Properties

Label 1008.2.cc.a.545.1
Level $1008$
Weight $2$
Character 1008.545
Analytic conductor $8.049$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(209,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 545.1
Root \(0.474636 + 0.274031i\) of defining polynomial
Character \(\chi\) \(=\) 1008.545
Dual form 1008.2.cc.a.209.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58016 + 0.709292i) q^{3} +(1.10552 - 1.91482i) q^{5} +(0.906161 - 2.48573i) q^{7} +(1.99381 - 2.24159i) q^{9} +(2.93818 - 1.69636i) q^{11} +(-1.56060 - 0.901012i) q^{13} +(-0.388736 + 3.80987i) q^{15} -5.96901 q^{17} +1.64419i q^{19} +(0.331232 + 4.57059i) q^{21} +(-2.05563 - 1.18682i) q^{23} +(0.0556321 + 0.0963576i) q^{25} +(-1.56060 + 4.95626i) q^{27} +(2.44437 - 1.41126i) q^{29} +(-9.28558 - 5.36103i) q^{31} +(-3.43958 + 4.76454i) q^{33} +(-3.75796 - 4.48318i) q^{35} +1.69963 q^{37} +(3.10507 + 0.316823i) q^{39} +(-0.455074 + 0.788211i) q^{41} +(1.96108 + 3.39669i) q^{43} +(-2.08804 - 6.29593i) q^{45} +(-0.123005 - 0.213051i) q^{47} +(-5.35774 - 4.50495i) q^{49} +(9.43199 - 4.23377i) q^{51} -7.87589i q^{53} -7.50146i q^{55} +(-1.16621 - 2.59808i) q^{57} +(5.39093 - 9.33736i) q^{59} +(1.22853 - 0.709292i) q^{61} +(-3.76528 - 6.98732i) q^{63} +(-3.45056 + 1.99218i) q^{65} +(-3.99381 + 6.91748i) q^{67} +(4.09003 + 0.417322i) q^{69} -12.1743i q^{71} +0.426103i q^{73} +(-0.156253 - 0.112801i) q^{75} +(-1.55423 - 8.84070i) q^{77} +(-2.49381 - 4.31941i) q^{79} +(-1.04944 - 8.93861i) q^{81} +(4.28541 + 7.42254i) q^{83} +(-6.59888 + 11.4296i) q^{85} +(-2.86150 + 3.96378i) q^{87} +10.5358 q^{89} +(-3.65383 + 3.06277i) q^{91} +(18.4752 + 1.88510i) q^{93} +(3.14833 + 1.81769i) q^{95} +(-6.30108 + 3.63793i) q^{97} +(2.05563 - 9.96840i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{7} - 12 q^{9} - 6 q^{15} - 24 q^{21} - 24 q^{23} + 30 q^{29} - 4 q^{37} + 10 q^{43} + 6 q^{49} + 42 q^{51} - 18 q^{57} - 24 q^{63} - 78 q^{65} - 12 q^{67} - 24 q^{77} + 6 q^{79} + 24 q^{81}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.58016 + 0.709292i −0.912306 + 0.409510i
\(4\) 0 0
\(5\) 1.10552 1.91482i 0.494405 0.856335i −0.505574 0.862783i \(-0.668719\pi\)
0.999979 + 0.00644798i \(0.00205247\pi\)
\(6\) 0 0
\(7\) 0.906161 2.48573i 0.342497 0.939519i
\(8\) 0 0
\(9\) 1.99381 2.24159i 0.664603 0.747196i
\(10\) 0 0
\(11\) 2.93818 1.69636i 0.885894 0.511471i 0.0132968 0.999912i \(-0.495767\pi\)
0.872597 + 0.488440i \(0.162434\pi\)
\(12\) 0 0
\(13\) −1.56060 0.901012i −0.432832 0.249896i 0.267720 0.963497i \(-0.413730\pi\)
−0.700552 + 0.713601i \(0.747063\pi\)
\(14\) 0 0
\(15\) −0.388736 + 3.80987i −0.100371 + 0.983704i
\(16\) 0 0
\(17\) −5.96901 −1.44770 −0.723849 0.689959i \(-0.757629\pi\)
−0.723849 + 0.689959i \(0.757629\pi\)
\(18\) 0 0
\(19\) 1.64419i 0.377202i 0.982054 + 0.188601i \(0.0603953\pi\)
−0.982054 + 0.188601i \(0.939605\pi\)
\(20\) 0 0
\(21\) 0.331232 + 4.57059i 0.0722807 + 0.997384i
\(22\) 0 0
\(23\) −2.05563 1.18682i −0.428629 0.247469i 0.270133 0.962823i \(-0.412932\pi\)
−0.698762 + 0.715354i \(0.746266\pi\)
\(24\) 0 0
\(25\) 0.0556321 + 0.0963576i 0.0111264 + 0.0192715i
\(26\) 0 0
\(27\) −1.56060 + 4.95626i −0.300337 + 0.953833i
\(28\) 0 0
\(29\) 2.44437 1.41126i 0.453908 0.262064i −0.255571 0.966790i \(-0.582264\pi\)
0.709479 + 0.704726i \(0.248930\pi\)
\(30\) 0 0
\(31\) −9.28558 5.36103i −1.66774 0.962870i −0.968853 0.247638i \(-0.920346\pi\)
−0.698887 0.715232i \(-0.746321\pi\)
\(32\) 0 0
\(33\) −3.43958 + 4.76454i −0.598754 + 0.829400i
\(34\) 0 0
\(35\) −3.75796 4.48318i −0.635211 0.757795i
\(36\) 0 0
\(37\) 1.69963 0.279417 0.139709 0.990193i \(-0.455383\pi\)
0.139709 + 0.990193i \(0.455383\pi\)
\(38\) 0 0
\(39\) 3.10507 + 0.316823i 0.497210 + 0.0507323i
\(40\) 0 0
\(41\) −0.455074 + 0.788211i −0.0710706 + 0.123098i −0.899371 0.437187i \(-0.855975\pi\)
0.828300 + 0.560285i \(0.189308\pi\)
\(42\) 0 0
\(43\) 1.96108 + 3.39669i 0.299062 + 0.517990i 0.975922 0.218122i \(-0.0699931\pi\)
−0.676860 + 0.736112i \(0.736660\pi\)
\(44\) 0 0
\(45\) −2.08804 6.29593i −0.311267 0.938541i
\(46\) 0 0
\(47\) −0.123005 0.213051i −0.0179422 0.0310767i 0.856915 0.515458i \(-0.172378\pi\)
−0.874857 + 0.484381i \(0.839045\pi\)
\(48\) 0 0
\(49\) −5.35774 4.50495i −0.765392 0.643564i
\(50\) 0 0
\(51\) 9.43199 4.23377i 1.32074 0.592846i
\(52\) 0 0
\(53\) 7.87589i 1.08184i −0.841075 0.540919i \(-0.818077\pi\)
0.841075 0.540919i \(-0.181923\pi\)
\(54\) 0 0
\(55\) 7.50146i 1.01150i
\(56\) 0 0
\(57\) −1.16621 2.59808i −0.154468 0.344124i
\(58\) 0 0
\(59\) 5.39093 9.33736i 0.701839 1.21562i −0.265981 0.963978i \(-0.585696\pi\)
0.967820 0.251643i \(-0.0809709\pi\)
\(60\) 0 0
\(61\) 1.22853 0.709292i 0.157297 0.0908155i −0.419285 0.907855i \(-0.637719\pi\)
0.576582 + 0.817039i \(0.304386\pi\)
\(62\) 0 0
\(63\) −3.76528 6.98732i −0.474381 0.880320i
\(64\) 0 0
\(65\) −3.45056 + 1.99218i −0.427989 + 0.247100i
\(66\) 0 0
\(67\) −3.99381 + 6.91748i −0.487922 + 0.845105i −0.999904 0.0138913i \(-0.995578\pi\)
0.511982 + 0.858996i \(0.328911\pi\)
\(68\) 0 0
\(69\) 4.09003 + 0.417322i 0.492382 + 0.0502396i
\(70\) 0 0
\(71\) 12.1743i 1.44482i −0.691463 0.722412i \(-0.743034\pi\)
0.691463 0.722412i \(-0.256966\pi\)
\(72\) 0 0
\(73\) 0.426103i 0.0498715i 0.999689 + 0.0249358i \(0.00793812\pi\)
−0.999689 + 0.0249358i \(0.992062\pi\)
\(74\) 0 0
\(75\) −0.156253 0.112801i −0.0180426 0.0130251i
\(76\) 0 0
