Properties

Label 3024.2.cx.j.2575.1
Level $3024$
Weight $2$
Character 3024.2575
Analytic conductor $24.147$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(559,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,6,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2575.1
Character \(\chi\) \(=\) 3024.2575
Dual form 3024.2.cx.j.559.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.48918 - 2.01448i) q^{5} +(1.90020 - 1.84099i) q^{7} +(4.95331 - 2.85980i) q^{11} +(-1.74224 - 1.00589i) q^{13} -4.18025i q^{17} +3.22849 q^{19} +(3.63065 + 2.09616i) q^{23} +(5.61625 + 9.72763i) q^{25} +(-1.27096 - 2.20137i) q^{29} +(3.10138 - 5.37176i) q^{31} +(-10.3388 + 2.59563i) q^{35} +3.21605 q^{37} +(5.51107 + 3.18181i) q^{41} +(3.71365 - 2.14408i) q^{43} +(2.92547 + 5.06707i) q^{47} +(0.221514 - 6.99649i) q^{49} -13.9105 q^{53} -23.0440 q^{55} +(-4.26142 + 7.38100i) q^{59} +(10.9025 - 6.29455i) q^{61} +(4.05267 + 7.01943i) q^{65} +(-4.54387 - 2.62341i) q^{67} -12.5319i q^{71} +7.93971i q^{73} +(4.14743 - 14.5532i) q^{77} +(-4.48851 + 2.59144i) q^{79} +(-2.68950 - 4.65836i) q^{83} +(-8.42103 + 14.5857i) q^{85} +3.51148i q^{89} +(-5.16244 + 1.29607i) q^{91} +(-11.2648 - 6.50372i) q^{95} +(9.29978 - 5.36923i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{7} + 18 q^{23} + 24 q^{25} + 6 q^{29} - 12 q^{37} - 42 q^{43} + 12 q^{49} - 96 q^{53} - 42 q^{65} - 36 q^{67} + 18 q^{77} + 60 q^{79} - 6 q^{85} - 126 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.48918 2.01448i −1.56041 0.900902i −0.997215 0.0745770i \(-0.976239\pi\)
−0.563193 0.826325i \(-0.690427\pi\)
\(6\) 0 0
\(7\) 1.90020 1.84099i 0.718208 0.695829i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.95331 2.85980i 1.49348 0.862261i 0.493508 0.869741i \(-0.335714\pi\)
0.999972 + 0.00747985i \(0.00238093\pi\)
\(12\) 0 0
\(13\) −1.74224 1.00589i −0.483212 0.278982i 0.238542 0.971132i \(-0.423330\pi\)
−0.721754 + 0.692150i \(0.756664\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.18025i 1.01386i −0.861987 0.506930i \(-0.830780\pi\)
0.861987 0.506930i \(-0.169220\pi\)
\(18\) 0 0
\(19\) 3.22849 0.740666 0.370333 0.928899i \(-0.379244\pi\)
0.370333 + 0.928899i \(0.379244\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.63065 + 2.09616i 0.757044 + 0.437079i 0.828233 0.560383i \(-0.189346\pi\)
−0.0711897 + 0.997463i \(0.522680\pi\)
\(24\) 0 0
\(25\) 5.61625 + 9.72763i 1.12325 + 1.94553i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.27096 2.20137i −0.236011 0.408784i 0.723555 0.690267i \(-0.242507\pi\)
−0.959566 + 0.281483i \(0.909174\pi\)
\(30\) 0 0
\(31\) 3.10138 5.37176i 0.557025 0.964796i −0.440718 0.897646i \(-0.645276\pi\)
0.997743 0.0671502i \(-0.0213907\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.3388 + 2.59563i −1.74757 + 0.438742i
\(36\) 0 0
\(37\) 3.21605 0.528716 0.264358 0.964425i \(-0.414840\pi\)
0.264358 + 0.964425i \(0.414840\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.51107 + 3.18181i 0.860684 + 0.496916i 0.864241 0.503078i \(-0.167799\pi\)
−0.00355743 + 0.999994i \(0.501132\pi\)
\(42\) 0 0
\(43\) 3.71365 2.14408i 0.566327 0.326969i −0.189354 0.981909i \(-0.560639\pi\)
0.755681 + 0.654940i \(0.227306\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.92547 + 5.06707i 0.426724 + 0.739108i 0.996580 0.0826368i \(-0.0263342\pi\)
−0.569855 + 0.821745i \(0.693001\pi\)
\(48\) 0 0
\(49\) 0.221514 6.99649i 0.0316448 0.999499i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.9105 −1.91076 −0.955379 0.295383i \(-0.904553\pi\)
−0.955379 + 0.295383i \(0.904553\pi\)
\(54\) 0 0
\(55\) −23.0440 −3.10725
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.26142 + 7.38100i −0.554790 + 0.960925i 0.443130 + 0.896457i \(0.353868\pi\)
−0.997920 + 0.0644671i \(0.979465\pi\)
\(60\) 0 0
\(61\) 10.9025 6.29455i 1.39592 0.805934i 0.401957 0.915659i \(-0.368330\pi\)
0.993962 + 0.109724i \(0.0349968\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.05267 + 7.01943i 0.502672 + 0.870653i
\(66\) 0 0
\(67\) −4.54387 2.62341i −0.555122 0.320500i 0.196063 0.980591i \(-0.437184\pi\)
−0.751185 + 0.660091i \(0.770518\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.5319i 1.48727i −0.668587 0.743634i \(-0.733101\pi\)
0.668587 0.743634i \(-0.266899\pi\)
\(72\) 0 0
\(73\) 7.93971i 0.929273i 0.885502 + 0.464636i \(0.153815\pi\)
−0.885502 + 0.464636i \(0.846185\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.14743 14.5532i 0.472643 1.65849i
\(78\) 0 0
\(79\) −4.48851 + 2.59144i −0.504997 + 0.291560i −0.730775 0.682619i \(-0.760841\pi\)
0.225778 + 0.974179i \(0.427508\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.68950 4.65836i −0.295211 0.511321i 0.679823 0.733377i \(-0.262057\pi\)
