Properties

Label 3024.2.cx.i.559.12
Level $3024$
Weight $2$
Character 3024.559
Analytic conductor $24.147$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(559,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.559"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-6,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.12
Character \(\chi\) \(=\) 3024.559
Dual form 3024.2.cx.i.2575.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.48918 - 2.01448i) q^{5} +(-2.54444 - 0.725126i) q^{7} +(-4.95331 - 2.85980i) q^{11} +(1.74224 - 1.00589i) q^{13} -4.18025i q^{17} +3.22849 q^{19} +(-3.63065 + 2.09616i) q^{23} +(5.61625 - 9.72763i) q^{25} +(-1.27096 + 2.20137i) q^{29} +(3.10138 + 5.37176i) q^{31} +(-10.3388 + 2.59563i) q^{35} +3.21605 q^{37} +(-5.51107 + 3.18181i) q^{41} +(-3.71365 - 2.14408i) q^{43} +(2.92547 - 5.06707i) q^{47} +(5.94838 + 3.69008i) q^{49} -13.9105 q^{53} -23.0440 q^{55} +(-4.26142 - 7.38100i) q^{59} +(-10.9025 - 6.29455i) q^{61} +(4.05267 - 7.01943i) q^{65} +(4.54387 - 2.62341i) q^{67} -12.5319i q^{71} +7.93971i q^{73} +(10.5297 + 10.8684i) q^{77} +(4.48851 + 2.59144i) q^{79} +(-2.68950 + 4.65836i) q^{83} +(-8.42103 - 14.5857i) q^{85} +3.51148i q^{89} +(-5.16244 + 1.29607i) q^{91} +(11.2648 - 6.50372i) q^{95} +(-9.29978 - 5.36923i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 6 q^{7} - 18 q^{23} + 24 q^{25} + 6 q^{29} - 12 q^{37} + 42 q^{43} + 12 q^{49} - 96 q^{53} - 42 q^{65} + 36 q^{67} + 18 q^{77} - 60 q^{79} - 6 q^{85} + 126 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.48918 2.01448i 1.56041 0.900902i 0.563193 0.826325i \(-0.309573\pi\)
0.997215 0.0745770i \(-0.0237607\pi\)
\(6\) 0 0
\(7\) −2.54444 0.725126i −0.961709 0.274072i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.95331 2.85980i −1.49348 0.862261i −0.493508 0.869741i \(-0.664286\pi\)
−0.999972 + 0.00747985i \(0.997619\pi\)
\(12\) 0 0
\(13\) 1.74224 1.00589i 0.483212 0.278982i −0.238542 0.971132i \(-0.576670\pi\)
0.721754 + 0.692150i \(0.243336\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.18025i 1.01386i −0.861987 0.506930i \(-0.830780\pi\)
0.861987 0.506930i \(-0.169220\pi\)
\(18\) 0 0
\(19\) 3.22849 0.740666 0.370333 0.928899i \(-0.379244\pi\)
0.370333 + 0.928899i \(0.379244\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.63065 + 2.09616i −0.757044 + 0.437079i −0.828233 0.560383i \(-0.810654\pi\)
0.0711897 + 0.997463i \(0.477320\pi\)
\(24\) 0 0
\(25\) 5.61625 9.72763i 1.12325 1.94553i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.27096 + 2.20137i −0.236011 + 0.408784i −0.959566 0.281483i \(-0.909174\pi\)
0.723555 + 0.690267i \(0.242507\pi\)
\(30\) 0 0
\(31\) 3.10138 + 5.37176i 0.557025 + 0.964796i 0.997743 + 0.0671502i \(0.0213907\pi\)
−0.440718 + 0.897646i \(0.645276\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.3388 + 2.59563i −1.74757 + 0.438742i
\(36\) 0 0
\(37\) 3.21605 0.528716 0.264358 0.964425i \(-0.414840\pi\)
0.264358 + 0.964425i \(0.414840\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.51107 + 3.18181i −0.860684 + 0.496916i −0.864241 0.503078i \(-0.832201\pi\)
0.00355743 + 0.999994i \(0.498868\pi\)
\(42\) 0 0
\(43\) −3.71365 2.14408i −0.566327 0.326969i 0.189354 0.981909i \(-0.439361\pi\)
−0.755681 + 0.654940i \(0.772694\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.92547 5.06707i 0.426724 0.739108i −0.569855 0.821745i \(-0.693001\pi\)
0.996580 + 0.0826368i \(0.0263342\pi\)
\(48\) 0 0
\(49\) 5.94838 + 3.69008i 0.849769 + 0.527155i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.9105 −1.91076 −0.955379 0.295383i \(-0.904553\pi\)
−0.955379 + 0.295383i \(0.904553\pi\)
\(54\) 0 0
\(55\) −23.0440 −3.10725
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.26142 7.38100i −0.554790 0.960925i −0.997920 0.0644671i \(-0.979465\pi\)
0.443130 0.896457i \(-0.353868\pi\)
\(60\) 0 0
\(61\) −10.9025 6.29455i −1.39592 0.805934i −0.401957 0.915659i \(-0.631670\pi\)
−0.993962 + 0.109724i \(0.965003\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.05267 7.01943i 0.502672 0.870653i
\(66\) 0 0
\(67\) 4.54387 2.62341i 0.555122 0.320500i −0.196063 0.980591i \(-0.562816\pi\)
0.751185 + 0.660091i \(0.229482\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.5319i 1.48727i −0.668587 0.743634i \(-0.733101\pi\)
0.668587 0.743634i \(-0.266899\pi\)
\(72\) 0 0
\(73\) 7.93971i 0.929273i 0.885502 + 0.464636i \(0.153815\pi\)
−0.885502 + 0.464636i \(0.846185\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.5297 + 10.8684i 1.19997 + 1.23857i
\(78\) 0 0
\(79\) 4.48851 + 2.59144i 0.504997 + 0.291560i 0.730775 0.682619i \(-0.239159\pi\)
−0.225778 + 0.974179i \(0.572492\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.68950 + 4.65836i −0.295211 + 0.511321i −0.975034 0.222055i \(-0.928723\pi\)