\(77\) −1.55423 8.84070i −0.177121 1.00749i
\(78\) 0 0
\(79\) −2.49381 4.31941i −0.280576 0.485971i 0.690951 0.722902i \(-0.257192\pi\)
−0.971527 + 0.236930i \(0.923859\pi\)
\(80\) 0 0
\(81\) −1.04944 8.93861i −0.116605 0.993178i
\(82\) 0 0
\(83\) 4.28541 + 7.42254i 0.470384 + 0.814730i 0.999426 0.0338660i \(-0.0107819\pi\)
−0.529042 + 0.848596i \(0.677449\pi\)
\(84\) 0 0
\(85\) −6.59888 + 11.4296i −0.715750 + 1.23971i
\(86\) 0 0
\(87\) −2.86150 + 3.96378i −0.306785 + 0.424962i
\(88\) 0 0
\(89\) 10.5358 1.11680 0.558399 0.829573i \(-0.311416\pi\)
0.558399 + 0.829573i \(0.311416\pi\)
\(90\) 0 0
\(91\) −3.65383 + 3.06277i −0.383025 + 0.321065i
\(92\) 0 0
\(93\) 18.4752 + 1.88510i 1.91579 + 0.195476i
\(94\) 0 0
\(95\) 3.14833 + 1.81769i 0.323012 + 0.186491i
\(96\) 0 0
\(97\) −6.30108 + 3.63793i −0.639777 + 0.369376i −0.784529 0.620092i \(-0.787095\pi\)
0.144751 + 0.989468i \(0.453762\pi\)
\(98\) 0 0
\(99\) 2.05563 9.96840i 0.206599 1.00186i
\(100\) 0 0
\(101\) −2.33405 4.04270i −0.232247 0.402264i 0.726222 0.687460i \(-0.241274\pi\)
−0.958469 + 0.285197i \(0.907941\pi\)
\(102\) 0 0
\(103\) 5.40462 + 3.12036i 0.532533 + 0.307458i 0.742047 0.670348i \(-0.233855\pi\)
−0.209515 + 0.977806i \(0.567188\pi\)
\(104\) 0 0
\(105\) 9.11806 + 4.41865i 0.889832 + 0.431216i
\(106\) 0 0
\(107\) 1.48939i 0.143985i 0.997405 + 0.0719925i \(0.0229358\pi\)
−0.997405 + 0.0719925i \(0.977064\pi\)
\(108\) 0 0
\(109\) −4.38688 −0.420187 −0.210093 0.977681i \(-0.567377\pi\)
−0.210093 + 0.977681i \(0.567377\pi\)
\(110\) 0 0
\(111\) −2.68568 + 1.20553i −0.254914 + 0.114424i
\(112\) 0 0
\(113\) −14.8764 8.58887i −1.39945 0.807973i −0.405115 0.914266i \(-0.632769\pi\)
−0.994335 + 0.106293i \(0.966102\pi\)
\(114\) 0 0
\(115\) −4.54510 + 2.62412i −0.423833 + 0.244700i
\(116\) 0 0
\(117\) −5.13123 + 1.70177i −0.474383 + 0.157329i
\(118\) 0 0
\(119\) −5.40888 + 14.8374i −0.495831 + 1.36014i
\(120\) 0 0
\(121\) 0.255260 0.442124i 0.0232055 0.0401931i
\(122\) 0 0
\(123\) 0.160018 1.56828i 0.0144283 0.141407i
\(124\) 0 0
\(125\) 11.3013 1.01081
\(126\) 0 0
\(127\) −6.32141 −0.560935 −0.280467 0.959864i \(-0.590489\pi\)
−0.280467 + 0.959864i \(0.590489\pi\)
\(128\) 0 0
\(129\) −5.50806 3.97633i −0.484958 0.350096i
\(130\) 0 0
\(131\) 8.51213 14.7434i 0.743708 1.28814i −0.207088 0.978322i \(-0.566399\pi\)
0.950796 0.309818i \(-0.100268\pi\)
\(132\) 0 0
\(133\) 4.08701 + 1.48990i 0.354389 + 0.129190i
\(134\) 0 0
\(135\) 7.76509 + 8.46754i 0.668313 + 0.728770i
\(136\) 0 0
\(137\) 5.42580 3.13259i 0.463557 0.267635i −0.249982 0.968251i \(-0.580425\pi\)
0.713539 + 0.700616i \(0.247091\pi\)
\(138\) 0 0
\(139\) −6.65488 3.84220i −0.564460 0.325891i 0.190474 0.981692i \(-0.438998\pi\)
−0.754934 + 0.655801i \(0.772331\pi\)
\(140\) 0 0
\(141\) 0.345483 + 0.249409i 0.0290950 + 0.0210040i
\(142\) 0 0
\(143\) −6.11375 −0.511258
\(144\) 0 0
\(145\) 6.24071i 0.518263i
\(146\) 0 0
\(147\) 11.6614 + 3.31834i 0.961817 + 0.273692i
\(148\) 0 0
\(149\) 13.3695 + 7.71887i 1.09527 + 0.632355i 0.934975 0.354714i \(-0.115422\pi\)
0.160296 + 0.987069i \(0.448755\pi\)
\(150\) 0 0
\(151\) 5.84362 + 10.1215i 0.475547 + 0.823672i 0.999608 0.0280089i \(-0.00891668\pi\)
−0.524060 + 0.851681i \(0.675583\pi\)
\(152\) 0 0
\(153\) −11.9011 + 13.3801i −0.962145 + 1.08171i
\(154\) 0 0
\(155\) −20.5309 + 11.8535i −1.64908 + 0.952096i
\(156\) 0 0
\(157\) −4.93586 2.84972i −0.393924 0.227432i 0.289935 0.957046i \(-0.406366\pi\)
−0.683859 + 0.729614i \(0.739700\pi\)
\(158\) 0 0
\(159\) 5.58631 + 12.4452i 0.443023 + 0.986966i
\(160\) 0 0
\(161\) −4.81285 + 4.03430i −0.379306 + 0.317948i
\(162\) 0 0
\(163\) 10.2101 0.799721 0.399860 0.916576i \(-0.369059\pi\)
0.399860 + 0.916576i \(0.369059\pi\)
\(164\) 0 0
\(165\) 5.32072 + 11.8535i 0.414218 + 0.922794i
\(166\) 0 0
\(167\) −1.80661 + 3.12914i −0.139800 + 0.242140i −0.927421 0.374020i \(-0.877979\pi\)
0.787621 + 0.616160i \(0.211312\pi\)
\(168\) 0 0
\(169\) −4.87636 8.44610i −0.375104 0.649700i
\(170\) 0 0
\(171\) 3.68559 + 3.27819i 0.281844 + 0.250690i
\(172\) 0 0
\(173\) 9.03957 + 15.6570i 0.687266 + 1.19038i 0.972719 + 0.231987i \(0.0745226\pi\)
−0.285453 + 0.958393i \(0.592144\pi\)
\(174\) 0 0
\(175\) 0.289931 0.0509711i 0.0219167 0.00385305i
\(176\) 0 0
\(177\) −1.89561 + 18.5783i −0.142483 + 1.39643i
\(178\) 0 0
\(179\) 5.03194i 0.376105i −0.982159 0.188052i \(-0.939783\pi\)
0.982159 0.188052i \(-0.0602175\pi\)
\(180\) 0 0
\(181\) 13.5592i 1.00785i −0.863747 0.503925i \(-0.831889\pi\)
0.863747 0.503925i \(-0.168111\pi\)
\(182\) 0 0
\(183\) −1.43818 + 1.99218i −0.106313 + 0.147266i
\(184\) 0 0
\(185\) 1.87898 3.25449i 0.138145 0.239275i
\(186\) 0 0
\(187\) −17.5380 + 10.1256i −1.28251 + 0.740455i
\(188\) 0 0
\(189\) 10.9058 + 8.37040i 0.793280 + 0.608857i
\(190\) 0 0
\(191\) 8.86948 5.12080i 0.641773 0.370528i −0.143524 0.989647i \(-0.545844\pi\)
0.785297 + 0.619119i \(0.212510\pi\)
\(192\) 0 0
\(193\) −8.06615 + 13.9710i −0.580614 + 1.00565i 0.414792 + 0.909916i \(0.363854\pi\)
−0.995407 + 0.0957374i \(0.969479\pi\)
\(194\) 0 0
\(195\) 4.03940 5.59542i 0.289267 0.400696i
\(196\) 0 0
\(197\) 3.86303i 0.275230i 0.990486 + 0.137615i \(0.0439436\pi\)
−0.990486 + 0.137615i \(0.956056\pi\)
\(198\) 0 0
\(199\) 15.2034i 1.07774i 0.842388 + 0.538871i \(0.181149\pi\)
−0.842388 + 0.538871i \(0.818851\pi\)
\(200\) 0 0
\(201\) 1.40434 13.7635i 0.0990548 0.970803i
\(202\) 0 0