−0.975034 + 0.222055i \(0.928723\pi\)
\(84\) 0 0
\(85\) −8.42103 + 14.5857i −0.913389 + 1.58204i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.51148i 0.372216i 0.982529 + 0.186108i \(0.0595874\pi\)
−0.982529 + 0.186108i \(0.940413\pi\)
\(90\) 0 0
\(91\) −5.16244 + 1.29607i −0.541170 + 0.135865i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.2648 6.50372i −1.15574 0.667268i
\(96\) 0 0
\(97\) 9.29978 5.36923i 0.944250 0.545163i 0.0529598 0.998597i \(-0.483134\pi\)
0.891290 + 0.453434i \(0.149801\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.98052 1.72080i 0.296573 0.171226i −0.344330 0.938849i \(-0.611894\pi\)
0.640902 + 0.767623i \(0.278560\pi\)
\(102\) 0 0
\(103\) 0.562042 0.973484i 0.0553796 0.0959203i −0.837007 0.547193i \(-0.815696\pi\)
0.892386 + 0.451273i \(0.149030\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.50195i 0.241872i 0.992660 + 0.120936i \(0.0385897\pi\)
−0.992660 + 0.120936i \(0.961410\pi\)
\(108\) 0 0
\(109\) −11.1266 −1.06573 −0.532867 0.846199i \(-0.678885\pi\)
−0.532867 + 0.846199i \(0.678885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.599354 1.03811i 0.0563825 0.0976574i −0.836457 0.548033i \(-0.815377\pi\)
0.892839 + 0.450376i \(0.148710\pi\)
\(114\) 0 0
\(115\) −8.44533 14.6277i −0.787532 1.36404i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.69581 7.94332i −0.705473 0.728163i
\(120\) 0 0
\(121\) 10.8569 18.8047i 0.986989 1.70951i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 25.1105i 2.24595i
\(126\) 0 0
\(127\) 3.48012i 0.308811i 0.988008 + 0.154405i \(0.0493462\pi\)
−0.988008 + 0.154405i \(0.950654\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.73241 + 4.73267i −0.238732 + 0.413495i −0.960351 0.278795i \(-0.910065\pi\)
0.721619 + 0.692290i \(0.243398\pi\)
\(132\) 0 0
\(133\) 6.13477 5.94362i 0.531952 0.515377i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.49760 + 7.79007i 0.384256 + 0.665551i 0.991666 0.128838i \(-0.0411247\pi\)
−0.607410 + 0.794389i \(0.707791\pi\)
\(138\) 0 0
\(139\) 3.12779 5.41748i 0.265295 0.459505i −0.702346 0.711836i \(-0.747864\pi\)
0.967641 + 0.252331i \(0.0811972\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.5065 −0.962223
\(144\) 0 0
\(145\) 10.2413i 0.850493i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.32221 10.9504i 0.517936 0.897091i −0.481847 0.876255i \(-0.660034\pi\)
0.999783 0.0208358i \(-0.00663271\pi\)
\(150\) 0 0
\(151\) −13.8107 + 7.97363i −1.12390 + 0.648884i −0.942394 0.334505i \(-0.891431\pi\)
−0.181507 + 0.983390i \(0.558097\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.6426 + 12.4953i −1.73837 + 1.00365i
\(156\) 0 0
\(157\) −15.3782 8.87858i −1.22731 0.708588i −0.260844 0.965381i \(-0.584001\pi\)
−0.966467 + 0.256793i \(0.917334\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7580 2.70088i 0.847847 0.212859i
\(162\) 0 0
\(163\) 10.1287i 0.793339i −0.917962 0.396669i \(-0.870166\pi\)
0.917962 0.396669i \(-0.129834\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.08298 + 12.2681i −0.548098 + 0.949333i 0.450307 + 0.892874i \(0.351315\pi\)
−0.998405 + 0.0564595i \(0.982019\pi\)
\(168\) 0 0
\(169\) −4.47639 7.75334i −0.344338 0.596410i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.42612 + 5.44217i −0.716654 + 0.413761i −0.813520 0.581537i \(-0.802452\pi\)
0.0968656 + 0.995297i \(0.469118\pi\)
\(174\) 0 0
\(175\) 28.5805 + 8.14497i 2.16048 + 0.615702i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.7278i 0.876578i −0.898834 0.438289i \(-0.855585\pi\)
0.898834 0.438289i \(-0.144415\pi\)
\(180\) 0 0
\(181\) 17.6522i 1.31208i −0.754727 0.656039i \(-0.772231\pi\)
0.754727 0.656039i \(-0.227769\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −11.2214 6.47867i −0.825012 0.476321i
\(186\) 0 0
\(187\) −11.9547 20.7061i −0.874213 1.51418i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.581366 + 0.335652i −0.0420662 + 0.0242869i −0.520886 0.853626i \(-0.674398\pi\)
0.478819 + 0.877913i \(0.341065\pi\)
\(192\) 0 0
\(193\) −7.45526 + 12.9129i −0.536642 + 0.929491i 0.462440 + 0.886650i \(0.346974\pi\)
−0.999082 + 0.0428402i \(0.986359\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.84703 −0.630325 −0.315163 0.949038i \(-0.602059\pi\)
−0.315163 + 0.949038i \(0.602059\pi\)
\(198\) 0 0
\(199\) −4.99197 −0.353872 −0.176936 0.984222i \(-0.556619\pi\)
−0.176936 + 0.984222i \(0.556619\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.46777 1.84321i −0.453949 0.129368i
\(204\) 0 0
\(205\) −12.8194 22.2038i −0.895345 1.55078i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.9917 9.23282i 1.10617 0.638648i
\(210\) 0 0
\(211\) −1.47412 0.851085i −0.101483 0.0585911i 0.448400 0.893833i \(-0.351994\pi\)