0.679823 + 0.733377i \(0.262057\pi\)
\(84\) 0 0
\(85\) −8.42103 14.5857i −0.913389 1.58204i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.51148i 0.372216i 0.982529 + 0.186108i \(0.0595874\pi\)
−0.982529 + 0.186108i \(0.940413\pi\)
\(90\) 0 0
\(91\) −5.16244 + 1.29607i −0.541170 + 0.135865i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.2648 6.50372i 1.15574 0.667268i
\(96\) 0 0
\(97\) −9.29978 5.36923i −0.944250 0.545163i −0.0529598 0.998597i \(-0.516866\pi\)
−0.891290 + 0.453434i \(0.850199\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.98052 1.72080i −0.296573 0.171226i 0.344330 0.938849i \(-0.388106\pi\)
−0.640902 + 0.767623i \(0.721440\pi\)
\(102\) 0 0
\(103\) 0.562042 + 0.973484i 0.0553796 + 0.0959203i 0.892386 0.451273i \(-0.149030\pi\)
−0.837007 + 0.547193i \(0.815696\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.50195i 0.241872i 0.992660 + 0.120936i \(0.0385897\pi\)
−0.992660 + 0.120936i \(0.961410\pi\)
\(108\) 0 0
\(109\) −11.1266 −1.06573 −0.532867 0.846199i \(-0.678885\pi\)
−0.532867 + 0.846199i \(0.678885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.599354 + 1.03811i 0.0563825 + 0.0976574i 0.892839 0.450376i \(-0.148710\pi\)
−0.836457 + 0.548033i \(0.815377\pi\)
\(114\) 0 0
\(115\) −8.44533 + 14.6277i −0.787532 + 1.36404i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.03121 + 10.6364i −0.277871 + 0.975039i
\(120\) 0 0
\(121\) 10.8569 + 18.8047i 0.986989 + 1.70951i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 25.1105i 2.24595i
\(126\) 0 0
\(127\) 3.48012i 0.308811i 0.988008 + 0.154405i \(0.0493462\pi\)
−0.988008 + 0.154405i \(0.950654\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.73241 4.73267i −0.238732 0.413495i 0.721619 0.692290i \(-0.243398\pi\)
−0.960351 + 0.278795i \(0.910065\pi\)
\(132\) 0 0
\(133\) −8.21471 2.34106i −0.712306 0.202996i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.49760 7.79007i 0.384256 0.665551i −0.607410 0.794389i \(-0.707791\pi\)
0.991666 + 0.128838i \(0.0411247\pi\)
\(138\) 0 0
\(139\) 3.12779 + 5.41748i 0.265295 + 0.459505i 0.967641 0.252331i \(-0.0811972\pi\)
−0.702346 + 0.711836i \(0.747864\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.5065 −0.962223
\(144\) 0 0
\(145\) 10.2413i 0.850493i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.32221 + 10.9504i 0.517936 + 0.897091i 0.999783 + 0.0208358i \(0.00663271\pi\)
−0.481847 + 0.876255i \(0.660034\pi\)
\(150\) 0 0
\(151\) 13.8107 + 7.97363i 1.12390 + 0.648884i 0.942394 0.334505i \(-0.108569\pi\)
0.181507 + 0.983390i \(0.441903\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 21.6426 + 12.4953i 1.73837 + 1.00365i
\(156\) 0 0
\(157\) 15.3782 8.87858i 1.22731 0.708588i 0.260844 0.965381i \(-0.415999\pi\)
0.966467 + 0.256793i \(0.0826658\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7580 2.70088i 0.847847 0.212859i
\(162\) 0 0
\(163\) 10.1287i 0.793339i −0.917962 0.396669i \(-0.870166\pi\)
0.917962 0.396669i \(-0.129834\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.08298 12.2681i −0.548098 0.949333i −0.998405 0.0564595i \(-0.982019\pi\)
0.450307 0.892874i \(-0.351315\pi\)
\(168\) 0 0
\(169\) −4.47639 + 7.75334i −0.344338 + 0.596410i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.42612 + 5.44217i 0.716654 + 0.413761i 0.813520 0.581537i \(-0.197548\pi\)
−0.0968656 + 0.995297i \(0.530882\pi\)
\(174\) 0 0
\(175\) −21.3440 + 20.6789i −1.61345 + 1.56318i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.7278i 0.876578i −0.898834 0.438289i \(-0.855585\pi\)
0.898834 0.438289i \(-0.144415\pi\)
\(180\) 0 0
\(181\) 17.6522i 1.31208i −0.754727 0.656039i \(-0.772231\pi\)
0.754727 0.656039i \(-0.227769\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.2214 6.47867i 0.825012 0.476321i
\(186\) 0 0
\(187\) −11.9547 + 20.7061i −0.874213 + 1.51418i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.581366 + 0.335652i 0.0420662 + 0.0242869i 0.520886 0.853626i \(-0.325602\pi\)
−0.478819 + 0.877913i \(0.658935\pi\)
\(192\) 0 0
\(193\) −7.45526 12.9129i −0.536642 0.929491i −0.999082 0.0428402i \(-0.986359\pi\)
0.462440 0.886650i \(-0.346974\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.84703 −0.630325 −0.315163 0.949038i \(-0.602059\pi\)
−0.315163 + 0.949038i \(0.602059\pi\)
\(198\) 0 0
\(199\) −4.99197 −0.353872 −0.176936 0.984222i \(-0.556619\pi\)
−0.176936 + 0.984222i \(0.556619\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.83016 4.67965i 0.339010 0.328447i
\(204\) 0 0
\(205\) −12.8194 + 22.2038i −0.895345 + 1.55078i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −15.9917 9.23282i −1.10617 0.638648i
\(210\) 0 0