\(203\) −1.29302 7.35487i −0.0907520 0.516211i
\(204\) 0 0
\(205\) 1.00619 + 1.74277i 0.0702753 + 0.121720i
\(206\) 0 0
\(207\) −6.75890 + 2.24159i −0.469776 + 0.155801i
\(208\) 0 0
\(209\) 2.78913 + 4.83091i 0.192928 + 0.334161i
\(210\) 0 0
\(211\) −11.9523 + 20.7021i −0.822833 + 1.42519i 0.0807311 + 0.996736i \(0.474274\pi\)
−0.903564 + 0.428453i \(0.859059\pi\)
\(212\) 0 0
\(213\) 8.63513 + 19.2373i 0.591669 + 1.31812i
\(214\) 0 0
\(215\) 8.67208 0.591431
\(216\) 0 0
\(217\) −21.7403 + 18.2235i −1.47583 + 1.23709i
\(218\) 0 0
\(219\) −0.302231 0.673310i −0.0204229 0.0454981i
\(220\) 0 0
\(221\) 9.31522 + 5.37815i 0.626610 + 0.361773i
\(222\) 0 0
\(223\) 16.6198 9.59545i 1.11294 0.642559i 0.173354 0.984860i \(-0.444539\pi\)
0.939591 + 0.342300i \(0.111206\pi\)
\(224\) 0 0
\(225\) 0.326914 + 0.0674145i 0.0217943 + 0.00449430i
\(226\) 0 0
\(227\) −4.33604 7.51024i −0.287793 0.498472i 0.685490 0.728082i \(-0.259588\pi\)
−0.973283 + 0.229610i \(0.926255\pi\)
\(228\) 0 0
\(229\) 12.4437 + 7.18439i 0.822304 + 0.474758i 0.851211 0.524824i \(-0.175869\pi\)
−0.0289060 + 0.999582i \(0.509202\pi\)
\(230\) 0 0
\(231\) 8.72657 + 12.8673i 0.574166 + 0.846607i
\(232\) 0 0
\(233\) 29.7160i 1.94676i −0.229194 0.973381i \(-0.573609\pi\)
0.229194 0.973381i \(-0.426391\pi\)
\(234\) 0 0
\(235\) −0.543941 −0.0354828
\(236\) 0 0
\(237\) 7.00434 + 5.05651i 0.454981 + 0.328456i
\(238\) 0 0
\(239\) 13.7101 + 7.91556i 0.886836 + 0.512015i 0.872906 0.487888i \(-0.162233\pi\)
0.0139296 + 0.999903i \(0.495566\pi\)
\(240\) 0 0
\(241\) −4.34973 + 2.51132i −0.280190 + 0.161768i −0.633510 0.773735i \(-0.718386\pi\)
0.353319 + 0.935503i \(0.385053\pi\)
\(242\) 0 0
\(243\) 7.99837 + 13.3801i 0.513095 + 0.858332i
\(244\) 0 0
\(245\) −14.5493 + 5.27881i −0.929521 + 0.337251i
\(246\) 0 0
\(247\) 1.48143 2.56591i 0.0942612 0.163265i
\(248\) 0 0
\(249\) −12.0364 8.68920i −0.762774 0.550655i
\(250\) 0 0
\(251\) 7.29728 0.460600 0.230300 0.973120i \(-0.426029\pi\)
0.230300 + 0.973120i \(0.426029\pi\)
\(252\) 0 0
\(253\) −8.05308 −0.506293
\(254\) 0 0
\(255\) 2.32037 22.7411i 0.145307 1.42411i
\(256\) 0 0
\(257\) −4.00397 + 6.93508i −0.249761 + 0.432598i −0.963459 0.267855i \(-0.913685\pi\)
0.713699 + 0.700453i \(0.247019\pi\)
\(258\) 0 0
\(259\) 1.54014 4.22482i 0.0956994 0.262518i
\(260\) 0 0
\(261\) 1.71015 8.29305i 0.105856 0.513327i
\(262\) 0 0
\(263\) 13.6051 7.85489i 0.838925 0.484353i −0.0179738 0.999838i \(-0.505722\pi\)
0.856899 + 0.515485i \(0.172388\pi\)
\(264\) 0 0
\(265\) −15.0810 8.70699i −0.926416 0.534866i
\(266\) 0 0
\(267\) −16.6483 + 7.47299i −1.01886 + 0.457340i
\(268\) 0 0
\(269\) 10.4924 0.639731 0.319866 0.947463i \(-0.396362\pi\)
0.319866 + 0.947463i \(0.396362\pi\)
\(270\) 0 0
\(271\) 22.2537i 1.35181i −0.736987 0.675907i \(-0.763752\pi\)
0.736987 0.675907i \(-0.236248\pi\)
\(272\) 0 0
\(273\) 3.60123 7.43130i 0.217957 0.449762i
\(274\) 0 0
\(275\) 0.326914 + 0.188744i 0.0197137 + 0.0113817i
\(276\) 0 0
\(277\) 11.4251 + 19.7889i 0.686468 + 1.18900i 0.972973 + 0.230919i \(0.0741733\pi\)
−0.286505 + 0.958079i \(0.592493\pi\)
\(278\) 0 0
\(279\) −30.5309 + 10.1256i −1.82784 + 0.606202i
\(280\) 0 0
\(281\) 0.796041 0.459595i 0.0474878 0.0274171i −0.476068 0.879408i \(-0.657938\pi\)
0.523556 + 0.851991i \(0.324605\pi\)
\(282\) 0 0
\(283\) 19.1573 + 11.0605i 1.13878 + 0.657477i 0.946129 0.323790i \(-0.104957\pi\)
0.192654 + 0.981267i \(0.438290\pi\)
\(284\) 0 0
\(285\) −6.26413 0.639154i −0.371055 0.0378602i
\(286\) 0 0
\(287\) 1.54691 + 1.84544i 0.0913113 + 0.108933i
\(288\) 0 0
\(289\) 18.6291 1.09583
\(290\) 0 0
\(291\) 7.37636 10.2178i 0.432410 0.598979i
\(292\) 0 0
\(293\) 14.6259 25.3328i 0.854453 1.47996i −0.0226986 0.999742i \(-0.507226\pi\)
0.877152 0.480214i \(-0.159441\pi\)
\(294\) 0 0
\(295\) −11.9196 20.6454i −0.693986 1.20202i
\(296\) 0 0
\(297\) 3.82228 + 17.2097i 0.221791 + 0.998609i
\(298\) 0 0
\(299\) 2.13868 + 3.70430i 0.123683 + 0.214225i
\(300\) 0 0
\(301\) 10.2203 1.79677i 0.589089 0.103564i
\(302\) 0 0
\(303\) 6.55563 + 4.73259i 0.376611 + 0.271880i
\(304\) 0 0
\(305\) 3.13656i 0.179599i
\(306\) 0 0
\(307\) 14.8451i 0.847254i −0.905837 0.423627i \(-0.860757\pi\)
0.905837 0.423627i \(-0.139243\pi\)
\(308\) 0 0
\(309\) −10.7534 1.09721i −0.611740 0.0624182i
\(310\) 0 0
\(311\) −9.69002 + 16.7836i −0.549471 + 0.951711i 0.448840 + 0.893612i \(0.351837\pi\)
−0.998311 + 0.0580991i \(0.981496\pi\)
\(312\) 0 0
\(313\) 12.6608 7.30974i 0.715633 0.413171i −0.0975102 0.995235i \(-0.531088\pi\)
0.813143 + 0.582064i \(0.197755\pi\)
\(314\) 0 0
\(315\) −17.5421 0.514803i −0.988385 0.0290059i
\(316\) 0 0
\(317\) −14.7046 + 8.48973i −0.825895 + 0.476831i −0.852445 0.522817i \(-0.824881\pi\)
0.0265499 + 0.999647i \(0.491548\pi\)
\(318\) 0 0
\(319\) 4.78799 8.29305i 0.268076 0.464321i
\(320\) 0 0
\(321\) −1.05641 2.35348i −0.0589633 0.131358i
\(322\) 0 0
\(323\) 9.81416i 0.546074i
\(324\) 0 0
\(325\) 0.200501i 0.0111218i
\(326\) 0 0
\(327\) 6.93197 3.11158i 0.383339 0.172071i
\(328\) 0 0
\(329\) −0.641051 + 0.112699i −0.0353423 + 0.00621332i
\(330\) 0 0
\(331\) 9.94801 + 17.2305i 0.546792 + 0.947072i 0.998492 + 0.0549016i \(0.0174845\pi\)
−0.451700 + 0.892170i \(0.649182\pi\)
\(332\) 0 0
\(333\) 3.38874 3.80987i 0.185702 0.208779i
\(334\) 0 0
\(335\) 8.83051 + 15.2949i 0.482462 + 0.835649i
\(336\) 0 0
\(337\) 0.490168 0.848996i 0.0267012 0.0462478i −0.852366 0.522946i \(-0.824833\pi\)