−0.549882 + 0.835242i \(0.685327\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −17.2768 −1.17827
\(216\) 0 0
\(217\) −3.99610 15.9170i −0.271273 1.08052i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.20486 + 7.28302i −0.282849 + 0.489909i
\(222\) 0 0
\(223\) 10.0164 + 17.3488i 0.670745 + 1.16176i 0.977693 + 0.210038i \(0.0673588\pi\)
−0.306948 + 0.951726i \(0.599308\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.16212 8.94105i −0.342622 0.593438i 0.642297 0.766456i \(-0.277982\pi\)
−0.984919 + 0.173018i \(0.944648\pi\)
\(228\) 0 0
\(229\) −2.90563 1.67756i −0.192009 0.110857i 0.400914 0.916116i \(-0.368693\pi\)
−0.592923 + 0.805259i \(0.702026\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1788 1.32196 0.660978 0.750405i \(-0.270142\pi\)
0.660978 + 0.750405i \(0.270142\pi\)
\(234\) 0 0
\(235\) 23.5732i 1.53775i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.94777 1.70189i −0.190675 0.110086i 0.401623 0.915805i \(-0.368446\pi\)
−0.592299 + 0.805719i \(0.701779\pi\)
\(240\) 0 0
\(241\) −1.83067 + 1.05694i −0.117924 + 0.0680832i −0.557802 0.829974i \(-0.688355\pi\)
0.439878 + 0.898058i \(0.355022\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.8672 + 23.9658i −0.949830 + 1.53112i
\(246\) 0 0
\(247\) −5.62482 3.24749i −0.357899 0.206633i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.31087 −0.0827413 −0.0413707 0.999144i \(-0.513172\pi\)
−0.0413707 + 0.999144i \(0.513172\pi\)
\(252\) 0 0
\(253\) 23.9784 1.50751
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.71045 + 5.60633i 0.605721 + 0.349713i 0.771289 0.636485i \(-0.219612\pi\)
−0.165568 + 0.986198i \(0.552946\pi\)
\(258\) 0 0
\(259\) 6.11114 5.92072i 0.379728 0.367895i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.54810 0.893798i 0.0954601 0.0551139i −0.451510 0.892266i \(-0.649114\pi\)
0.546970 + 0.837152i \(0.315781\pi\)
\(264\) 0 0
\(265\) 48.5363 + 28.0225i 2.98156 + 1.72141i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.8546i 1.39347i 0.717330 + 0.696734i \(0.245364\pi\)
−0.717330 + 0.696734i \(0.754636\pi\)
\(270\) 0 0
\(271\) 13.4933 0.819657 0.409828 0.912163i \(-0.365589\pi\)
0.409828 + 0.912163i \(0.365589\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 55.6381 + 32.1227i 3.35510 + 1.93707i
\(276\) 0 0
\(277\) 10.0276 + 17.3684i 0.602503 + 1.04357i 0.992441 + 0.122724i \(0.0391630\pi\)
−0.389938 + 0.920841i \(0.627504\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.99902 + 13.8547i 0.477181 + 0.826502i 0.999658 0.0261512i \(-0.00832512\pi\)
−0.522477 + 0.852654i \(0.674992\pi\)
\(282\) 0 0
\(283\) −9.43384 + 16.3399i −0.560783 + 0.971305i 0.436645 + 0.899634i \(0.356167\pi\)
−0.997428 + 0.0716713i \(0.977167\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.3298 4.09973i 0.963918 0.242000i
\(288\) 0 0
\(289\) −0.474525 −0.0279132
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.2893 7.67260i −0.776371 0.448238i 0.0587718 0.998271i \(-0.481282\pi\)
−0.835143 + 0.550034i \(0.814615\pi\)
\(294\) 0 0
\(295\) 29.7377 17.1691i 1.73140 0.999623i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.21699 7.30404i −0.243875 0.422404i
\(300\) 0 0
\(301\) 3.10945 10.9110i 0.179226 0.628898i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −50.7209 −2.90427
\(306\) 0 0
\(307\) 12.8290 0.732192 0.366096 0.930577i \(-0.380694\pi\)
0.366096 + 0.930577i \(0.380694\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.01728 1.76198i 0.0576846 0.0999127i −0.835741 0.549124i \(-0.814962\pi\)
0.893426 + 0.449211i \(0.148295\pi\)
\(312\) 0 0
\(313\) 8.42991 4.86701i 0.476487 0.275100i −0.242465 0.970160i \(-0.577956\pi\)
0.718951 + 0.695061i \(0.244622\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.5075 + 19.9315i 0.646325 + 1.11947i 0.983994 + 0.178202i \(0.0570282\pi\)
−0.337669 + 0.941265i \(0.609639\pi\)
\(318\) 0 0
\(319\) −12.5909 7.26938i −0.704957 0.407007i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.4959i 0.750932i
\(324\) 0 0
\(325\) 22.5972i 1.25347i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 14.8874 + 4.24267i 0.820769 + 0.233906i
\(330\) 0 0
\(331\) 18.3921 10.6187i 1.01092 0.583656i 0.0994598 0.995042i \(-0.468289\pi\)
0.911461 + 0.411386i \(0.134955\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.5696 + 18.3071i 0.577478 + 1.00022i
\(336\) 0 0
\(337\) −13.0884 + 22.6698i −0.712971 + 1.23490i 0.250766 + 0.968048i \(0.419318\pi\)
−0.963737 + 0.266854i \(0.914016\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 35.4773i 1.92120i
\(342\) 0 0
\(343\) −12.4596 13.7025i −0.672753 0.739867i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.1001 + 7.56336i 0.703251 + 0.406022i 0.808557 0.588417i \(-0.200249\pi\)