\(211\) 1.47412 0.851085i 0.101483 0.0585911i −0.448400 0.893833i \(-0.648006\pi\)
0.549882 + 0.835242i \(0.314673\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −17.2768 −1.17827
\(216\) 0 0
\(217\) −3.99610 15.9170i −0.271273 1.08052i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.20486 7.28302i −0.282849 0.489909i
\(222\) 0 0
\(223\) 10.0164 17.3488i 0.670745 1.16176i −0.306948 0.951726i \(-0.599308\pi\)
0.977693 0.210038i \(-0.0673588\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.16212 + 8.94105i −0.342622 + 0.593438i −0.984919 0.173018i \(-0.944648\pi\)
0.642297 + 0.766456i \(0.277982\pi\)
\(228\) 0 0
\(229\) 2.90563 1.67756i 0.192009 0.110857i −0.400914 0.916116i \(-0.631307\pi\)
0.592923 + 0.805259i \(0.297974\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1788 1.32196 0.660978 0.750405i \(-0.270142\pi\)
0.660978 + 0.750405i \(0.270142\pi\)
\(234\) 0 0
\(235\) 23.5732i 1.53775i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.94777 1.70189i 0.190675 0.110086i −0.401623 0.915805i \(-0.631554\pi\)
0.592299 + 0.805719i \(0.298221\pi\)
\(240\) 0 0
\(241\) 1.83067 + 1.05694i 0.117924 + 0.0680832i 0.557802 0.829974i \(-0.311645\pi\)
−0.439878 + 0.898058i \(0.644978\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 28.1886 + 0.892469i 1.80090 + 0.0570177i
\(246\) 0 0
\(247\) 5.62482 3.24749i 0.357899 0.206633i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.31087 −0.0827413 −0.0413707 0.999144i \(-0.513172\pi\)
−0.0413707 + 0.999144i \(0.513172\pi\)
\(252\) 0 0
\(253\) 23.9784 1.50751
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.71045 + 5.60633i −0.605721 + 0.349713i −0.771289 0.636485i \(-0.780388\pi\)
0.165568 + 0.986198i \(0.447054\pi\)
\(258\) 0 0
\(259\) −8.18306 2.33204i −0.508471 0.144906i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.54810 0.893798i −0.0954601 0.0551139i 0.451510 0.892266i \(-0.350886\pi\)
−0.546970 + 0.837152i \(0.684219\pi\)
\(264\) 0 0
\(265\) −48.5363 + 28.0225i −2.98156 + 1.72141i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.8546i 1.39347i 0.717330 + 0.696734i \(0.245364\pi\)
−0.717330 + 0.696734i \(0.754636\pi\)
\(270\) 0 0
\(271\) 13.4933 0.819657 0.409828 0.912163i \(-0.365589\pi\)
0.409828 + 0.912163i \(0.365589\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −55.6381 + 32.1227i −3.35510 + 1.93707i
\(276\) 0 0
\(277\) 10.0276 17.3684i 0.602503 1.04357i −0.389938 0.920841i \(-0.627504\pi\)
0.992441 0.122724i \(-0.0391630\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.99902 13.8547i 0.477181 0.826502i −0.522477 0.852654i \(-0.674992\pi\)
0.999658 + 0.0261512i \(0.00832512\pi\)
\(282\) 0 0
\(283\) −9.43384 16.3399i −0.560783 0.971305i −0.997428 0.0716713i \(-0.977167\pi\)
0.436645 0.899634i \(-0.356167\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.3298 4.09973i 0.963918 0.242000i
\(288\) 0 0
\(289\) −0.474525 −0.0279132
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.2893 7.67260i 0.776371 0.448238i −0.0587718 0.998271i \(-0.518718\pi\)
0.835143 + 0.550034i \(0.185385\pi\)
\(294\) 0 0
\(295\) −29.7377 17.1691i −1.73140 0.999623i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.21699 + 7.30404i −0.243875 + 0.422404i
\(300\) 0 0
\(301\) 7.89445 + 8.14835i 0.455029 + 0.469663i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −50.7209 −2.90427
\(306\) 0 0
\(307\) 12.8290 0.732192 0.366096 0.930577i \(-0.380694\pi\)
0.366096 + 0.930577i \(0.380694\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.01728 + 1.76198i 0.0576846 + 0.0999127i 0.893426 0.449211i \(-0.148295\pi\)
−0.835741 + 0.549124i \(0.814962\pi\)
\(312\) 0 0
\(313\) −8.42991 4.86701i −0.476487 0.275100i 0.242465 0.970160i \(-0.422044\pi\)
−0.718951 + 0.695061i \(0.755378\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.5075 19.9315i 0.646325 1.11947i −0.337669 0.941265i \(-0.609639\pi\)
0.983994 0.178202i \(-0.0570282\pi\)
\(318\) 0 0
\(319\) 12.5909 7.26938i 0.704957 0.407007i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.4959i 0.750932i
\(324\) 0 0
\(325\) 22.5972i 1.25347i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.1180 + 10.7715i −0.612953 + 0.593854i
\(330\) 0 0
\(331\) −18.3921 10.6187i −1.01092 0.583656i −0.0994598 0.995042i \(-0.531711\pi\)
−0.911461 + 0.411386i \(0.865045\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.5696 18.3071i 0.577478 1.00022i
\(336\) 0 0
\(337\) −13.0884 22.6698i −0.712971 1.23490i −0.963737 0.266854i \(-0.914016\pi\)
0.250766 0.968048i \(-0.419318\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 35.4773i 1.92120i
\(342\) 0 0
\(343\) −12.4596 13.7025i −0.672753 0.739867i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.1001 + 7.56336i −0.703251 + 0.406022i −0.808557 0.588417i \(-0.799751\pi\)