0.879067 + 0.476698i \(0.158166\pi\)
\(338\) 0 0
\(339\) 29.5990 + 3.02011i 1.60760 + 0.164030i
\(340\) 0 0
\(341\) −36.3769 −1.96992
\(342\) 0 0
\(343\) −16.0531 + 9.23572i −0.866785 + 0.498682i
\(344\) 0 0
\(345\) 5.32072 7.37033i 0.286458 0.396805i
\(346\) 0 0
\(347\) −18.3702 10.6060i −0.986162 0.569361i −0.0820373 0.996629i \(-0.526143\pi\)
−0.904125 + 0.427268i \(0.859476\pi\)
\(348\) 0 0
\(349\) 8.69945 5.02263i 0.465671 0.268855i −0.248755 0.968566i \(-0.580021\pi\)
0.714426 + 0.699711i \(0.246688\pi\)
\(350\) 0 0
\(351\) 6.90112 6.32862i 0.368354 0.337797i
\(352\) 0 0
\(353\) 1.37327 + 2.37858i 0.0730920 + 0.126599i 0.900255 0.435363i \(-0.143380\pi\)
−0.827163 + 0.561962i \(0.810047\pi\)
\(354\) 0 0
\(355\) −23.3116 13.4590i −1.23725 0.714329i
\(356\) 0 0
\(357\) −1.97712 27.2819i −0.104641 1.44391i
\(358\) 0 0
\(359\) 10.0013i 0.527849i −0.964543 0.263925i \(-0.914983\pi\)
0.964543 0.263925i \(-0.0850170\pi\)
\(360\) 0 0
\(361\) 16.2967 0.857719
\(362\) 0 0
\(363\) −0.0897572 + 0.879680i −0.00471103 + 0.0461712i
\(364\) 0 0
\(365\) 0.815912 + 0.471067i 0.0427068 + 0.0246568i
\(366\) 0 0
\(367\) 5.03560 2.90731i 0.262856 0.151760i −0.362781 0.931875i \(-0.618173\pi\)
0.625637 + 0.780114i \(0.284839\pi\)
\(368\) 0 0
\(369\) 0.859514 + 2.59163i 0.0447445 + 0.134915i
\(370\) 0 0
\(371\) −19.5774 7.13683i −1.01641 0.370526i
\(372\) 0 0
\(373\) 7.75959 13.4400i 0.401776 0.695897i −0.592164 0.805817i \(-0.701726\pi\)
0.993940 + 0.109920i \(0.0350596\pi\)
\(374\) 0 0
\(375\) −17.8578 + 8.01589i −0.922172 + 0.413939i
\(376\) 0 0
\(377\) −5.08623 −0.261954
\(378\) 0 0
\(379\) −2.79714 −0.143679 −0.0718396 0.997416i \(-0.522887\pi\)
−0.0718396 + 0.997416i \(0.522887\pi\)
\(380\) 0 0
\(381\) 9.98884 4.48373i 0.511744 0.229708i
\(382\) 0 0
\(383\) 1.74229 3.01773i 0.0890268 0.154199i −0.818073 0.575114i \(-0.804958\pi\)
0.907100 + 0.420915i \(0.138291\pi\)
\(384\) 0 0
\(385\) −18.6466 6.79753i −0.950320 0.346434i
\(386\) 0 0
\(387\) 11.5240 + 2.37642i 0.585798 + 0.120800i
\(388\) 0 0
\(389\) −6.37017 + 3.67782i −0.322980 + 0.186473i −0.652720 0.757599i \(-0.726372\pi\)
0.329740 + 0.944072i \(0.393039\pi\)
\(390\) 0 0
\(391\) 12.2701 + 7.08414i 0.620525 + 0.358260i
\(392\) 0 0
\(393\) −2.99312 + 29.3346i −0.150983 + 1.47973i
\(394\) 0 0
\(395\) −11.0279 −0.554872
\(396\) 0 0
\(397\) 19.2838i 0.967825i −0.875116 0.483912i \(-0.839215\pi\)
0.875116 0.483912i \(-0.160785\pi\)
\(398\) 0 0
\(399\) −7.51490 + 0.544606i −0.376215 + 0.0272644i
\(400\) 0 0
\(401\) 9.60576 + 5.54589i 0.479689 + 0.276949i 0.720287 0.693676i \(-0.244010\pi\)
−0.240598 + 0.970625i \(0.577344\pi\)
\(402\) 0 0
\(403\) 9.66071 + 16.7328i 0.481234 + 0.833522i
\(404\) 0 0
\(405\) −18.2760 7.87235i −0.908144 0.391180i
\(406\) 0 0
\(407\) 4.99381 2.88318i 0.247534 0.142914i
\(408\) 0 0
\(409\) 17.5597 + 10.1381i 0.868274 + 0.501298i 0.866774 0.498701i \(-0.166189\pi\)
0.00149954 + 0.999999i \(0.499523\pi\)
\(410\) 0 0
\(411\) −6.35171 + 8.79846i −0.313307 + 0.433996i
\(412\) 0 0
\(413\) −18.3252 21.8616i −0.901722 1.07574i
\(414\) 0 0
\(415\) 18.9505 0.930243
\(416\) 0 0
\(417\) 13.2410 + 1.35103i 0.648416 + 0.0661604i
\(418\) 0 0
\(419\) 5.54936 9.61177i 0.271104 0.469566i −0.698041 0.716058i \(-0.745945\pi\)
0.969145 + 0.246492i \(0.0792779\pi\)
\(420\) 0 0
\(421\) 4.59269 + 7.95478i 0.223834 + 0.387692i 0.955969 0.293467i \(-0.0948092\pi\)
−0.732135 + 0.681160i \(0.761476\pi\)
\(422\) 0 0
\(423\) −0.722823 0.149057i −0.0351448 0.00724738i
\(424\) 0 0
\(425\) −0.332068 0.575159i −0.0161077 0.0278993i
\(426\) 0 0
\(427\) −0.649865 3.69653i −0.0314492 0.178888i
\(428\) 0 0
\(429\) 9.66071 4.33643i 0.466423 0.209365i
\(430\) 0 0
\(431\) 15.1102i 0.727833i 0.931432 + 0.363916i \(0.118561\pi\)
−0.931432 + 0.363916i \(0.881439\pi\)
\(432\) 0 0
\(433\) 3.33578i 0.160307i 0.996783 + 0.0801537i \(0.0255411\pi\)
−0.996783 + 0.0801537i \(0.974459\pi\)
\(434\) 0 0
\(435\) 4.42649 + 9.86132i 0.212234 + 0.472814i
\(436\) 0 0
\(437\) 1.95135 3.37984i 0.0933458 0.161680i
\(438\) 0 0
\(439\) −5.91032 + 3.41233i −0.282084 + 0.162861i −0.634367 0.773032i \(-0.718739\pi\)
0.352282 + 0.935894i \(0.385406\pi\)
\(440\) 0 0
\(441\) −20.7806 + 3.02785i −0.989551 + 0.144183i
\(442\) 0 0
\(443\) −9.77747 + 5.64503i −0.464542 + 0.268203i −0.713952 0.700195i \(-0.753097\pi\)
0.249410 + 0.968398i \(0.419763\pi\)
\(444\) 0 0
\(445\) 11.6476 20.1743i 0.552151 0.956354i
\(446\) 0 0
\(447\) −26.6008 2.71419i −1.25818 0.128377i
\(448\) 0 0
\(449\) 24.8554i 1.17300i 0.809950 + 0.586498i \(0.199494\pi\)
−0.809950 + 0.586498i \(0.800506\pi\)
\(450\) 0 0
\(451\) 3.08787i 0.145402i
\(452\) 0 0
\(453\) −16.4129 11.8487i −0.771146 0.556700i
\(454\) 0 0
\(455\) 1.82527 + 10.3824i 0.0855700 + 0.486735i
\(456\) 0 0
\(457\) 6.30470 + 10.9201i 0.294922 + 0.510819i 0.974967 0.222351i \(-0.0713732\pi\)
−0.680045 + 0.733170i \(0.738040\pi\)
\(458\) 0 0
\(459\) 9.31522 29.5840i 0.434797 1.38086i
\(460\) 0 0
\(461\) 14.4031 + 24.9470i 0.670821 + 1.16190i 0.977672 + 0.210138i \(0.0673913\pi\)
−0.306851 + 0.951758i \(0.599275\pi\)
\(462\) 0 0
\(463\) 12.5858 21.7993i 0.584912 1.01310i −0.409974 0.912097i \(-0.634462\pi\)
0.994886 0.101001i \(-0.0322045\pi\)
\(464\) 0 0
\(465\) 24.0345 33.2928i 1.11457 1.54392i
\(466\) 0 0
\(467\) −25.5951 −1.18440 −0.592199 0.805792i \(-0.701740\pi\)
−0.592199 + 0.805792i \(0.701740\pi\)