−0.105306 + 0.994440i \(0.533582\pi\)
\(348\) 0 0
\(349\) −18.8255 + 10.8689i −1.00771 + 0.581799i −0.910519 0.413467i \(-0.864318\pi\)
−0.0971868 + 0.995266i \(0.530984\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −17.9454 + 10.3608i −0.955136 + 0.551448i −0.894673 0.446722i \(-0.852591\pi\)
−0.0604636 + 0.998170i \(0.519258\pi\)
\(354\) 0 0
\(355\) −25.2453 + 43.7262i −1.33988 + 2.32074i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.70585i 0.459477i −0.973252 0.229739i \(-0.926213\pi\)
0.973252 0.229739i \(-0.0737871\pi\)
\(360\) 0 0
\(361\) −8.57686 −0.451414
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.9944 27.7031i 0.837184 1.45005i
\(366\) 0 0
\(367\) −10.5062 18.1973i −0.548419 0.949890i −0.998383 0.0568434i \(-0.981896\pi\)
0.449964 0.893047i \(-0.351437\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −26.4328 + 25.6091i −1.37232 + 1.32956i
\(372\) 0 0
\(373\) 6.05267 10.4835i 0.313395 0.542817i −0.665700 0.746220i \(-0.731867\pi\)
0.979095 + 0.203403i \(0.0652002\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.11376i 0.263372i
\(378\) 0 0
\(379\) 32.3259i 1.66047i 0.557414 + 0.830234i \(0.311794\pi\)
−0.557414 + 0.830234i \(0.688206\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.70529 4.68571i 0.138234 0.239428i −0.788594 0.614914i \(-0.789191\pi\)
0.926828 + 0.375486i \(0.122524\pi\)
\(384\) 0 0
\(385\) −43.7882 + 42.4238i −2.23165 + 2.16212i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.74076 + 15.1394i 0.443174 + 0.767600i 0.997923 0.0644180i \(-0.0205191\pi\)
−0.554749 + 0.832018i \(0.687186\pi\)
\(390\) 0 0
\(391\) 8.76248 15.1771i 0.443138 0.767537i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.8816 1.05067
\(396\) 0 0
\(397\) 12.6177i 0.633264i −0.948549 0.316632i \(-0.897448\pi\)
0.948549 0.316632i \(-0.102552\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.40011 + 9.35327i −0.269669 + 0.467080i −0.968776 0.247937i \(-0.920248\pi\)
0.699108 + 0.715017i \(0.253581\pi\)
\(402\) 0 0
\(403\) −10.8067 + 6.23927i −0.538322 + 0.310800i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.9301 9.19725i 0.789626 0.455891i
\(408\) 0 0
\(409\) −9.66191 5.57831i −0.477751 0.275830i 0.241728 0.970344i \(-0.422286\pi\)
−0.719479 + 0.694515i \(0.755619\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.49080 + 21.8706i 0.270184 + 1.07618i
\(414\) 0 0
\(415\) 21.6718i 1.06383i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.36007 + 12.7480i −0.359563 + 0.622781i −0.987888 0.155170i \(-0.950408\pi\)
0.628325 + 0.777951i \(0.283741\pi\)
\(420\) 0 0
\(421\) 7.90063 + 13.6843i 0.385053 + 0.666932i 0.991777 0.127981i \(-0.0408497\pi\)
−0.606723 + 0.794913i \(0.707516\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 40.6640 23.4773i 1.97249 1.13882i
\(426\) 0 0
\(427\) 9.12868 32.0322i 0.441768 1.55015i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.798303i 0.0384529i 0.999815 + 0.0192265i \(0.00612035\pi\)
−0.999815 + 0.0192265i \(0.993880\pi\)
\(432\) 0 0
\(433\) 31.2293i 1.50079i 0.660992 + 0.750393i \(0.270136\pi\)
−0.660992 + 0.750393i \(0.729864\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.7215 + 6.76743i 0.560717 + 0.323730i
\(438\) 0 0
\(439\) −2.94795 5.10600i −0.140698 0.243696i 0.787062 0.616874i \(-0.211601\pi\)
−0.927760 + 0.373178i \(0.878268\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.02844 1.17112i 0.0963742 0.0556417i −0.451038 0.892505i \(-0.648946\pi\)
0.547413 + 0.836863i \(0.315613\pi\)
\(444\) 0 0
\(445\) 7.07379 12.2522i 0.335330 0.580809i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −23.9242 −1.12905 −0.564527 0.825415i \(-0.690941\pi\)
−0.564527 + 0.825415i \(0.690941\pi\)
\(450\) 0 0
\(451\) 36.3974 1.71389
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.6236 + 5.87739i 0.966848 + 0.275536i
\(456\) 0 0
\(457\) −7.24703 12.5522i −0.339002 0.587168i 0.645244 0.763977i \(-0.276756\pi\)
−0.984245 + 0.176809i \(0.943423\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.2137 9.36101i 0.755149 0.435986i −0.0724022 0.997376i \(-0.523067\pi\)
0.827551 + 0.561390i \(0.189733\pi\)
\(462\) 0 0
\(463\) 1.88529 + 1.08847i 0.0876166 + 0.0505855i 0.543168 0.839624i \(-0.317225\pi\)
−0.455552 + 0.890209i \(0.650558\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.8089 0.962923 0.481461 0.876467i \(-0.340106\pi\)
0.481461 + 0.876467i \(0.340106\pi\)
\(468\) 0 0
\(469\) −13.4639 + 3.38023i −0.621706 + 0.156084i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.2633 21.2406i 0.563865 0.976643i
\(474\) 0 0
\(475\) 18.1320 + 31.4055i 0.831953 + 1.44099i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.5470 26.9281i −0.710359 1.23038i −0.964723 0.263269i \(-0.915199\pi\)
