)
\(762\) 0 0
\(763\) 28.3110 + 8.06817i 1.02493 + 0.292087i
\(764\) 0 0
\(765\) −29.5396 + 40.9916i −1.06801 + 1.48205i
\(766\) 0 0
\(767\) 14.8489 + 8.57300i 0.536162 + 0.309553i
\(768\) 0 0
\(769\) 9.80437 5.66055i 0.353555 0.204125i −0.312695 0.949854i \(-0.601232\pi\)
0.666250 + 0.745729i \(0.267899\pi\)
\(770\) 0 0
\(771\) 0.978757 19.3962i 0.0352491 0.698538i
\(772\) 0 0
\(773\) 1.42526i 0.0512631i 0.999671 + 0.0256316i \(0.00815967\pi\)
−0.999671 + 0.0256316i \(0.991840\pi\)
\(774\) 0 0
\(775\) 69.6726 2.50271
\(776\) 0 0
\(777\) −11.0882 + 9.70851i −0.397786 + 0.348291i
\(778\) 0 0
\(779\) 17.7924 10.2725i 0.637479 0.368049i
\(780\) 0 0
\(781\) −35.8388 + 62.0746i −1.28241 + 2.22120i
\(782\) 0 0
\(783\) −8.25227 + 10.3129i −0.294912 + 0.368555i
\(784\) 0 0
\(785\) −35.7714 + 61.9579i −1.27674 + 2.21137i
\(786\) 0 0
\(787\) 20.9215 + 36.2370i 0.745769 + 1.29171i 0.949834 + 0.312753i \(0.101251\pi\)
−0.204065 + 0.978957i \(0.565415\pi\)
\(788\) 0 0
\(789\) 2.75601 1.41100i 0.0981164 0.0502330i
\(790\) 0 0
\(791\) 0.772261 + 3.07603i 0.0274585 + 0.109371i
\(792\) 0 0
\(793\) −25.3264 −0.899366
\(794\) 0 0
\(795\) −4.89218 + 96.9493i −0.173508 + 3.43844i
\(796\) 0 0
\(797\) −7.85796 + 4.53679i −0.278343 + 0.160701i −0.632673 0.774419i \(-0.718042\pi\)
0.354330 + 0.935120i \(0.384709\pi\)
\(798\) 0 0
\(799\) −21.1816 12.2292i −0.749353 0.432639i
\(800\) 0 0
\(801\) −9.60697 + 4.32207i −0.339446 + 0.152713i
\(802\) 0 0
\(803\) −22.7060 + 39.3279i −0.801276 + 1.38785i
\(804\) 0 0
\(805\) 32.0956 31.0955i 1.13122 1.09597i
\(806\) 0 0
\(807\) −33.2408 21.4952i −1.17013 0.756667i
\(808\) 0 0
\(809\) −18.6037 −0.654071 −0.327035 0.945012i \(-0.606050\pi\)
−0.327035 + 0.945012i \(0.606050\pi\)
\(810\) 0 0
\(811\) −43.7813 −1.53737 −0.768684 0.639628i \(-0.779088\pi\)
−0.768684 + 0.639628i \(0.779088\pi\)
\(812\) 0 0
\(813\) 12.6907 19.6253i 0.445082 0.688288i
\(814\) 0 0
\(815\) 20.4040 + 35.3407i 0.714721 + 1.23793i
\(816\) 0 0
\(817\) −11.9895 6.92213i −0.419459 0.242175i
\(818\) 0 0
\(819\) 9.90004 + 12.5285i 0.345935 + 0.437782i
\(820\) 0 0
\(821\) −11.8053 + 20.4474i −0.412009 + 0.713620i −0.995109 0.0987801i \(-0.968506\pi\)
0.583101 + 0.812400i \(0.301839\pi\)
\(822\) 0 0
\(823\) 0.653789 0.377465i 0.0227897 0.0131576i −0.488562 0.872529i \(-0.662478\pi\)
0.511352 + 0.859372i \(0.329145\pi\)
\(824\) 0 0
\(825\) 5.60800 111.135i 0.195245 3.86922i
\(826\) 0 0
\(827\) 5.64456i 0.196281i 0.995173 + 0.0981404i \(0.0312894\pi\)
−0.995173 + 0.0981404i \(0.968711\pi\)
\(828\) 0 0
\(829\) 26.2077i 0.910230i 0.890433 + 0.455115i \(0.150402\pi\)
