Newspace parameters
| Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1008.cx (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(8.04892052375\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 223.1 | 0 | −1.71721 | − | 0.226267i | 0 | 1.72020 | − | 0.993161i | 0 | 1.81723 | + | 1.92293i | 0 | 2.89761 | + | 0.777096i | 0 | ||||||||||
| 223.2 | 0 | −1.69365 | + | 0.362704i | 0 | −2.10269 | + | 1.21399i | 0 | 1.15057 | − | 2.38247i | 0 | 2.73689 | − | 1.22858i | 0 | ||||||||||
| 223.3 | 0 | −1.44146 | + | 0.960311i | 0 | 0.675942 | − | 0.390255i | 0 | −1.89912 | + | 1.84210i | 0 | 1.15560 | − | 2.76850i | 0 | ||||||||||
| 223.4 | 0 | −1.21473 | − | 1.23468i | 0 | −3.37919 | + | 1.95098i | 0 | 0.667355 | + | 2.56020i | 0 | −0.0488500 | + | 2.99960i | 0 | ||||||||||
| 223.5 | 0 | −1.11570 | − | 1.32484i | 0 | −0.263424 | + | 0.152088i | 0 | −2.20588 | − | 1.46085i | 0 | −0.510411 | + | 2.95626i | 0 | ||||||||||
| 223.6 | 0 | −0.940521 | + | 1.45445i | 0 | 3.48918 | − | 2.01448i | 0 | −1.90020 | − | 1.84099i | 0 | −1.23084 | − | 2.73588i | 0 | ||||||||||
| 223.7 | 0 | 0.940521 | − | 1.45445i | 0 | −3.48918 | + | 2.01448i | 0 | −2.54444 | − | 0.725126i | 0 | −1.23084 | − | 2.73588i | 0 | ||||||||||
| 223.8 | 0 | 1.11570 | + | 1.32484i | 0 | 0.263424 | − | 0.152088i | 0 | −2.36807 | − | 1.17993i | 0 | −0.510411 | + | 2.95626i | 0 | ||||||||||
| 223.9 | 0 | 1.21473 | + | 1.23468i | 0 | 3.37919 | − | 1.95098i | 0 | 2.55088 | − | 0.702155i | 0 | −0.0488500 | + | 2.99960i | 0 | ||||||||||
| 223.10 | 0 | 1.44146 | − | 0.960311i | 0 | −0.675942 | + | 0.390255i | 0 | 0.645750 | − | 2.56574i | 0 | 1.15560 | − | 2.76850i | 0 | ||||||||||
| 223.11 | 0 | 1.69365 | − | 0.362704i | 0 | 2.10269 | − | 1.21399i | 0 | −1.48800 | + | 2.18766i | 0 | 2.73689 | − | 1.22858i | 0 | ||||||||||
| 223.12 | 0 | 1.71721 | + | 0.226267i | 0 | −1.72020 | + | 0.993161i | 0 | 2.57392 | + | 0.612306i | 0 | 2.89761 | + | 0.777096i | 0 | ||||||||||
| 895.1 | 0 | −1.71721 | + | 0.226267i | 0 | 1.72020 | + | 0.993161i | 0 | 1.81723 | − | 1.92293i | 0 | 2.89761 | − | 0.777096i | 0 | ||||||||||
| 895.2 | 0 | −1.69365 | − | 0.362704i | 0 | −2.10269 | − | 1.21399i | 0 | 1.15057 | + | 2.38247i | 0 | 2.73689 | + | 1.22858i | 0 | ||||||||||
| 895.3 | 0 | −1.44146 | − | 0.960311i | 0 | 0.675942 | + | 0.390255i | 0 | −1.89912 | − | 1.84210i | 0 | 1.15560 | + | 2.76850i | 0 | ||||||||||
| 895.4 | 0 | −1.21473 | + | 1.23468i | 0 | −3.37919 | − | 1.95098i | 0 | 0.667355 | − | 2.56020i | 0 | −0.0488500 | − | 2.99960i | 0 | ||||||||||