0.254364 0.967109i \(-0.418134\pi\)
\(480\) 0 0
\(481\) −5.60315 3.23498i −0.255481 0.147502i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −43.2648 −1.96455
\(486\) 0 0
\(487\) 19.1545i 0.867972i 0.900920 + 0.433986i \(0.142893\pi\)
−0.900920 + 0.433986i \(0.857107\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −33.4660 19.3216i −1.51030 0.871972i −0.999928 0.0120176i \(-0.996175\pi\)
−0.510371 0.859954i \(-0.670492\pi\)
\(492\) 0 0
\(493\) −9.20228 + 5.31294i −0.414450 + 0.239283i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.0712 23.8132i −1.03488 1.06817i
\(498\) 0 0
\(499\) −37.8146 21.8323i −1.69281 0.977346i −0.952230 0.305382i \(-0.901216\pi\)
−0.740584 0.671964i \(-0.765451\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 34.6828 1.54643 0.773215 0.634144i \(-0.218647\pi\)
0.773215 + 0.634144i \(0.218647\pi\)
\(504\) 0 0
\(505\) −13.8661 −0.617032
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.03205 5.21466i −0.400339 0.231136i 0.286291 0.958143i \(-0.407577\pi\)
−0.686630 + 0.727007i \(0.740911\pi\)
\(510\) 0 0
\(511\) 14.6169 + 15.0870i 0.646615 + 0.667411i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.92213 + 2.26444i −0.172830 + 0.0997832i
\(516\) 0 0
\(517\) 28.9816 + 16.7325i 1.27461 + 0.735896i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.72877i 0.382414i 0.981550 + 0.191207i \(0.0612402\pi\)
−0.981550 + 0.191207i \(0.938760\pi\)
\(522\) 0 0
\(523\) 10.6357 0.465068 0.232534 0.972588i \(-0.425298\pi\)
0.232534 + 0.972588i \(0.425298\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −22.4553 12.9646i −0.978169 0.564746i
\(528\) 0 0
\(529\) −2.71224 4.69773i −0.117923 0.204249i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.40108 11.0870i −0.277262 0.480231i
\(534\) 0 0
\(535\) 5.04012 8.72974i 0.217903 0.377420i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.9113 35.2893i −0.814569 1.52002i
\(540\) 0 0
\(541\) 35.8565 1.54159 0.770797 0.637081i \(-0.219858\pi\)
0.770797 + 0.637081i \(0.219858\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 38.8226 + 22.4143i 1.66298 + 0.960121i
\(546\) 0 0
\(547\) −35.5209 + 20.5080i −1.51876 + 0.876859i −0.519009 + 0.854769i \(0.673699\pi\)
−0.999756 + 0.0220901i \(0.992968\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.10328 7.10709i −0.174806 0.302772i
\(552\) 0 0
\(553\) −3.75825 + 13.1876i −0.159817 + 0.560792i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.8693 1.43509 0.717545 0.696512i \(-0.245266\pi\)
0.717545 + 0.696512i \(0.245266\pi\)
\(558\) 0 0
\(559\) −8.62679 −0.364874
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.7326 25.5176i 0.620904 1.07544i −0.368414 0.929662i \(-0.620099\pi\)
0.989318 0.145775i \(-0.0465676\pi\)
\(564\) 0 0
\(565\) −4.18251 + 2.41477i −0.175960 + 0.101590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.11670 15.7906i −0.382192 0.661976i 0.609183 0.793029i \(-0.291497\pi\)
−0.991375 + 0.131054i \(0.958164\pi\)
\(570\) 0 0
\(571\) 21.9710 + 12.6850i 0.919459 + 0.530850i 0.883462 0.468502i \(-0.155206\pi\)
0.0359963 + 0.999352i \(0.488540\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 47.0902i 1.96380i
\(576\) 0 0
\(577\) 3.50461i 0.145899i −0.997336 0.0729493i \(-0.976759\pi\)
0.997336 0.0729493i \(-0.0232411\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.6866 3.90046i −0.567815 0.161818i
\(582\) 0 0
\(583\) −68.9032 + 39.7813i −2.85368 + 1.64757i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.1658 + 34.9282i 0.832332 + 1.44164i 0.896184 + 0.443682i \(0.146328\pi\)
−0.0638526 + 0.997959i \(0.520339\pi\)
\(588\) 0 0
\(589\) 10.0128 17.3427i 0.412570 0.714592i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.30611i 0.382156i 0.981575 + 0.191078i \(0.0611984\pi\)
−0.981575 + 0.191078i \(0.938802\pi\)
\(594\) 0 0
\(595\) 10.8504 + 43.2187i 0.444823 + 1.77179i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.0337880 + 0.0195075i 0.00138054 + 0.000797056i 0.500690 0.865627i \(-0.333080\pi\)
−0.499310 + 0.866424i \(0.666413\pi\)
\(600\) 0 0
\(601\) 34.4552 19.8927i 1.40546 0.811441i 0.410511 0.911856i \(-0.365350\pi\)
0.994946 + 0.100415i \(0.0320171\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −75.7632 + 43.7419i −3.08021 + 1.77836i
\(606\) 0 0
\(607\) −20.0081 + 34.6551i −0.812104 + 1.40661i 0.0992843 + 0.995059i \(0.468345\pi\)
−0.911389 + 0.411547i \(0.864989\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.7708i 0.476194i
\(612\) 0 0
\(613\) 5.49560 0.221965 0.110983 0.993822i \(-0.464600\pi\)
0.110983 + 0.993822i \(0.464600\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.1436 31.4256i 0.730432 1.26515i −0.226266 0.974065i \(-0.572652\pi\)