\(468\) 0 0
\(469\) 13.5760 + 16.1959i 0.626881 + 0.747857i
\(470\) 0 0
\(471\) 9.82072 + 1.00205i 0.452515 + 0.0461719i
\(472\) 0 0
\(473\) 11.5240 + 6.65338i 0.529874 + 0.305923i
\(474\) 0 0
\(475\) −0.158430 + 0.0914695i −0.00726926 + 0.00419691i
\(476\) 0 0
\(477\) −17.6545 15.7030i −0.808345 0.718993i
\(478\) 0 0
\(479\) 0.267749 + 0.463755i 0.0122338 + 0.0211895i 0.872077 0.489368i \(-0.162772\pi\)
−0.859844 + 0.510557i \(0.829439\pi\)
\(480\) 0 0
\(481\) −2.65244 1.53138i −0.120941 0.0698251i
\(482\) 0 0
\(483\) 4.74358 9.78856i 0.215840 0.445395i
\(484\) 0 0
\(485\) 16.0873i 0.730485i
\(486\) 0 0
\(487\) −34.1323 −1.54668 −0.773341 0.633990i \(-0.781416\pi\)
−0.773341 + 0.633990i \(0.781416\pi\)
\(488\) 0 0
\(489\) −16.1337 + 7.24198i −0.729590 + 0.327493i
\(490\) 0 0
\(491\) −5.86948 3.38874i −0.264886 0.152932i 0.361675 0.932304i \(-0.382205\pi\)
−0.626561 + 0.779372i \(0.715538\pi\)
\(492\) 0 0
\(493\) −14.5905 + 8.42380i −0.657121 + 0.379389i
\(494\) 0 0
\(495\) −16.8152 14.9565i −0.755787 0.672244i
\(496\) 0 0
\(497\) −30.2621 11.0319i −1.35744 0.494847i
\(498\) 0 0
\(499\) 4.30037 7.44846i 0.192511 0.333439i −0.753571 0.657367i \(-0.771670\pi\)
0.946082 + 0.323928i \(0.105004\pi\)
\(500\) 0 0
\(501\) 0.635258 6.22595i 0.0283812 0.278155i
\(502\) 0 0
\(503\) 2.96518 0.132211 0.0661055 0.997813i \(-0.478943\pi\)
0.0661055 + 0.997813i \(0.478943\pi\)
\(504\) 0 0
\(505\) −10.3214 −0.459297
\(506\) 0 0
\(507\) 13.6962 + 9.88742i 0.608268 + 0.439116i
\(508\) 0 0
\(509\) −3.04882 + 5.28072i −0.135137 + 0.234064i −0.925650 0.378382i \(-0.876481\pi\)
0.790513 + 0.612445i \(0.209814\pi\)
\(510\) 0 0
\(511\) 1.05918 + 0.386118i 0.0468553 + 0.0170808i
\(512\) 0 0
\(513\) −8.14902 2.56591i −0.359788 0.113288i
\(514\) 0 0
\(515\) 11.9499 6.89926i 0.526574 0.304018i
\(516\) 0 0
\(517\) −0.722823 0.417322i −0.0317897 0.0183538i
\(518\) 0 0
\(519\) −25.3893 18.3289i −1.11447 0.804548i
\(520\) 0 0
\(521\) −32.6929 −1.43230 −0.716150 0.697946i \(-0.754097\pi\)
−0.716150 + 0.697946i \(0.754097\pi\)
\(522\) 0 0
\(523\) 2.00252i 0.0875643i 0.999041 + 0.0437821i \(0.0139407\pi\)
−0.999041 + 0.0437821i \(0.986059\pi\)
\(524\) 0 0
\(525\) −0.421984 + 0.286188i −0.0184169 + 0.0124903i
\(526\) 0 0
\(527\) 55.4257 + 32.0001i 2.41438 + 1.39394i
\(528\) 0 0
\(529\) −8.68292 15.0393i −0.377518 0.653881i
\(530\) 0 0
\(531\) −10.1820 30.7012i −0.441863 1.33232i
\(532\) 0 0
\(533\) 1.42037 0.820053i 0.0615232 0.0355204i
\(534\) 0 0
\(535\) 2.85192 + 1.64656i 0.123299 + 0.0711870i
\(536\) 0 0
\(537\) 3.56911 + 7.95127i 0.154019 + 0.343122i
\(538\) 0 0
\(539\) −23.3840 4.14769i −1.00722 0.178654i
\(540\) 0 0
\(541\) −11.4451 −0.492061 −0.246031 0.969262i \(-0.579126\pi\)
−0.246031 + 0.969262i \(0.579126\pi\)
\(542\) 0 0
\(543\) 9.61745 + 21.4258i 0.412724 + 0.919467i
\(544\) 0 0
\(545\) −4.84980 + 8.40010i −0.207743 + 0.359821i
\(546\) 0 0
\(547\) 3.91961 + 6.78896i 0.167590 + 0.290275i 0.937572 0.347791i \(-0.113068\pi\)
−0.769982 + 0.638066i \(0.779735\pi\)
\(548\) 0 0
\(549\) 0.859514 4.16805i 0.0366832 0.177888i
\(550\) 0 0
\(551\) 2.32037 + 4.01899i 0.0988510 + 0.171215i
\(552\) 0 0
\(553\) −12.9967 + 2.28487i −0.552675 + 0.0971626i
\(554\) 0 0
\(555\) −0.660706 + 6.47536i −0.0280454 + 0.274864i
\(556\) 0 0
\(557\) 0.0134996i 0.000571997i 1.00000 0.000285998i \(9.10361e-5\pi\)
−1.00000 0.000285998i \(0.999909\pi\)
\(558\) 0 0
\(559\) 7.06782i 0.298937i
\(560\) 0 0
\(561\) 20.5309 28.4396i 0.866814 1.20072i
\(562\) 0 0
\(563\) 9.54528 16.5329i 0.402286 0.696779i −0.591716 0.806147i \(-0.701549\pi\)
0.994001 + 0.109368i \(0.0348826\pi\)
\(564\) 0 0
\(565\) −32.8923 + 18.9904i −1.38379 + 0.798932i
\(566\) 0 0
\(567\) −23.1700 5.49118i −0.973047 0.230608i
\(568\) 0 0
\(569\) 32.3406 18.6719i 1.35579 0.782765i 0.366735 0.930325i \(-0.380475\pi\)
0.989053 + 0.147561i \(0.0471422\pi\)
\(570\) 0 0
\(571\) 22.6421 39.2173i 0.947544 1.64119i 0.196968 0.980410i \(-0.436890\pi\)
0.750576 0.660784i \(-0.229776\pi\)
\(572\) 0 0
\(573\) −10.3831 + 14.3827i −0.433758 + 0.600847i
\(574\) 0 0
\(575\) 0.264101i 0.0110138i
\(576\) 0 0
\(577\) 37.0988i 1.54444i 0.635354 + 0.772221i \(0.280854\pi\)
−0.635354 + 0.772221i \(0.719146\pi\)
\(578\) 0 0
\(579\) 2.83630 27.7976i 0.117873 1.15523i
\(580\) 0 0
\(581\) 22.3337 3.92636i 0.926559 0.162893i
\(582\) 0 0
\(583\) −13.3603 23.1408i −0.553329 0.958393i
\(584\) 0 0
\(585\) −2.41411 + 11.7068i −0.0998111 + 0.484015i
\(586\) 0 0
\(587\) 17.0612 + 29.5509i 0.704191 + 1.21969i 0.966983 + 0.254842i \(0.0820235\pi\)
−0.262792 + 0.964853i \(0.584643\pi\)
\(588\) 0 0
\(589\) 8.81453 15.2672i 0.363197 0.629075i
\(590\) 0 0
\(591\) −2.74002 6.10421i −0.112709 0.251094i
\(592\) 0 0
\(593\) 19.6999 0.808980 0.404490 0.914542i \(-0.367449\pi\)
0.404490 + 0.914542i \(0.367449\pi\)
\(594\) 0 0
\(595\) 22.4313 + 26.7601i 0.919594 + 1.09706i
\(596\) 0 0
\(597\) −10.7837 24.0238i −0.441346 0.983230i
\(598\) 0 0
\(599\) 9.74033 + 5.62358i 0.397979 + 0.229773i 0.685612 0.727967i \(-0.259535\pi\)
−0.287632 + 0.957741i \(0.592868\pi\)
\(600\) 0 0
\(601\) 29.7646 17.1846i 1.21412 0.700975i 0.250469 0.968125i \(-0.419415\pi\)
0.963655 + 0.267150i \(0.0860818\pi\)
\(602\) 0 0
\(603\) 7.54325 + 22.7446i 0.307185 + 0.926233i
\(604\) 0 0
\(605\) −0.564393 0.977557i −0.0229458 0.0397433i
\(606\) 0 0
\(607\) 33.7888 + 19.5080i 1.37145 + 0.791804i 0.991110 0.133044i \(-0.0424753\pi\)