0.105306 + 0.994440i \(0.466418\pi\)
\(348\) 0 0
\(349\) 18.8255 + 10.8689i 1.00771 + 0.581799i 0.910519 0.413467i \(-0.135682\pi\)
0.0971868 + 0.995266i \(0.469016\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.9454 + 10.3608i 0.955136 + 0.551448i 0.894673 0.446722i \(-0.147409\pi\)
0.0604636 + 0.998170i \(0.480742\pi\)
\(354\) 0 0
\(355\) −25.2453 43.7262i −1.33988 2.32074i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.70585i 0.459477i −0.973252 0.229739i \(-0.926213\pi\)
0.973252 0.229739i \(-0.0737871\pi\)
\(360\) 0 0
\(361\) −8.57686 −0.451414
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.9944 + 27.7031i 0.837184 + 1.45005i
\(366\) 0 0
\(367\) −10.5062 + 18.1973i −0.548419 + 0.949890i 0.449964 + 0.893047i \(0.351437\pi\)
−0.998383 + 0.0568434i \(0.981896\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 35.3946 + 10.0869i 1.83759 + 0.523685i
\(372\) 0 0
\(373\) 6.05267 + 10.4835i 0.313395 + 0.542817i 0.979095 0.203403i \(-0.0652002\pi\)
−0.665700 + 0.746220i \(0.731867\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.11376i 0.263372i
\(378\) 0 0
\(379\) 32.3259i 1.66047i 0.557414 + 0.830234i \(0.311794\pi\)
−0.557414 + 0.830234i \(0.688206\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.70529 + 4.68571i 0.138234 + 0.239428i 0.926828 0.375486i \(-0.122524\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(384\) 0 0
\(385\) 58.6342 + 16.7098i 2.98827 + 0.851610i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.74076 15.1394i 0.443174 0.767600i −0.554749 0.832018i \(-0.687186\pi\)
0.997923 + 0.0644180i \(0.0205191\pi\)
\(390\) 0 0
\(391\) 8.76248 + 15.1771i 0.443138 + 0.767537i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.8816 1.05067
\(396\) 0 0
\(397\) 12.6177i 0.633264i −0.948549 0.316632i \(-0.897448\pi\)
0.948549 0.316632i \(-0.102552\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.40011 9.35327i −0.269669 0.467080i 0.699108 0.715017i \(-0.253581\pi\)
−0.968776 + 0.247937i \(0.920248\pi\)
\(402\) 0 0
\(403\) 10.8067 + 6.23927i 0.538322 + 0.310800i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.9301 9.19725i −0.789626 0.455891i
\(408\) 0 0
\(409\) 9.66191 5.57831i 0.477751 0.275830i −0.241728 0.970344i \(-0.577714\pi\)
0.719479 + 0.694515i \(0.244381\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.49080 + 21.8706i 0.270184 + 1.07618i
\(414\) 0 0
\(415\) 21.6718i 1.06383i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.36007 12.7480i −0.359563 0.622781i 0.628325 0.777951i \(-0.283741\pi\)
−0.987888 + 0.155170i \(0.950408\pi\)
\(420\) 0 0
\(421\) 7.90063 13.6843i 0.385053 0.666932i −0.606723 0.794913i \(-0.707516\pi\)
0.991777 + 0.127981i \(0.0408497\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −40.6640 23.4773i −1.97249 1.13882i
\(426\) 0 0
\(427\) 23.1764 + 23.9218i 1.12158 + 1.15766i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.798303i 0.0384529i 0.999815 + 0.0192265i \(0.00612035\pi\)
−0.999815 + 0.0192265i \(0.993880\pi\)
\(432\) 0 0
\(433\) 31.2293i 1.50079i 0.660992 + 0.750393i \(0.270136\pi\)
−0.660992 + 0.750393i \(0.729864\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.7215 + 6.76743i −0.560717 + 0.323730i
\(438\) 0 0
\(439\) −2.94795 + 5.10600i −0.140698 + 0.243696i −0.927760 0.373178i \(-0.878268\pi\)
0.787062 + 0.616874i \(0.211601\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.02844 1.17112i −0.0963742 0.0556417i 0.451038 0.892505i \(-0.351054\pi\)
−0.547413 + 0.836863i \(0.684387\pi\)
\(444\) 0 0
\(445\) 7.07379 + 12.2522i 0.335330 + 0.580809i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −23.9242 −1.12905 −0.564527 0.825415i \(-0.690941\pi\)
−0.564527 + 0.825415i \(0.690941\pi\)
\(450\) 0 0
\(451\) 36.3974 1.71389
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.4018 + 14.9218i −0.722045 + 0.699547i
\(456\) 0 0
\(457\) −7.24703 + 12.5522i −0.339002 + 0.587168i −0.984245 0.176809i \(-0.943423\pi\)
0.645244 + 0.763977i \(0.276756\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.2137 9.36101i −0.755149 0.435986i 0.0724022 0.997376i \(-0.476933\pi\)
−0.827551 + 0.561390i \(0.810267\pi\)
\(462\) 0 0
\(463\) −1.88529 + 1.08847i −0.0876166 + 0.0505855i −0.543168 0.839624i \(-0.682775\pi\)
0.455552 + 0.890209i \(0.349442\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.8089 0.962923 0.481461 0.876467i \(-0.340106\pi\)
0.481461 + 0.876467i \(0.340106\pi\)
\(468\) 0 0
\(469\) −13.4639 + 3.38023i −0.621706 + 0.156084i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.2633 + 21.2406i 0.563865 + 0.976643i
\(474\) 0 0