−0.890433 + 0.455115i \(0.849598\pi\)
\(830\) 0 0
\(831\) −15.8302 30.9200i −0.549144 1.07260i
\(832\) 0 0
\(833\) −15.4255 + 24.8658i −0.534461 + 0.861548i
\(834\) 0 0
\(835\) −49.4276 28.5370i −1.71051 0.987565i
\(836\) 0 0
\(837\) −11.7254 30.0220i −0.405291 1.03771i
\(838\) 0 0
\(839\) −10.5365 + 18.2498i −0.363761 + 0.630053i −0.988577 0.150720i \(-0.951841\pi\)
0.624815 + 0.780773i \(0.285174\pi\)
\(840\) 0 0
\(841\) 11.2693 + 19.5190i 0.388597 + 0.673070i
\(842\) 0 0
\(843\) 12.6277 + 24.6648i 0.434922 + 0.849501i
\(844\) 0 0
\(845\) 36.0704i 1.24086i
\(846\) 0 0
\(847\) −13.9890 55.7200i −0.480666 1.91456i
\(848\) 0 0
\(849\) −32.6382 1.64697i −1.12014 0.0565237i
\(850\) 0 0
\(851\) 11.6764 6.74135i 0.400261 0.231091i
\(852\) 0 0
\(853\) −30.6601 17.7016i −1.04978 0.606092i −0.127193 0.991878i \(-0.540597\pi\)
−0.922588 + 0.385786i \(0.873930\pi\)
\(854\) 0 0
\(855\) 31.6586 + 22.8140i 1.08270 + 0.780222i
\(856\) 0 0
\(857\) 19.1852 + 11.0766i 0.655356 + 0.378370i 0.790505 0.612455i \(-0.209818\pi\)
−0.135149 + 0.990825i \(0.543151\pi\)
\(858\) 0 0
\(859\) 2.32382 + 4.02497i 0.0792876 + 0.137330i 0.902943 0.429761i \(-0.141402\pi\)
−0.823655 + 0.567091i \(0.808069\pi\)
\(860\) 0 0
\(861\) −9.39567 + 27.6068i −0.320204 + 0.940836i
\(862\) 0 0
\(863\) 10.5090i 0.357732i 0.983873 + 0.178866i \(0.0572428\pi\)
−0.983873 + 0.178866i \(0.942757\pi\)
\(864\) 0 0
\(865\) 43.8526 1.49103
\(866\) 0 0
\(867\) −0.446300 + 0.690172i −0.0151572 + 0.0234395i
\(868\) 0 0
\(869\) 14.8220 + 25.6725i 0.502802 + 0.870879i
\(870\) 0 0
\(871\) 5.27769 9.14122i 0.178828 0.309739i
\(872\) 0 0
\(873\) −3.24300 + 32.0517i −0.109759 + 1.08479i
\(874\) 0 0
\(875\) 18.2082 63.8922i 0.615551 2.15995i
\(876\) 0 0
\(877\) −3.60317 6.24087i −0.121670 0.210739i 0.798756 0.601655i \(-0.205492\pi\)
−0.920427 + 0.390916i \(0.872158\pi\)
\(878\) 0 0
\(879\) −1.33949 + 26.5449i −0.0451798 + 0.895337i
\(880\) 0 0
\(881\) 47.4313i 1.59800i 0.601331 + 0.799000i \(0.294637\pi\)
−0.601331 + 0.799000i \(0.705363\pi\)
\(882\) 0 0
\(883\) 44.5341i 1.49869i −0.662178 0.749346i \(-0.730368\pi\)
0.662178 0.749346i \(-0.269632\pi\)
\(884\) 0 0
\(885\) −52.9405 + 27.1041i −1.77958 + 0.911096i
\(886\) 0 0
\(887\) 6.55039 + 11.3456i 0.219941 + 0.380948i 0.954790 0.297283i \(-0.0960803\pi\)
−0.734849 + 0.678231i \(0.762747\pi\)
\(888\) 0 0
\(889\) 2.52352 8.85497i 0.0846363 0.296986i
\(890\) 0 0
\(891\) −48.8319 + 16.2868i −1.63593 + 0.545627i
\(892\) 0 0
\(893\) −9.44486 + 16.3590i −0.316060 + 0.547432i
\(894\) 0 0
\(895\) −23.6254 40.9205i −0.789711 1.36782i