0.956699 0.291080i \(-0.0940146\pi\)
\(618\) 0 0
\(619\) 16.5285 + 28.6281i 0.664335 + 1.15066i 0.979465 + 0.201613i \(0.0646185\pi\)
−0.315130 + 0.949048i \(0.602048\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.46459 + 6.67250i 0.258998 + 0.267328i
\(624\) 0 0
\(625\) −22.5033 + 38.9768i −0.900130 + 1.55907i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.4439i 0.536044i
\(630\) 0 0
\(631\) 27.6502i 1.10074i −0.834921 0.550370i \(-0.814487\pi\)
0.834921 0.550370i \(-0.185513\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.01063 12.1428i 0.278208 0.481871i
\(636\) 0 0
\(637\) −7.42360 + 11.9668i −0.294134 + 0.474141i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.92939 + 12.0020i 0.273694 + 0.474052i 0.969805 0.243882i \(-0.0784210\pi\)
−0.696111 + 0.717935i \(0.745088\pi\)
\(642\) 0 0
\(643\) −18.7853 + 32.5370i −0.740819 + 1.28314i 0.211304 + 0.977420i \(0.432229\pi\)
−0.952123 + 0.305715i \(0.901104\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.3733 −0.761641 −0.380821 0.924649i \(-0.624358\pi\)
−0.380821 + 0.924649i \(0.624358\pi\)
\(648\) 0 0
\(649\) 48.7472i 1.91350i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.26860 7.39344i 0.167043 0.289328i −0.770336 0.637639i \(-0.779911\pi\)
0.937379 + 0.348311i \(0.113245\pi\)
\(654\) 0 0
\(655\) 19.0677 11.0088i 0.745038 0.430148i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.61026 2.66174i 0.179590 0.103687i −0.407510 0.913201i \(-0.633603\pi\)
0.587100 + 0.809514i \(0.300269\pi\)
\(660\) 0 0
\(661\) −12.3847 7.15033i −0.481710 0.278115i 0.239419 0.970916i \(-0.423043\pi\)
−0.721129 + 0.692801i \(0.756376\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33.3786 + 8.37997i −1.29437 + 0.324961i
\(666\) 0 0
\(667\) 10.6565i 0.412623i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36.0023 62.3577i 1.38985 2.40729i
\(672\) 0 0
\(673\) −18.3816 31.8378i −0.708558 1.22726i −0.965392 0.260803i \(-0.916013\pi\)
0.256834 0.966456i \(-0.417321\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.71366 + 4.45348i −0.296460 + 0.171161i −0.640852 0.767665i \(-0.721419\pi\)
0.344391 + 0.938826i \(0.388085\pi\)
\(678\) 0 0
\(679\) 7.78674 27.3234i 0.298828 1.04858i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.6622i 0.522768i 0.965235 + 0.261384i \(0.0841789\pi\)
−0.965235 + 0.261384i \(0.915821\pi\)
\(684\) 0 0
\(685\) 36.2413i 1.38471i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 24.2355 + 13.9924i 0.923300 + 0.533068i
\(690\) 0 0
\(691\) −17.2087 29.8063i −0.654648 1.13388i −0.981982 0.188975i \(-0.939483\pi\)
0.327334 0.944909i \(-0.393850\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −21.8268 + 12.6017i −0.827938 + 0.478010i
\(696\) 0 0
\(697\) 13.3008 23.0377i 0.503804 0.872613i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0060 −0.680078 −0.340039 0.940411i \(-0.610440\pi\)
−0.340039 + 0.940411i \(0.610440\pi\)
\(702\) 0 0
\(703\) 10.3830 0.391602
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.49560 8.75697i 0.0938566 0.329340i
\(708\) 0 0
\(709\) 25.2917 + 43.8065i 0.949849 + 1.64519i 0.745738 + 0.666239i \(0.232097\pi\)
0.204111 + 0.978948i \(0.434570\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22.5201 13.0020i 0.843385 0.486928i
\(714\) 0 0
\(715\) 40.1483 + 23.1796i 1.50146 + 0.866869i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 44.2317 1.64956 0.824782 0.565450i \(-0.191298\pi\)
0.824782 + 0.565450i \(0.191298\pi\)
\(720\) 0 0
\(721\) −0.724184 2.88453i −0.0269700 0.107425i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.2761 24.7269i 0.530200 0.918332i
\(726\) 0 0
\(727\) 23.3313 + 40.4110i 0.865310 + 1.49876i 0.866739 + 0.498762i \(0.166212\pi\)
−0.00142913 + 0.999999i \(0.500455\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.96279 15.5240i −0.331501 0.574176i
\(732\) 0 0
\(733\) −29.4459 17.0006i −1.08761 0.627932i −0.154671 0.987966i \(-0.549432\pi\)
−0.932939 + 0.360034i \(0.882765\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −30.0096 −1.10542
\(738\) 0 0
\(739\) 12.4853i 0.459279i 0.973276 + 0.229640i \(0.0737548\pi\)
−0.973276 + 0.229640i \(0.926245\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.6313 + 14.2209i 0.903636 + 0.521714i 0.878378 0.477967i \(-0.158626\pi\)
0.0252578 + 0.999681i \(0.491959\pi\)
\(744\) 0 0
\(745\) −44.1187 + 25.4719i −1.61638 + 0.933219i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.60606 + 4.75420i 0.168302 + 0.173715i
\(750\) 0 0
\(751\) 3.91640 + 2.26113i 0.142911 + 0.0825100i 0.569751 0.821817i \(-0.307040\pi\)
−0.426839 + 0.904327i \(0.640373\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 64.2508 2.33833