\(475\) 18.1320 31.4055i 0.831953 1.44099i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.5470 + 26.9281i −0.710359 + 1.23038i 0.254364 + 0.967109i \(0.418134\pi\)
−0.964723 + 0.263269i \(0.915199\pi\)
\(480\) 0 0
\(481\) 5.60315 3.23498i 0.255481 0.147502i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −43.2648 −1.96455
\(486\) 0 0
\(487\) 19.1545i 0.867972i 0.900920 + 0.433986i \(0.142893\pi\)
−0.900920 + 0.433986i \(0.857107\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 33.4660 19.3216i 1.51030 0.871972i 0.510371 0.859954i \(-0.329508\pi\)
0.999928 0.0120176i \(-0.00382540\pi\)
\(492\) 0 0
\(493\) 9.20228 + 5.31294i 0.414450 + 0.239283i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.08723 + 31.8868i −0.407618 + 1.43032i
\(498\) 0 0
\(499\) 37.8146 21.8323i 1.69281 0.977346i 0.740584 0.671964i \(-0.234549\pi\)
0.952230 0.305382i \(-0.0987843\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 34.6828 1.54643 0.773215 0.634144i \(-0.218647\pi\)
0.773215 + 0.634144i \(0.218647\pi\)
\(504\) 0 0
\(505\) −13.8661 −0.617032
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.03205 5.21466i 0.400339 0.231136i −0.286291 0.958143i \(-0.592423\pi\)
0.686630 + 0.727007i \(0.259089\pi\)
\(510\) 0 0
\(511\) 5.75729 20.2021i 0.254688 0.893690i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.92213 + 2.26444i 0.172830 + 0.0997832i
\(516\) 0 0
\(517\) −28.9816 + 16.7325i −1.27461 + 0.735896i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.72877i 0.382414i 0.981550 + 0.191207i \(0.0612402\pi\)
−0.981550 + 0.191207i \(0.938760\pi\)
\(522\) 0 0
\(523\) 10.6357 0.465068 0.232534 0.972588i \(-0.425298\pi\)
0.232534 + 0.972588i \(0.425298\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.4553 12.9646i 0.978169 0.564746i
\(528\) 0 0
\(529\) −2.71224 + 4.69773i −0.117923 + 0.204249i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.40108 + 11.0870i −0.277262 + 0.480231i
\(534\) 0 0
\(535\) 5.04012 + 8.72974i 0.217903 + 0.377420i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.9113 35.2893i −0.814569 1.52002i
\(540\) 0 0
\(541\) 35.8565 1.54159 0.770797 0.637081i \(-0.219858\pi\)
0.770797 + 0.637081i \(0.219858\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −38.8226 + 22.4143i −1.66298 + 0.960121i
\(546\) 0 0
\(547\) 35.5209 + 20.5080i 1.51876 + 0.876859i 0.999756 + 0.0220901i \(0.00703206\pi\)
0.519009 + 0.854769i \(0.326301\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.10328 + 7.10709i −0.174806 + 0.302772i
\(552\) 0 0
\(553\) −9.54165 9.84852i −0.405752 0.418802i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.8693 1.43509 0.717545 0.696512i \(-0.245266\pi\)
0.717545 + 0.696512i \(0.245266\pi\)
\(558\) 0 0
\(559\) −8.62679 −0.364874
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.7326 + 25.5176i 0.620904 + 1.07544i 0.989318 + 0.145775i \(0.0465676\pi\)
−0.368414 + 0.929662i \(0.620099\pi\)
\(564\) 0 0
\(565\) 4.18251 + 2.41477i 0.175960 + 0.101590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.11670 + 15.7906i −0.382192 + 0.661976i −0.991375 0.131054i \(-0.958164\pi\)
0.609183 + 0.793029i \(0.291497\pi\)
\(570\) 0 0
\(571\) −21.9710 + 12.6850i −0.919459 + 0.530850i −0.883462 0.468502i \(-0.844794\pi\)
−0.0359963 + 0.999352i \(0.511460\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 47.0902i 1.96380i
\(576\) 0 0
\(577\) 3.50461i 0.145899i −0.997336 0.0729493i \(-0.976759\pi\)
0.997336 0.0729493i \(-0.0232411\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.2212 9.90270i 0.424046 0.410833i
\(582\) 0 0
\(583\) 68.9032 + 39.7813i 2.85368 + 1.64757i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.1658 34.9282i 0.832332 1.44164i −0.0638526 0.997959i \(-0.520339\pi\)
0.896184 0.443682i \(-0.146328\pi\)
\(588\) 0 0
\(589\) 10.0128 + 17.3427i 0.412570 + 0.714592i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.30611i 0.382156i 0.981575 + 0.191078i \(0.0611984\pi\)
−0.981575 + 0.191078i \(0.938802\pi\)
\(594\) 0 0
\(595\) 10.8504 + 43.2187i 0.444823 + 1.77179i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.0337880 + 0.0195075i −0.00138054 + 0.000797056i −0.500690 0.865627i \(-0.666920\pi\)
0.499310 + 0.866424i \(0.333587\pi\)
\(600\) 0 0
\(601\) −34.4552 19.8927i −1.40546 0.811441i −0.410511 0.911856i \(-0.634650\pi\)
−0.994946 + 0.100415i \(0.967983\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 75.7632 + 43.7419i 3.08021 + 1.77836i
\(606\) 0 0
\(607\) −20.0081 34.6551i −0.812104 1.40661i −0.911389 0.411547i \(-0.864989\pi\)
0.0992843 0.995059i \(-0.468345\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.7708i 0.476194i
\(612\) 0 0
\(613\) 5.49560 0.221965 0.110983 0.993822i \(-0.464600\pi\)