| 895.5 | 0 | −1.11570 | + | 1.32484i | 0 | −0.263424 | − | 0.152088i | 0 | −2.20588 | + | 1.46085i | 0 | −0.510411 | − | 2.95626i | 0 | ||||||||||
| 895.6 | 0 | −0.940521 | − | 1.45445i | 0 | 3.48918 | + | 2.01448i | 0 | −1.90020 | + | 1.84099i | 0 | −1.23084 | + | 2.73588i | 0 | ||||||||||
| 895.7 | 0 | 0.940521 | + | 1.45445i | 0 | −3.48918 | − | 2.01448i | 0 | −2.54444 | + | 0.725126i | 0 | −1.23084 | + | 2.73588i | 0 | ||||||||||
| 895.8 | 0 | 1.11570 | − | 1.32484i | 0 | 0.263424 | + | 0.152088i | 0 | −2.36807 | + | 1.17993i | 0 | −0.510411 | − | 2.95626i | 0 | ||||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.b | odd | 2 | 1 | inner |
| 36.f | odd | 6 | 1 | inner |
| 252.bi | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1008.2.cx.i | ✓ | 24 |
| 3.b | odd | 2 | 1 | 3024.2.cx.i | 24 | ||
| 4.b | odd | 2 | 1 | 1008.2.cx.j | yes | 24 | |
| 7.b | odd | 2 | 1 | inner | 1008.2.cx.i | ✓ | 24 |
| 9.c | even | 3 | 1 | 1008.2.cx.j | yes | 24 | |
| 9.d | odd | 6 | 1 | 3024.2.cx.j | 24 | ||
| 12.b | even | 2 | 1 | 3024.2.cx.j | 24 | ||
| 21.c | even | 2 | 1 | 3024.2.cx.i | 24 | ||
| 28.d | even | 2 | 1 | 1008.2.cx.j | yes | 24 | |
| 36.f | odd | 6 | 1 | inner | 1008.2.cx.i | ✓ | 24 |
| 36.h | even | 6 | 1 | 3024.2.cx.i | 24 | ||
| 63.l | odd | 6 | 1 | 1008.2.cx.j | yes | 24 | |
| 63.o | even | 6 | 1 | 3024.2.cx.j | 24 | ||
| 84.h | odd | 2 | 1 | 3024.2.cx.j | 24 | ||
| 252.s | odd | 6 | 1 | 3024.2.cx.i | 24 | ||
| 252.bi | even | 6 | 1 | inner | 1008.2.cx.i | ✓ | 24 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1008.2.cx.i | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 1008.2.cx.i | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
| 1008.2.cx.i | ✓ | 24 | 36.f | odd | 6 | 1 | inner |
| 1008.2.cx.i | ✓ | 24 | 252.bi | even | 6 | 1 | inner |
| 1008.2.cx.j | yes | 24 | 4.b | odd | 2 | 1 | |
| 1008.2.cx.j | yes | 24 | 9.c | even | 3 | 1 | |
| 1008.2.cx.j | yes | 24 | 28.d | even | 2 | 1 | |
| 1008.2.cx.j | yes | 24 | 63.l | odd | 6 | 1 | |
| 3024.2.cx.i | 24 | 3.b | odd | 2 | 1 | ||
| 3024.2.cx.i | 24 | 21.c | even | 2 | 1 | ||
| 3024.2.cx.i | 24 | 36.h | even | 6 | 1 | ||
| 3024.2.cx.i | 24 | 252.s | odd | 6 | 1 | ||
| 3024.2.cx.j | 24 | 9.d | odd | 6 | 1 | ||
| 3024.2.cx.j | 24 | 12.b | even | 2 | 1 | ||
| 3024.2.cx.j | 24 | 63.o | even | 6 | 1 | ||
| 3024.2.cx.j | 24 | 84.h | odd | 2 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):
|
\( T_{5}^{24} - 42 T_{5}^{22} + 1155 T_{5}^{20} - 18432 T_{5}^{18} + 212814 T_{5}^{16} - 1508085 T_{5}^{14} + \cdots + 104976 \)
|
|
\( T_{11}^{12} - 42 T_{11}^{10} + 1455 T_{11}^{8} - 81 T_{11}^{7} - 12627 T_{11}^{6} + 2781 T_{11}^{5} + \cdots + 26244 \)
|