0.380335 + 0.924849i \(0.375809\pi\)
\(608\) 0 0
\(609\) 7.25993 + 10.7047i 0.294187 + 0.433778i
\(610\) 0 0
\(611\) 0.443317i 0.0179347i
\(612\) 0 0
\(613\) −16.1099 −0.650672 −0.325336 0.945598i \(-0.605477\pi\)
−0.325336 + 0.945598i \(0.605477\pi\)
\(614\) 0 0
\(615\) −2.82607 2.04018i −0.113958 0.0822678i
\(616\) 0 0
\(617\) 7.03569 + 4.06205i 0.283246 + 0.163532i 0.634892 0.772601i \(-0.281045\pi\)
−0.351646 + 0.936133i \(0.614378\pi\)
\(618\) 0 0
\(619\) −32.4018 + 18.7072i −1.30234 + 0.751906i −0.980805 0.194991i \(-0.937532\pi\)
−0.321535 + 0.946898i \(0.604199\pi\)
\(620\) 0 0
\(621\) 9.09020 8.33610i 0.364777 0.334516i
\(622\) 0 0
\(623\) 9.54718 26.1893i 0.382499 1.04925i
\(624\) 0 0
\(625\) 12.2156 21.1581i 0.488626 0.846325i
\(626\) 0 0
\(627\) −7.83379 5.65531i −0.312852 0.225851i
\(628\) 0 0
\(629\) −10.1451 −0.404511
\(630\) 0 0
\(631\) 19.8268 0.789294 0.394647 0.918833i \(-0.370867\pi\)
0.394647 + 0.918833i \(0.370867\pi\)
\(632\) 0 0
\(633\) 4.20281 41.1903i 0.167047 1.63717i
\(634\) 0 0
\(635\) −6.98848 + 12.1044i −0.277329 + 0.480348i
\(636\) 0 0
\(637\) 4.30227 + 11.8578i 0.170462 + 0.469823i
\(638\) 0 0
\(639\) −27.2898 24.2732i −1.07957 0.960235i
\(640\) 0 0
\(641\) −8.01849 + 4.62948i −0.316711 + 0.182853i −0.649926 0.759998i \(-0.725200\pi\)
0.333214 + 0.942851i \(0.391867\pi\)
\(642\) 0 0
\(643\) −36.3456 20.9841i −1.43333 0.827534i −0.435958 0.899967i \(-0.643590\pi\)
−0.997373 + 0.0724332i \(0.976924\pi\)
\(644\) 0 0
\(645\) −13.7033 + 6.15103i −0.539566 + 0.242197i
\(646\) 0 0
\(647\) −6.28587 −0.247123 −0.123561 0.992337i \(-0.539432\pi\)
−0.123561 + 0.992337i \(0.539432\pi\)
\(648\) 0 0
\(649\) 36.5798i 1.43588i
\(650\) 0 0
\(651\) 21.4274 44.2163i 0.839806 1.73297i
\(652\) 0 0
\(653\) 20.1668 + 11.6433i 0.789189 + 0.455638i 0.839677 0.543086i \(-0.182744\pi\)
−0.0504882 + 0.998725i \(0.516078\pi\)
\(654\) 0 0
\(655\) −18.8207 32.5985i −0.735387 1.27373i
\(656\) 0 0
\(657\) 0.955147 + 0.849568i 0.0372638 + 0.0331448i
\(658\) 0 0
\(659\) −25.8880 + 14.9464i −1.00845 + 0.582230i −0.910738 0.412984i \(-0.864486\pi\)
−0.0977141 + 0.995215i \(0.531153\pi\)
\(660\) 0 0
\(661\) 17.6184 + 10.1720i 0.685278 + 0.395645i 0.801841 0.597538i \(-0.203854\pi\)
−0.116563 + 0.993183i \(0.537188\pi\)
\(662\) 0 0
\(663\) −18.5342 1.89112i −0.719809 0.0734450i
\(664\) 0 0
\(665\) 7.37118 6.17878i 0.285842 0.239603i
\(666\) 0 0
\(667\) −6.69963 −0.259411
\(668\) 0 0
\(669\) −19.4560 + 26.9506i −0.752212 + 1.04197i
\(670\) 0 0
\(671\) 2.40643 4.16805i 0.0928990 0.160906i
\(672\) 0 0
\(673\) −8.55996 14.8263i −0.329962 0.571511i 0.652542 0.757753i \(-0.273703\pi\)
−0.982504 + 0.186241i \(0.940369\pi\)
\(674\) 0 0
\(675\) −0.564393 + 0.125352i −0.0217235 + 0.00482479i
\(676\) 0 0
\(677\) 14.2078 + 24.6085i 0.546048 + 0.945783i 0.998540 + 0.0540148i \(0.0172018\pi\)
−0.452492 + 0.891769i \(0.649465\pi\)
\(678\) 0 0
\(679\) 3.33313 + 18.9593i 0.127914 + 0.727593i
\(680\) 0 0
\(681\) 12.1786 + 8.79186i 0.466684 + 0.336905i
\(682\) 0 0
\(683\) 20.9274i 0.800764i 0.916348 + 0.400382i \(0.131123\pi\)
−0.916348 + 0.400382i \(0.868877\pi\)
\(684\) 0 0
\(685\) 13.8526i 0.529281i
\(686\) 0 0
\(687\) −24.7589 2.52625i −0.944611 0.0963824i
\(688\) 0 0
\(689\) −7.09627 + 12.2911i −0.270346 + 0.468254i
\(690\) 0 0
\(691\) 20.7918 12.0041i 0.790957 0.456659i −0.0493424 0.998782i \(-0.515713\pi\)
0.840299 + 0.542123i \(0.182379\pi\)
\(692\) 0 0
\(693\) −22.9161 14.1427i −0.870509 0.537238i
\(694\) 0 0
\(695\) −14.7143 + 8.49529i −0.558144 + 0.322245i
\(696\) 0 0
\(697\) 2.71634 4.70484i 0.102889 0.178208i
\(698\) 0 0
\(699\) 21.0773 + 46.9561i 0.797218 + 1.77604i
\(700\) 0 0
\(701\) 42.0117i 1.58676i −0.608728 0.793379i \(-0.708320\pi\)
0.608728 0.793379i \(-0.291680\pi\)
\(702\) 0 0
\(703\) 2.79450i 0.105397i
\(704\) 0 0
\(705\) 0.859514 0.385813i 0.0323712 0.0145306i
\(706\) 0 0
\(707\) −12.1641 + 2.13850i −0.457478 + 0.0804266i
\(708\) 0 0
\(709\) −18.6094 32.2324i −0.698891 1.21051i −0.968851 0.247643i \(-0.920344\pi\)
0.269960 0.962871i \(-0.412989\pi\)
\(710\) 0 0
\(711\) −14.6545 3.02198i −0.549587 0.113333i
\(712\) 0 0
\(713\) 12.7252 + 22.0406i 0.476561 + 0.825428i
\(714\) 0 0
\(715\) −6.75890 + 11.7068i −0.252769 + 0.437808i
\(716\) 0 0
\(717\) −27.2787 2.78335i −1.01874 0.103946i
\(718\) 0 0
\(719\) −18.2978 −0.682392 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(720\) 0 0
\(721\) 12.6538 10.6069i 0.471253 0.395021i
\(722\) 0 0
\(723\) 5.09201 7.05350i 0.189374 0.262323i
\(724\) 0 0
\(725\) 0.271971 + 0.157022i 0.0101007 + 0.00583166i
\(726\) 0 0
\(727\) 28.3214 16.3514i 1.05038 0.606439i 0.127626 0.991822i \(-0.459264\pi\)
0.922756 + 0.385384i \(0.125931\pi\)
\(728\) 0 0
\(729\) −22.1291 15.4695i −0.819595 0.572943i
\(730\) 0 0
\(731\) −11.7057 20.2749i −0.432951 0.749893i
\(732\) 0 0
\(733\) 0.431812 + 0.249307i 0.0159494 + 0.00920836i 0.507953 0.861385i \(-0.330402\pi\)
−0.492004 + 0.870593i \(0.663736\pi\)
\(734\) 0 0
\(735\) 19.2460 18.6611i 0.709900 0.688324i
\(736\) 0 0
\(737\) 27.0997i 0.998231i
\(738\) 0 0
\(739\) 47.7046 1.75484 0.877421 0.479722i \(-0.159263\pi\)
0.877421 + 0.479722i \(0.159263\pi\)
\(740\) 0 0
\(741\) −0.520916 + 5.10532i −0.0191363 + 0.187549i
\(742\) 0 0
\(743\) −9.20534 5.31470i −0.337711 0.194978i 0.321548 0.946893i \(-0.395797\pi\)
−0.659259 + 0.751916i \(0.729130\pi\)
\(744\) 0 0