0.110983 + 0.993822i \(0.464600\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.1436 + 31.4256i 0.730432 + 1.26515i 0.956699 + 0.291080i \(0.0940146\pi\)
−0.226266 + 0.974065i \(0.572652\pi\)
\(618\) 0 0
\(619\) 16.5285 28.6281i 0.664335 1.15066i −0.315130 0.949048i \(-0.602048\pi\)
0.979465 0.201613i \(-0.0646185\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.54626 8.93475i 0.102014 0.357963i
\(624\) 0 0
\(625\) −22.5033 38.9768i −0.900130 1.55907i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.4439i 0.536044i
\(630\) 0 0
\(631\) 27.6502i 1.10074i −0.834921 0.550370i \(-0.814487\pi\)
0.834921 0.550370i \(-0.185513\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.01063 + 12.1428i 0.278208 + 0.481871i
\(636\) 0 0
\(637\) 14.0753 + 0.445634i 0.557685 + 0.0176567i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.92939 12.0020i 0.273694 0.474052i −0.696111 0.717935i \(-0.745088\pi\)
0.969805 + 0.243882i \(0.0784210\pi\)
\(642\) 0 0
\(643\) −18.7853 32.5370i −0.740819 1.28314i −0.952123 0.305715i \(-0.901104\pi\)
0.211304 0.977420i \(-0.432229\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.3733 −0.761641 −0.380821 0.924649i \(-0.624358\pi\)
−0.380821 + 0.924649i \(0.624358\pi\)
\(648\) 0 0
\(649\) 48.7472i 1.91350i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.26860 + 7.39344i 0.167043 + 0.289328i 0.937379 0.348311i \(-0.113245\pi\)
−0.770336 + 0.637639i \(0.779911\pi\)
\(654\) 0 0
\(655\) −19.0677 11.0088i −0.745038 0.430148i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.61026 2.66174i −0.179590 0.103687i 0.407510 0.913201i \(-0.366397\pi\)
−0.587100 + 0.809514i \(0.699731\pi\)
\(660\) 0 0
\(661\) 12.3847 7.15033i 0.481710 0.278115i −0.239419 0.970916i \(-0.576957\pi\)
0.721129 + 0.692801i \(0.243624\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33.3786 + 8.37997i −1.29437 + 0.324961i
\(666\) 0 0
\(667\) 10.6565i 0.412623i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 36.0023 + 62.3577i 1.38985 + 2.40729i
\(672\) 0 0
\(673\) −18.3816 + 31.8378i −0.708558 + 1.22726i 0.256834 + 0.966456i \(0.417321\pi\)
−0.965392 + 0.260803i \(0.916013\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.71366 + 4.45348i 0.296460 + 0.171161i 0.640852 0.767665i \(-0.278581\pi\)
−0.344391 + 0.938826i \(0.611915\pi\)
\(678\) 0 0
\(679\) 19.7694 + 20.4052i 0.758680 + 0.783080i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.6622i 0.522768i 0.965235 + 0.261384i \(0.0841789\pi\)
−0.965235 + 0.261384i \(0.915821\pi\)
\(684\) 0 0
\(685\) 36.2413i 1.38471i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.2355 + 13.9924i −0.923300 + 0.533068i
\(690\) 0 0
\(691\) −17.2087 + 29.8063i −0.654648 + 1.13388i 0.327334 + 0.944909i \(0.393850\pi\)
−0.981982 + 0.188975i \(0.939483\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.8268 + 12.6017i 0.827938 + 0.478010i
\(696\) 0 0
\(697\) 13.3008 + 23.0377i 0.503804 + 0.872613i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0060 −0.680078 −0.340039 0.940411i \(-0.610440\pi\)
−0.340039 + 0.940411i \(0.610440\pi\)
\(702\) 0 0
\(703\) 10.3830 0.391602
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.33596 + 6.53973i 0.238288 + 0.245952i
\(708\) 0 0
\(709\) 25.2917 43.8065i 0.949849 1.64519i 0.204111 0.978948i \(-0.434570\pi\)
0.745738 0.666239i \(-0.232097\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22.5201 13.0020i −0.843385 0.486928i
\(714\) 0 0
\(715\) −40.1483 + 23.1796i −1.50146 + 0.866869i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 44.2317 1.64956 0.824782 0.565450i \(-0.191298\pi\)
0.824782 + 0.565450i \(0.191298\pi\)
\(720\) 0 0
\(721\) −0.724184 2.88453i −0.0269700 0.107425i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.2761 + 24.7269i 0.530200 + 0.918332i
\(726\) 0 0
\(727\) 23.3313 40.4110i 0.865310 1.49876i −0.00142913 0.999999i \(-0.500455\pi\)
0.866739 0.498762i \(-0.166212\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −8.96279 + 15.5240i −0.331501 + 0.574176i
\(732\) 0 0
\(733\) 29.4459 17.0006i 1.08761 0.627932i 0.154671 0.987966i \(-0.450568\pi\)
0.932939 + 0.360034i \(0.117235\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −30.0096 −1.10542
\(738\) 0 0
\(739\) 12.4853i 0.459279i 0.973276 + 0.229640i \(0.0737548\pi\)
−0.973276 + 0.229640i \(0.926245\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.6313 + 14.2209i −0.903636 + 0.521714i −0.878378 0.477967i \(-0.841374\pi\)
−0.0252578 + 0.999681i \(0.508041\pi\)
\(744\) 0 0
\(745\) 44.1187 + 25.4719i 1.61638 + 0.933219i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.81423 6.36606i 0.0662904 0.232611i
\(750\) 0 0
\(751\) −3.91640 + 2.26113i −0.142911 + 0.0825100i −0.569751 0.821817i \(-0.692960\pi\)