\(756\) 0 0
\(757\) −9.85242 −0.358092 −0.179046 0.983841i \(-0.557301\pi\)
−0.179046 + 0.983841i \(0.557301\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 45.5417 + 26.2935i 1.65089 + 0.953139i 0.976709 + 0.214568i \(0.0688345\pi\)
0.674176 + 0.738571i \(0.264499\pi\)
\(762\) 0 0
\(763\) −21.1427 + 20.4839i −0.765418 + 0.741568i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.8489 8.57300i 0.536162 0.309553i
\(768\) 0 0
\(769\) −9.80437 5.66055i −0.353555 0.204125i 0.312695 0.949854i \(-0.398768\pi\)
−0.666250 + 0.745729i \(0.732101\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.42526i 0.0512631i −0.999671 0.0256316i \(-0.991840\pi\)
0.999671 0.0256316i \(-0.00815967\pi\)
\(774\) 0 0
\(775\) 69.6726 2.50271
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.7924 + 10.2725i 0.637479 + 0.368049i
\(780\) 0 0
\(781\) −35.8388 62.0746i −1.28241 2.22120i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 35.7714 + 61.9579i 1.27674 + 2.21137i
\(786\) 0 0
\(787\) 20.9215 36.2370i 0.745769 1.29171i −0.204065 0.978957i \(-0.565415\pi\)
0.949834 0.312753i \(-0.101251\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.772261 3.07603i −0.0274585 0.109371i
\(792\) 0 0
\(793\) −25.3264 −0.899366
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.85796 4.53679i −0.278343 0.160701i 0.354330 0.935120i \(-0.384709\pi\)
−0.632673 + 0.774419i \(0.718042\pi\)
\(798\) 0 0
\(799\) 21.1816 12.2292i 0.749353 0.432639i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 22.7060 + 39.3279i 0.801276 + 1.38785i
\(804\) 0 0
\(805\) −42.9774 12.2479i −1.51475 0.431680i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.6037 0.654071 0.327035 0.945012i \(-0.393950\pi\)
0.327035 + 0.945012i \(0.393950\pi\)
\(810\) 0 0
\(811\) −43.7813 −1.53737 −0.768684 0.639628i \(-0.779088\pi\)
−0.768684 + 0.639628i \(0.779088\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.4040 + 35.3407i −0.714721 + 1.23793i
\(816\) 0 0
\(817\) 11.9895 6.92213i 0.419459 0.242175i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.8053 + 20.4474i 0.412009 + 0.713620i 0.995109 0.0987801i \(-0.0314940\pi\)
−0.583101 + 0.812400i \(0.698161\pi\)
\(822\) 0 0
\(823\) −0.653789 0.377465i −0.0227897 0.0131576i 0.488562 0.872529i \(-0.337522\pi\)
−0.511352 + 0.859372i \(0.670855\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.64456i 0.196281i −0.995173 0.0981404i \(-0.968711\pi\)
0.995173 0.0981404i \(-0.0312894\pi\)
\(828\) 0 0
\(829\) 26.2077i 0.910230i 0.890433 + 0.455115i \(0.150402\pi\)
−0.890433 + 0.455115i \(0.849598\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −29.2471 0.925983i −1.01335 0.0320834i
\(834\) 0 0
\(835\) 49.4276 28.5370i 1.71051 0.987565i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.5365 + 18.2498i 0.363761 + 0.630053i 0.988577 0.150720i \(-0.0481591\pi\)
−0.624815 + 0.780773i \(0.714826\pi\)
\(840\) 0 0
\(841\) 11.2693 19.5190i 0.388597 0.673070i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.0704i 1.24086i
\(846\) 0 0
\(847\) −13.9890 55.7200i −0.480666 1.91456i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.6764 + 6.74135i 0.400261 + 0.231091i
\(852\) 0 0
\(853\) 30.6601 17.7016i 1.04978 0.606092i 0.127193 0.991878i \(-0.459403\pi\)
0.922588 + 0.385786i \(0.126070\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.1852 11.0766i 0.655356 0.378370i −0.135149 0.990825i \(-0.543151\pi\)
0.790505 + 0.612455i \(0.209818\pi\)
\(858\) 0 0
\(859\) 2.32382 4.02497i 0.0792876 0.137330i −0.823655 0.567091i \(-0.808069\pi\)
0.902943 + 0.429761i \(0.141402\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.5090i 0.357732i −0.983873 0.178866i \(-0.942757\pi\)
0.983873 0.178866i \(-0.0572428\pi\)
\(864\) 0 0
\(865\) 43.8526 1.49103
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.8220 + 25.6725i −0.502802 + 0.870879i
\(870\) 0 0
\(871\) 5.27769 + 9.14122i 0.178828 + 0.309739i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −46.2281 47.7149i −1.56280 1.61306i
\(876\) 0 0
\(877\) −3.60317 + 6.24087i −0.121670 + 0.210739i −0.920427 0.390916i \(-0.872158\pi\)
0.798756 + 0.601655i \(0.205492\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47.4313i 1.59800i −0.601331 0.799000i \(-0.705363\pi\)
0.601331 0.799000i \(-0.294637\pi\)
\(882\) 0 0
\(883\) 44.5341i 1.49869i −0.662178 0.749346i \(-0.730368\pi\)
0.662178 0.749346i \(-0.269632\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.55039 + 11.3456i −0.219941 + 0.380948i −0.954790 0.297283i \(-0.903920\pi\)
0.734849 + 0.678231i \(0.237253\pi\)
\(888\) 0 0
\(889\) 6.40686 + 6.61292i 0.214879 + 0.221790i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.44486 + 16.3590i 0.316060 + 0.547432i