\(745\) 29.5606 17.0668i 1.08302 0.625279i
\(746\) 0 0
\(747\) 25.1826 + 5.19302i 0.921382 + 0.190003i
\(748\) 0 0
\(749\) 3.70223 + 1.34963i 0.135277 + 0.0493144i
\(750\) 0 0
\(751\) 9.55927 16.5571i 0.348823 0.604179i −0.637218 0.770684i \(-0.719915\pi\)
0.986041 + 0.166505i \(0.0532482\pi\)
\(752\) 0 0
\(753\) −11.5309 + 5.17590i −0.420208 + 0.188620i
\(754\) 0 0
\(755\) 25.8411 0.940453
\(756\) 0 0
\(757\) 28.5388 1.03726 0.518631 0.854998i \(-0.326442\pi\)
0.518631 + 0.854998i \(0.326442\pi\)
\(758\) 0 0
\(759\) 12.7252 5.71199i 0.461894 0.207332i
\(760\) 0 0
\(761\) 21.6650 37.5249i 0.785355 1.36028i −0.143431 0.989660i \(-0.545814\pi\)
0.928787 0.370615i \(-0.120853\pi\)
\(762\) 0 0
\(763\) −3.97522 + 10.9046i −0.143912 + 0.394773i
\(764\) 0 0
\(765\) 12.4635 + 37.5804i 0.450621 + 1.35872i
\(766\) 0 0
\(767\) −16.8261 + 9.71458i −0.607557 + 0.350773i
\(768\) 0 0
\(769\) 5.75189 + 3.32086i 0.207419 + 0.119753i 0.600111 0.799917i \(-0.295123\pi\)
−0.392693 + 0.919670i \(0.628456\pi\)
\(770\) 0 0
\(771\) 1.40792 13.7985i 0.0507049 0.496942i
\(772\) 0 0
\(773\) −44.4831 −1.59995 −0.799973 0.600036i \(-0.795153\pi\)
−0.799973 + 0.600036i \(0.795153\pi\)
\(774\) 0 0
\(775\) 1.19298i 0.0428532i
\(776\) 0 0
\(777\) 0.562971 + 7.76830i 0.0201965 + 0.278686i
\(778\) 0 0
\(779\) −1.29596 0.748226i −0.0464328 0.0268080i
\(780\) 0 0
\(781\) −20.6520 35.7703i −0.738986 1.27996i
\(782\) 0 0
\(783\) 3.17988 + 14.3173i 0.113640 + 0.511660i
\(784\) 0 0
\(785\) −10.9134 + 6.30087i −0.389517 + 0.224888i
\(786\) 0 0
\(787\) 19.0399 + 10.9927i 0.678700 + 0.391848i 0.799365 0.600846i \(-0.205169\pi\)
−0.120665 + 0.992693i \(0.538503\pi\)
\(788\) 0 0
\(789\) −15.9268 + 22.0620i −0.567008 + 0.785426i
\(790\) 0 0
\(791\) −34.8300 + 29.1958i −1.23841 + 1.03808i
\(792\) 0 0
\(793\) −2.55632 −0.0907776
\(794\) 0 0
\(795\) 30.0061 + 3.06164i 1.06421 + 0.108585i
\(796\) 0 0
\(797\) −9.71892 + 16.8337i −0.344262 + 0.596279i −0.985219 0.171297i \(-0.945204\pi\)
0.640958 + 0.767576i \(0.278537\pi\)
\(798\) 0 0
\(799\) 0.734219 + 1.27171i 0.0259748 + 0.0449897i
\(800\) 0 0
\(801\) 21.0065 23.6170i 0.742228 0.834467i
\(802\) 0 0
\(803\) 0.722823 + 1.25197i 0.0255079 + 0.0441809i
\(804\) 0 0
\(805\) 2.40426 + 13.6758i 0.0847390 + 0.482008i
\(806\) 0 0
\(807\) −16.5796 + 7.44215i −0.583630 + 0.261976i
\(808\) 0 0
\(809\) 21.0058i 0.738526i 0.929325 + 0.369263i \(0.120390\pi\)
−0.929325 + 0.369263i \(0.879610\pi\)
\(810\) 0 0
\(811\) 37.3291i 1.31080i 0.755281 + 0.655401i \(0.227500\pi\)
−0.755281 + 0.655401i \(0.772500\pi\)
\(812\) 0 0
\(813\) 15.7844 + 35.1644i 0.553581 + 1.23327i
\(814\) 0 0
\(815\) 11.2876 19.5506i 0.395386 0.684829i
\(816\) 0 0
\(817\) −5.58478 + 3.22438i −0.195387 + 0.112807i
\(818\) 0 0
\(819\) −0.419569 + 14.2970i −0.0146609 + 0.499576i
\(820\) 0 0
\(821\) −10.9017 + 6.29412i −0.380473 + 0.219666i −0.678024 0.735040i \(-0.737163\pi\)
0.297551 + 0.954706i \(0.403830\pi\)
\(822\) 0 0
\(823\) −22.4189 + 38.8307i −0.781474 + 1.35355i 0.149608 + 0.988745i \(0.452199\pi\)
−0.931083 + 0.364808i \(0.881135\pi\)
\(824\) 0 0
\(825\) −0.650451 0.0663681i −0.0226458 0.00231064i
\(826\) 0 0
\(827\) 25.7293i 0.894695i 0.894360 + 0.447347i \(0.147631\pi\)
−0.894360 + 0.447347i \(0.852369\pi\)
\(828\) 0 0
\(829\) 16.9628i 0.589142i 0.955630 + 0.294571i \(0.0951767\pi\)
−0.955630 + 0.294571i \(0.904823\pi\)
\(830\) 0 0
\(831\) −32.0896 23.1658i −1.11318 0.803614i
\(832\) 0 0
\(833\) 31.9804 + 26.8901i 1.10806 + 0.931686i
\(834\) 0 0
\(835\) 3.99450 + 6.91867i 0.138235 + 0.239431i
\(836\) 0 0
\(837\) 41.0617 37.6554i 1.41930 1.30156i
\(838\) 0 0
\(839\) 13.3539 + 23.1296i 0.461027 + 0.798522i 0.999012 0.0444321i \(-0.0141478\pi\)
−0.537986 + 0.842954i \(0.680815\pi\)
\(840\) 0 0
\(841\) −10.5167 + 18.2155i −0.362645 + 0.628120i
\(842\) 0 0
\(843\) −0.931886 + 1.29086i −0.0320958 + 0.0444595i
\(844\) 0 0
\(845\) −21.5637 −0.741815
\(846\) 0 0
\(847\) −0.867695 1.03514i −0.0298144 0.0355680i
\(848\) 0 0
\(849\) −38.1167 3.88920i −1.30816 0.133477i
\(850\) 0 0
\(851\) −3.49381 2.01715i −0.119766 0.0691471i
\(852\) 0 0
\(853\) 37.6287 21.7249i 1.28838 0.743848i 0.310017 0.950731i \(-0.399665\pi\)
0.978366 + 0.206883i \(0.0663319\pi\)
\(854\) 0 0
\(855\) 10.3517 3.43313i 0.354020 0.117411i
\(856\) 0 0
\(857\) −7.83430 13.5694i −0.267615 0.463522i 0.700631 0.713524i \(-0.252902\pi\)
−0.968245 + 0.250002i \(0.919569\pi\)
\(858\) 0 0
\(859\) 17.3578 + 10.0216i 0.592242 + 0.341931i 0.765984 0.642860i \(-0.222252\pi\)
−0.173742 + 0.984791i \(0.555586\pi\)
\(860\) 0 0
\(861\) −3.75332 1.81887i −0.127913 0.0619871i
\(862\) 0 0
\(863\) 40.0219i 1.36236i −0.732115 0.681181i \(-0.761467\pi\)
0.732115 0.681181i \(-0.238533\pi\)
\(864\) 0 0
\(865\) 39.9739 1.35915
\(866\) 0 0
\(867\) −29.4369 + 13.2134i −0.999730 + 0.448752i
\(868\) 0 0
\(869\) −14.6545 8.46079i −0.497120 0.287013i
\(870\) 0 0
\(871\) 12.4655 7.19694i 0.422376 0.243859i
\(872\) 0 0
\(873\) −4.40841 + 21.3778i −0.149202 + 0.723528i
\(874\) 0 0
\(875\) 10.2408 28.0919i 0.346201 0.949680i
\(876\) 0 0
\(877\) −22.6353 + 39.2054i −0.764338 + 1.32387i 0.176257 + 0.984344i \(0.443601\pi\)
−0.940596 + 0.339529i \(0.889732\pi\)
\(878\) 0 0
\(879\) −5.14290 + 50.4038i −0.173466 + 1.70008i
\(880\) 0 0
\(881\) 45.3385 1.52749 0.763746 0.645517i \(-0.223358\pi\)
0.763746 + 0.645517i \(0.223358\pi\)
\(882\) 0 0