0.426839 + 0.904327i \(0.359627\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 64.2508 2.33833
\(756\) 0 0
\(757\) −9.85242 −0.358092 −0.179046 0.983841i \(-0.557301\pi\)
−0.179046 + 0.983841i \(0.557301\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −45.5417 + 26.2935i −1.65089 + 0.953139i −0.674176 + 0.738571i \(0.735501\pi\)
−0.976709 + 0.214568i \(0.931166\pi\)
\(762\) 0 0
\(763\) 28.3110 + 8.06817i 1.02493 + 0.292087i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −14.8489 8.57300i −0.536162 0.309553i
\(768\) 0 0
\(769\) 9.80437 5.66055i 0.353555 0.204125i −0.312695 0.949854i \(-0.601232\pi\)
0.666250 + 0.745729i \(0.267899\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.42526i 0.0512631i −0.999671 0.0256316i \(-0.991840\pi\)
0.999671 0.0256316i \(-0.00815967\pi\)
\(774\) 0 0
\(775\) 69.6726 2.50271
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −17.7924 + 10.2725i −0.637479 + 0.368049i
\(780\) 0 0
\(781\) −35.8388 + 62.0746i −1.28241 + 2.22120i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 35.7714 61.9579i 1.27674 2.21137i
\(786\) 0 0
\(787\) 20.9215 + 36.2370i 0.745769 + 1.29171i 0.949834 + 0.312753i \(0.101251\pi\)
−0.204065 + 0.978957i \(0.565415\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.772261 3.07603i −0.0274585 0.109371i
\(792\) 0 0
\(793\) −25.3264 −0.899366
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.85796 4.53679i 0.278343 0.160701i −0.354330 0.935120i \(-0.615291\pi\)
0.632673 + 0.774419i \(0.281958\pi\)
\(798\) 0 0
\(799\) −21.1816 12.2292i −0.749353 0.432639i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 22.7060 39.3279i 0.801276 1.38785i
\(804\) 0 0
\(805\) 32.0956 31.0955i 1.13122 1.09597i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.6037 0.654071 0.327035 0.945012i \(-0.393950\pi\)
0.327035 + 0.945012i \(0.393950\pi\)
\(810\) 0 0
\(811\) −43.7813 −1.53737 −0.768684 0.639628i \(-0.779088\pi\)
−0.768684 + 0.639628i \(0.779088\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.4040 35.3407i −0.714721 1.23793i
\(816\) 0 0
\(817\) −11.9895 6.92213i −0.419459 0.242175i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.8053 20.4474i 0.412009 0.713620i −0.583101 0.812400i \(-0.698161\pi\)
0.995109 + 0.0987801i \(0.0314940\pi\)
\(822\) 0 0
\(823\) 0.653789 0.377465i 0.0227897 0.0131576i −0.488562 0.872529i \(-0.662478\pi\)
0.511352 + 0.859372i \(0.329145\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.64456i 0.196281i −0.995173 0.0981404i \(-0.968711\pi\)
0.995173 0.0981404i \(-0.0312894\pi\)
\(828\) 0 0
\(829\) 26.2077i 0.910230i 0.890433 + 0.455115i \(0.150402\pi\)
−0.890433 + 0.455115i \(0.849598\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.4255 24.8658i 0.534461 0.861548i
\(834\) 0 0
\(835\) −49.4276 28.5370i −1.71051 0.987565i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.5365 18.2498i 0.363761 0.630053i −0.624815 0.780773i \(-0.714826\pi\)
0.988577 + 0.150720i \(0.0481591\pi\)
\(840\) 0 0
\(841\) 11.2693 + 19.5190i 0.388597 + 0.673070i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.0704i 1.24086i
\(846\) 0 0
\(847\) −13.9890 55.7200i −0.480666 1.91456i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −11.6764 + 6.74135i −0.400261 + 0.231091i
\(852\) 0 0
\(853\) −30.6601 17.7016i −1.04978 0.606092i −0.127193 0.991878i \(-0.540597\pi\)
−0.922588 + 0.385786i \(0.873930\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.1852 11.0766i −0.655356 0.378370i 0.135149 0.990825i \(-0.456849\pi\)
−0.790505 + 0.612455i \(0.790182\pi\)
\(858\) 0 0
\(859\) 2.32382 + 4.02497i 0.0792876 + 0.137330i 0.902943 0.429761i \(-0.141402\pi\)
−0.823655 + 0.567091i \(0.808069\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.5090i 0.357732i −0.983873 0.178866i \(-0.942757\pi\)
0.983873 0.178866i \(-0.0572428\pi\)
\(864\) 0 0
\(865\) 43.8526 1.49103
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.8220 25.6725i −0.502802 0.870879i
\(870\) 0 0
\(871\) 5.27769 9.14122i 0.178828 0.309739i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −18.2082 + 63.8922i −0.615551 + 2.15995i
\(876\) 0 0
\(877\) −3.60317 6.24087i −0.121670 0.210739i 0.798756 0.601655i \(-0.205492\pi\)
−0.920427 + 0.390916i \(0.872158\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47.4313i 1.59800i −0.601331 0.799000i \(-0.705363\pi\)
0.601331 0.799000i \(-0.294637\pi\)
\(882\) 0 0
\(883\) 44.5341i 1.49869i −0.662178 0.749346i \(-0.730368\pi\)
0.662178 0.749346i \(-0.269632\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.55039 11.3456i −0.219941 0.380948i 0.734849 0.678231i \(-0.237253\pi\)
−0.954790 + 0.297283i \(0.903920\pi\)
\(888\) 0 0
\(889\) 2.52352 8.85497i 0.0846363 0.296986i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.44486 16.3590i 0.316060 0.547432i