\(894\) 0 0
\(895\) −23.6254 + 40.9205i −0.789711 + 1.36782i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15.7669 −0.525857
\(900\) 0 0
\(901\) 58.1495i 1.93724i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −35.5600 + 61.5917i −1.18205 + 2.04738i
\(906\) 0 0
\(907\) 16.1687 9.33500i 0.536872 0.309963i −0.206938 0.978354i \(-0.566350\pi\)
0.743810 + 0.668391i \(0.233017\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.20898 5.31680i 0.305107 0.176154i −0.339628 0.940560i \(-0.610301\pi\)
0.644735 + 0.764406i \(0.276968\pi\)
\(912\) 0 0
\(913\) −26.6439 15.3829i −0.881785 0.509099i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.52068 + 14.0234i 0.116263 + 0.463092i
\(918\) 0 0
\(919\) 25.9144i 0.854836i −0.904054 0.427418i \(-0.859423\pi\)
0.904054 0.427418i \(-0.140577\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.6057 + 21.8337i −0.414921 + 0.718665i
\(924\) 0 0
\(925\) 18.0621 + 31.2846i 0.593880 + 1.02863i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −44.4016 + 25.6353i −1.45677 + 0.841066i −0.998851 0.0479287i \(-0.984738\pi\)
−0.457918 + 0.888994i \(0.651405\pi\)
\(930\) 0 0
\(931\) 0.715154 22.5881i 0.0234382 0.740295i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 96.3298i 3.15032i
\(936\) 0 0
\(937\) 47.7056i 1.55847i 0.626729 + 0.779237i \(0.284393\pi\)
−0.626729 + 0.779237i \(0.715607\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −49.3584 28.4971i −1.60904 0.928978i −0.989586 0.143944i \(-0.954022\pi\)
−0.619452 0.785035i \(-0.712645\pi\)
\(942\) 0 0
\(943\) 13.3392 + 23.1041i 0.434383 + 0.752374i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.86698 2.80995i 0.158156 0.0913113i −0.418833 0.908063i \(-0.637561\pi\)
0.576989 + 0.816752i \(0.304228\pi\)
\(948\) 0 0
\(949\) 7.98644 13.8329i 0.259251 0.449035i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 39.6935 1.28580 0.642899 0.765951i \(-0.277731\pi\)
0.642899 + 0.765951i \(0.277731\pi\)
\(954\) 0 0
\(955\) 2.70465 0.0875205
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.8878 + 6.52265i 0.739085 + 0.210627i
\(960\) 0 0
\(961\) −3.73718 6.47298i −0.120554 0.208806i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 52.0255 30.0369i 1.67476 0.966923i
\(966\) 0 0
\(967\) −23.3249 13.4666i −0.750078 0.433058i 0.0756442 0.997135i \(-0.475899\pi\)
−0.825722 + 0.564077i \(0.809232\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.63591 −0.309231 −0.154616 0.987975i \(-0.549414\pi\)
−0.154616 + 0.987975i \(0.549414\pi\)
\(972\) 0 0
\(973\) −4.03012 16.0525i −0.129200 0.514620i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.0233 43.3417i 0.800567 1.38662i −0.118676 0.992933i \(-0.537865\pi\)
0.919243 0.393690i \(-0.128802\pi\)
\(978\) 0 0
\(979\) 10.0421 + 17.3934i 0.320947 + 0.555897i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.3246 + 35.2032i 0.648254 + 1.12281i 0.983540 + 0.180692i \(0.0578337\pi\)
−0.335286 + 0.942116i \(0.608833\pi\)
\(984\) 0 0
\(985\) 30.8689 + 17.8222i 0.983564 + 0.567861i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.9773 0.571645
\(990\) 0 0
\(991\) 7.45474i 0.236808i 0.992966 + 0.118404i \(0.0377777\pi\)
−0.992966 + 0.118404i \(0.962222\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.4179 + 10.0562i 0.552184 + 0.318804i
\(996\) 0 0
\(997\) 10.3529 5.97727i 0.327881 0.189302i −0.327019 0.945018i \(-0.606044\pi\)
0.654900 + 0.755716i \(0.272711\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cx.j.2575.1 24
3.2 odd 2 1008.2.cx.j.895.7 yes 24
4.3 odd 2 3024.2.cx.i.2575.1 24
7.6 odd 2 inner 3024.2.cx.j.2575.12 24
9.2 odd 6 1008.2.cx.i.223.7 yes 24
9.7 even 3 3024.2.cx.i.559.12 24
12.11 even 2 1008.2.cx.i.895.6 yes 24
21.20 even 2 1008.2.cx.j.895.6 yes 24
28.27 even 2 3024.2.cx.i.2575.12 24
36.7 odd 6 inner 3024.2.cx.j.559.12 24
36.11 even 6 1008.2.cx.j.223.6 yes 24
63.20 even 6 1008.2.cx.i.223.6 24
63.34 odd 6 3024.2.cx.i.559.1 24
84.83 odd 2 1008.2.cx.i.895.7 yes 24
252.83 odd 6 1008.2.cx.j.223.7 yes 24
252.223 even 6 inner 3024.2.cx.j.559.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.i.223.6 24 63.20 even 6
1008.2.cx.i.223.7 yes 24 9.2 odd 6
1008.2.cx.i.895.6 yes 24 12.11 even 2
1008.2.cx.i.895.7 yes 24 84.83 odd 2
1008.2.cx.j.223.6 yes 24 36.11 even 6
1008.2.cx.j.223.7 yes 24 252.83 odd 6
1008.2.cx.j.895.6 yes 24 21.20 even 2
1008.2.cx.j.895.7 yes 24 3.2 odd 2
3024.2.cx.i.559.1 24 63.34 odd 6
3024.2.cx.i.559.12 24 9.7 even 3
3024.2.cx.i.2575.1 24 4.3 odd 2
3024.2.cx.i.2575.12 24 28.27 even 2
3024.2.cx.j.559.1 24 252.223 even 6 inner
3024.2.cx.j.559.12 24 36.7 odd 6 inner
3024.2.cx.j.2575.1 24 1.1 even 1 trivial
3024.2.cx.j.2575.12 24 7.6 odd 2 inner