\(896\) 0 0
\(897\) −6.65719 13.0030i −0.222277 0.434157i
\(898\) 0 0
\(899\) 15.7669 0.525857
\(900\) 0 0
\(901\) 58.1495i 1.93724i
\(902\) 0 0
\(903\) 19.2763 3.81838i 0.641474 0.127068i
\(904\) 0 0
\(905\) 35.5600 + 61.5917i 1.18205 + 2.04738i
\(906\) 0 0
\(907\) −16.1687 9.33500i −0.536872 0.309963i 0.206938 0.978354i \(-0.433650\pi\)
−0.743810 + 0.668391i \(0.766983\pi\)
\(908\) 0 0
\(909\) 1.03936 10.2724i 0.0344734 0.340713i
\(910\) 0 0
\(911\) 9.20898 + 5.31680i 0.305107 + 0.176154i 0.644735 0.764406i \(-0.276968\pi\)
−0.339628 + 0.940560i \(0.610301\pi\)
\(912\) 0 0
\(913\) 26.6439 15.3829i 0.881785 0.509099i
\(914\) 0 0
\(915\) 47.7041 73.7710i 1.57705 2.43879i
\(916\) 0 0
\(917\) −3.52068 14.0234i −0.116263 0.463092i
\(918\) 0 0
\(919\) 25.9144i 0.854836i −0.904054 0.427418i \(-0.859423\pi\)
0.904054 0.427418i \(-0.140577\pi\)
\(920\) 0 0
\(921\) 12.0660 18.6592i 0.397587 0.614841i
\(922\) 0 0
\(923\) 12.6057 + 21.8337i 0.414921 + 0.718665i
\(924\) 0 0
\(925\) 18.0621 31.2846i 0.593880 1.02863i
\(926\) 0 0
\(927\) 1.97155 2.73588i 0.0647542 0.0898582i
\(928\) 0 0
\(929\) −44.4016 25.6353i −1.45677 0.841066i −0.457918 0.888994i \(-0.651405\pi\)
−0.998851 + 0.0479287i \(0.984738\pi\)
\(930\) 0 0
\(931\) 19.2043 + 11.9134i 0.629395 + 0.390446i
\(932\) 0 0
\(933\) −3.51948 0.177597i −0.115223 0.00581427i
\(934\) 0 0
\(935\) 96.3298i 3.15032i
\(936\) 0 0
\(937\) 47.7056i 1.55847i 0.626729 + 0.779237i \(0.284393\pi\)
−0.626729 + 0.779237i \(0.715607\pi\)
\(938\) 0 0
\(939\) −15.0073 + 7.68335i −0.489745 + 0.250736i
\(940\) 0 0
\(941\) −49.3584 + 28.4971i −1.60904 + 0.928978i −0.619452 + 0.785035i \(0.712645\pi\)
−0.989586 + 0.143944i \(0.954022\pi\)
\(942\) 0 0
\(943\) 13.3392 23.1041i 0.434383 0.752374i
\(944\) 0 0
\(945\) −55.1407 + 5.23855i −1.79373 + 0.170410i
\(946\) 0 0
\(947\) 4.86698 + 2.80995i 0.158156 + 0.0913113i 0.576989 0.816752i \(-0.304228\pi\)
−0.418833 + 0.908063i \(0.637561\pi\)
\(948\) 0 0
\(949\) 7.98644 + 13.8329i 0.259251 + 0.449035i
\(950\) 0 0
\(951\) 18.1664 + 35.4831i 0.589085 + 1.15062i
\(952\) 0 0
\(953\) −39.6935 −1.28580 −0.642899 0.765951i \(-0.722269\pi\)
−0.642899 + 0.765951i \(0.722269\pi\)
\(954\) 0 0
\(955\) 2.70465 0.0875205
\(956\) 0 0
\(957\) 1.26909 25.1499i 0.0410239 0.812980i
\(958\) 0 0
\(959\) 17.0927 16.5601i 0.551951 0.534753i
\(960\) 0 0
\(961\) −3.73718 + 6.47298i −0.120554 + 0.208806i
\(962\) 0 0
\(963\) −6.84502 + 3.07950i −0.220578 + 0.0992356i
\(964\) 0 0
\(965\) 52.0255 + 30.0369i 1.67476 + 0.966923i
\(966\) 0 0
\(967\) 23.3249 13.4666i 0.750078 0.433058i −0.0756442 0.997135i \(-0.524101\pi\)