\(894\) 0 0
\(895\) −23.6254 40.9205i −0.789711 1.36782i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −15.7669 −0.525857
\(900\) 0 0
\(901\) 58.1495i 1.93724i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −35.5600 61.5917i −1.18205 2.04738i
\(906\) 0 0
\(907\) −16.1687 9.33500i −0.536872 0.309963i 0.206938 0.978354i \(-0.433650\pi\)
−0.743810 + 0.668391i \(0.766983\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.20898 5.31680i −0.305107 0.176154i 0.339628 0.940560i \(-0.389699\pi\)
−0.644735 + 0.764406i \(0.723032\pi\)
\(912\) 0 0
\(913\) 26.6439 15.3829i 0.881785 0.509099i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.52068 + 14.0234i 0.116263 + 0.463092i
\(918\) 0 0
\(919\) 25.9144i 0.854836i −0.904054 0.427418i \(-0.859423\pi\)
0.904054 0.427418i \(-0.140577\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.6057 21.8337i −0.414921 0.718665i
\(924\) 0 0
\(925\) 18.0621 31.2846i 0.593880 1.02863i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 44.4016 + 25.6353i 1.45677 + 0.841066i 0.998851 0.0479287i \(-0.0152620\pi\)
0.457918 + 0.888994i \(0.348595\pi\)
\(930\) 0 0
\(931\) 19.2043 + 11.9134i 0.629395 + 0.390446i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 96.3298i 3.15032i
\(936\) 0 0
\(937\) 47.7056i 1.55847i 0.626729 + 0.779237i \(0.284393\pi\)
−0.626729 + 0.779237i \(0.715607\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 49.3584 28.4971i 1.60904 0.928978i 0.619452 0.785035i \(-0.287355\pi\)
0.989586 0.143944i \(-0.0459784\pi\)
\(942\) 0 0
\(943\) 13.3392 23.1041i 0.434383 0.752374i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.86698 2.80995i −0.158156 0.0913113i 0.418833 0.908063i \(-0.362439\pi\)
−0.576989 + 0.816752i \(0.695772\pi\)
\(948\) 0 0
\(949\) 7.98644 + 13.8329i 0.259251 + 0.449035i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 39.6935 1.28580 0.642899 0.765951i \(-0.277731\pi\)
0.642899 + 0.765951i \(0.277731\pi\)
\(954\) 0 0
\(955\) 2.70465 0.0875205
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.0927 + 16.5601i −0.551951 + 0.534753i
\(960\) 0 0
\(961\) −3.73718 + 6.47298i −0.120554 + 0.208806i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −52.0255 30.0369i −1.67476 0.966923i
\(966\) 0 0
\(967\) 23.3249 13.4666i 0.750078 0.433058i −0.0756442 0.997135i \(-0.524101\pi\)
0.825722 + 0.564077i \(0.190768\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.63591 −0.309231 −0.154616 0.987975i \(-0.549414\pi\)
−0.154616 + 0.987975i \(0.549414\pi\)
\(972\) 0 0
\(973\) −4.03012 16.0525i −0.129200 0.514620i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25.0233 + 43.3417i 0.800567 + 1.38662i 0.919243 + 0.393690i \(0.128802\pi\)
−0.118676 + 0.992933i \(0.537865\pi\)
\(978\) 0 0
\(979\) 10.0421 17.3934i 0.320947 0.555897i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.3246 35.2032i 0.648254 1.12281i −0.335286 0.942116i \(-0.608833\pi\)
0.983540 0.180692i \(-0.0578337\pi\)
\(984\) 0 0
\(985\) −30.8689 + 17.8222i −0.983564 + 0.567861i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.9773 0.571645
\(990\) 0 0
\(991\) 7.45474i 0.236808i 0.992966 + 0.118404i \(0.0377777\pi\)
−0.992966 + 0.118404i \(0.962222\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −17.4179 + 10.0562i −0.552184 + 0.318804i
\(996\) 0 0
\(997\) −10.3529 5.97727i −0.327881 0.189302i 0.327019 0.945018i \(-0.393956\pi\)
−0.654900 + 0.755716i \(0.727289\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.cx.i.559.12 24
3.2 odd 2 1008.2.cx.i.223.7 yes 24
4.3 odd 2 3024.2.cx.j.559.12 24
7.6 odd 2 inner 3024.2.cx.i.559.1 24
9.4 even 3 3024.2.cx.j.2575.1 24
9.5 odd 6 1008.2.cx.j.895.7 yes 24
12.11 even 2 1008.2.cx.j.223.6 yes 24
21.20 even 2 1008.2.cx.i.223.6 24
28.27 even 2 3024.2.cx.j.559.1 24
36.23 even 6 1008.2.cx.i.895.6 yes 24
36.31 odd 6 inner 3024.2.cx.i.2575.1 24
63.13 odd 6 3024.2.cx.j.2575.12 24
63.41 even 6 1008.2.cx.j.895.6 yes 24
84.83 odd 2 1008.2.cx.j.223.7 yes 24
252.139 even 6 inner 3024.2.cx.i.2575.12 24
252.167 odd 6 1008.2.cx.i.895.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.i.223.6 24 21.20 even 2
1008.2.cx.i.223.7 yes 24 3.2 odd 2
1008.2.cx.i.895.6 yes 24 36.23 even 6
1008.2.cx.i.895.7 yes 24 252.167 odd 6
1008.2.cx.j.223.6 yes 24 12.11 even 2
1008.2.cx.j.223.7 yes 24 84.83 odd 2
1008.2.cx.j.895.6 yes 24 63.41 even 6
1008.2.cx.j.895.7 yes 24 9.5 odd 6
3024.2.cx.i.559.1 24 7.6 odd 2 inner
3024.2.cx.i.559.12 24 1.1 even 1 trivial
3024.2.cx.i.2575.1 24 36.31 odd 6 inner
3024.2.cx.i.2575.12 24 252.139 even 6 inner
3024.2.cx.j.559.1 24 28.27 even 2
3024.2.cx.j.559.12 24 4.3 odd 2
3024.2.cx.j.2575.1 24 9.4 even 3
3024.2.cx.j.2575.12 24 63.13 odd 6