0.825722 + 0.564077i \(0.190768\pi\)
\(968\) 0 0
\(969\) 19.6291 + 12.6932i 0.630578 + 0.407764i
\(970\) 0 0
\(971\) 9.63591 0.309231 0.154616 0.987975i \(-0.450586\pi\)
0.154616 + 0.987975i \(0.450586\pi\)
\(972\) 0 0
\(973\) −4.03012 16.0525i −0.129200 0.514620i
\(974\) 0 0
\(975\) −32.8665 21.2531i −1.05257 0.680645i
\(976\) 0 0
\(977\) −25.0233 43.3417i −0.800567 1.38662i −0.919243 0.393690i \(-0.871198\pi\)
0.118676 0.992933i \(-0.462135\pi\)
\(978\) 0 0
\(979\) 10.0421 17.3934i 0.320947 0.555897i
\(980\) 0 0
\(981\) 13.6951 + 30.4410i 0.437250 + 0.971905i
\(982\) 0 0
\(983\) −20.3246 + 35.2032i −0.648254 + 1.12281i 0.335286 + 0.942116i \(0.391167\pi\)
−0.983540 + 0.180692i \(0.942166\pi\)
\(984\) 0 0
\(985\) −30.8689 + 17.8222i −0.983564 + 0.567861i
\(986\) 0 0
\(987\) −5.20997 26.3014i −0.165835 0.837182i
\(988\) 0 0
\(989\) −17.9773 −0.571645
\(990\) 0 0
\(991\) 7.45474i 0.236808i 0.992966 + 0.118404i \(0.0377777\pi\)
−0.992966 + 0.118404i \(0.962222\pi\)
\(992\) 0 0
\(993\) −32.7425 + 16.7633i −1.03905 + 0.531966i
\(994\) 0 0
\(995\) 17.4179 10.0562i 0.552184 0.318804i
\(996\) 0 0
\(997\) −10.3529 5.97727i −0.327881 0.189302i 0.327019 0.945018i \(-0.393956\pi\)
−0.654900 + 0.755716i \(0.727289\pi\)
\(998\) 0 0
\(999\) −16.5203 2.51802i −0.522679 0.0796665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cx.i.223.7 yes 24
3.2 odd 2 3024.2.cx.i.559.12 24
4.3 odd 2 1008.2.cx.j.223.6 yes 24
7.6 odd 2 inner 1008.2.cx.i.223.6 24
9.4 even 3 1008.2.cx.j.895.7 yes 24
9.5 odd 6 3024.2.cx.j.2575.1 24
12.11 even 2 3024.2.cx.j.559.12 24
21.20 even 2 3024.2.cx.i.559.1 24
28.27 even 2 1008.2.cx.j.223.7 yes 24
36.23 even 6 3024.2.cx.i.2575.1 24
36.31 odd 6 inner 1008.2.cx.i.895.6 yes 24
63.13 odd 6 1008.2.cx.j.895.6 yes 24
63.41 even 6 3024.2.cx.j.2575.12 24
84.83 odd 2 3024.2.cx.j.559.1 24
252.139 even 6 inner 1008.2.cx.i.895.7 yes 24
252.167 odd 6 3024.2.cx.i.2575.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.i.223.6 24 7.6 odd 2 inner
1008.2.cx.i.223.7 yes 24 1.1 even 1 trivial
1008.2.cx.i.895.6 yes 24 36.31 odd 6 inner
1008.2.cx.i.895.7 yes 24 252.139 even 6 inner
1008.2.cx.j.223.6 yes 24 4.3 odd 2
1008.2.cx.j.223.7 yes 24 28.27 even 2
1008.2.cx.j.895.6 yes 24 63.13 odd 6
1008.2.cx.j.895.7 yes 24 9.4 even 3
3024.2.cx.i.559.1 24 21.20 even 2
3024.2.cx.i.559.12 24 3.2 odd 2
3024.2.cx.i.2575.1 24 36.23 even 6
3024.2.cx.i.2575.12 24 252.167 odd 6
3024.2.cx.j.559.1 24 84.83 odd 2
3024.2.cx.j.559.12 24 12.11 even 2
3024.2.cx.j.2575.1 24 9.5 odd 6
3024.2.cx.j.2575.12 24 63.41 even 6