\(883\) −12.5650 −0.422845 −0.211423 0.977395i \(-0.567810\pi\)
−0.211423 + 0.977395i \(0.567810\pi\)
\(884\) 0 0
\(885\) 33.4785 + 24.1685i 1.12537 + 0.812415i
\(886\) 0 0
\(887\) −17.8620 + 30.9379i −0.599748 + 1.03879i 0.393110 + 0.919492i \(0.371399\pi\)
−0.992858 + 0.119303i \(0.961934\pi\)
\(888\) 0 0
\(889\) −5.72822 + 15.7133i −0.192118 + 0.527009i
\(890\) 0 0
\(891\) −18.2465 24.4830i −0.611282 0.820211i
\(892\) 0 0
\(893\) 0.350296 0.202243i 0.0117222 0.00676782i
\(894\) 0 0
\(895\) −9.63528 5.56293i −0.322072 0.185948i
\(896\) 0 0
\(897\) −6.00688 4.33643i −0.200564 0.144789i
\(898\) 0 0
\(899\) −30.2632 −1.00933
\(900\) 0 0
\(901\) 47.0113i 1.56617i
\(902\) 0 0
\(903\) −14.8753 + 10.0884i −0.495019 + 0.335720i
\(904\) 0 0
\(905\) −25.9635 14.9901i −0.863058 0.498287i
\(906\) 0 0
\(907\) −4.52104 7.83067i −0.150119 0.260013i 0.781152 0.624341i \(-0.214632\pi\)
−0.931271 + 0.364327i \(0.881299\pi\)
\(908\) 0 0
\(909\) −13.7157 2.82839i −0.454922 0.0938117i
\(910\) 0 0
\(911\) 35.5171 20.5058i 1.17673 0.679388i 0.221478 0.975165i \(-0.428912\pi\)
0.955257 + 0.295777i \(0.0955787\pi\)
\(912\) 0 0
\(913\) 25.1826 + 14.5392i 0.833421 + 0.481176i
\(914\) 0 0
\(915\) 2.22473 + 4.95626i 0.0735475 + 0.163849i
\(916\) 0 0
\(917\) −28.9349 34.5188i −0.955515 1.13991i
\(918\) 0 0
\(919\) −10.2326 −0.337541 −0.168771 0.985655i \(-0.553980\pi\)
−0.168771 + 0.985655i \(0.553980\pi\)
\(920\) 0 0
\(921\) 10.5295 + 23.4576i 0.346959 + 0.772954i
\(922\) 0 0
\(923\) −10.9692 + 18.9992i −0.361055 + 0.625366i
\(924\) 0 0
\(925\) 0.0945538 + 0.163772i 0.00310891 + 0.00538479i
\(926\) 0 0
\(927\) 17.7703 5.89353i 0.583654 0.193569i
\(928\) 0 0
\(929\) −12.8330 22.2273i −0.421036 0.729255i 0.575005 0.818150i \(-0.305000\pi\)
−0.996041 + 0.0888945i \(0.971667\pi\)
\(930\) 0 0
\(931\) 7.40697 8.80913i 0.242754 0.288707i
\(932\) 0 0
\(933\) 3.40731 33.3938i 0.111550 1.09327i
\(934\) 0 0
\(935\) 44.7763i 1.46434i
\(936\) 0 0
\(937\) 15.9276i 0.520333i −0.965564 0.260167i \(-0.916223\pi\)
0.965564 0.260167i \(-0.0837775\pi\)
\(938\) 0 0
\(939\) −14.8214 + 20.5308i −0.483679 + 0.669997i
\(940\) 0 0
\(941\) 19.6767 34.0810i 0.641442 1.11101i −0.343669 0.939091i \(-0.611670\pi\)
0.985111 0.171919i \(-0.0549967\pi\)
\(942\) 0 0
\(943\) 1.87093 1.08018i 0.0609258 0.0351755i
\(944\) 0 0
\(945\) 28.0845 11.6290i 0.913588 0.378291i
\(946\) 0 0
\(947\) −28.9086 + 16.6904i −0.939403 + 0.542365i −0.889773 0.456403i \(-0.849138\pi\)
−0.0496302 + 0.998768i \(0.515804\pi\)
\(948\) 0 0
\(949\) 0.383923 0.664975i 0.0124627 0.0215860i
\(950\) 0 0
\(951\) 17.2140 23.8450i 0.558202 0.773228i
\(952\) 0 0
\(953\) 44.4622i 1.44027i 0.693832 + 0.720137i \(0.255921\pi\)
−0.693832 + 0.720137i \(0.744079\pi\)
\(954\) 0 0
\(955\) 22.6447i 0.732764i
\(956\) 0 0
\(957\) −1.68360 + 16.5004i −0.0544232 + 0.533383i
\(958\) 0 0
\(959\) −2.87013 16.3257i −0.0926813 0.527185i
\(960\) 0 0
\(961\) 41.9814 + 72.7138i 1.35424 + 2.34561i
\(962\) 0 0
\(963\) 3.33860 + 2.96957i 0.107585 + 0.0956929i
\(964\) 0 0
\(965\) 17.8347 + 30.8905i 0.574118 + 0.994401i
\(966\) 0 0
\(967\) 20.0556 34.7372i 0.644943 1.11707i −0.339371 0.940652i \(-0.610214\pi\)
0.984315 0.176422i \(-0.0564523\pi\)
\(968\) 0 0
\(969\) 6.96110 + 15.5079i 0.223623 + 0.498187i
\(970\) 0 0
\(971\) 46.0026 1.47629 0.738147 0.674640i \(-0.235701\pi\)
0.738147 + 0.674640i \(0.235701\pi\)
\(972\) 0 0
\(973\) −15.5811 + 13.0606i −0.499506 + 0.418704i
\(974\) 0 0
\(975\) 0.142213 + 0.316823i 0.00455448 + 0.0101465i
\(976\) 0 0
\(977\) −46.8323 27.0386i −1.49830 0.865042i −0.498299 0.867005i \(-0.666042\pi\)
−0.999998 + 0.00196335i \(0.999375\pi\)
\(978\) 0 0
\(979\) 30.9562 17.8726i 0.989365 0.571210i
\(980\) 0 0
\(981\) −8.74660 + 9.83357i −0.279257 + 0.313962i
\(982\) 0 0
\(983\) 6.97890 + 12.0878i 0.222592 + 0.385541i 0.955594 0.294685i \(-0.0952148\pi\)
−0.733002 + 0.680226i \(0.761881\pi\)
\(984\) 0 0
\(985\) 7.39703 + 4.27068i 0.235689 + 0.136075i
\(986\) 0 0
\(987\) 0.933027 0.632776i 0.0296986 0.0201415i
\(988\) 0 0
\(989\) 9.30979i 0.296034i
\(990\) 0 0
\(991\) 37.0297 1.17629 0.588144 0.808756i \(-0.299859\pi\)
0.588144 + 0.808756i \(0.299859\pi\)
\(992\) 0 0
\(993\) −27.9409 20.1708i −0.886677 0.640102i
\(994\) 0 0
\(995\) 29.1119 + 16.8077i 0.922909 + 0.532841i
\(996\) 0 0
\(997\) −43.4282 + 25.0733i −1.37538 + 0.794079i −0.991600 0.129344i \(-0.958713\pi\)
−0.383785 + 0.923422i \(0.625380\pi\)
\(998\) 0 0
\(999\) −2.65244 + 8.42380i −0.0839194 + 0.266517i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cc.a.545.1 12
3.2 odd 2 3024.2.cc.a.881.2 12
4.3 odd 2 63.2.o.a.41.4 yes 12
7.6 odd 2 inner 1008.2.cc.a.545.6 12
9.2 odd 6 inner 1008.2.cc.a.209.6 12
9.7 even 3 3024.2.cc.a.2897.5 12
12.11 even 2 189.2.o.a.125.3 12
21.20 even 2 3024.2.cc.a.881.5 12
28.3 even 6 441.2.i.c.68.4 12
28.11 odd 6 441.2.i.c.68.3 12
28.19 even 6 441.2.s.c.374.4 12
28.23 odd 6 441.2.s.c.374.3 12
28.27 even 2 63.2.o.a.41.3 yes 12
36.7 odd 6 189.2.o.a.62.4 12
36.11 even 6 63.2.o.a.20.3 12
36.23 even 6 567.2.c.c.566.8 12
36.31 odd 6 567.2.c.c.566.5 12
63.20 even 6 inner 1008.2.cc.a.209.1 12
63.34 odd 6 3024.2.cc.a.2897.2 12
84.11 even 6 1323.2.i.c.1097.3 12
84.23 even 6 1323.2.s.c.962.4 12
84.47 odd 6 1323.2.s.c.962.3 12
84.59 odd 6 1323.2.i.c.1097.4 12
84.83 odd 2 189.2.o.a.125.4 12
252.11 even 6 441.2.s.c.362.4 12
252.47 odd 6 441.2.i.c.227.3 12
252.79 odd 6 1323.2.i.c.521.4 12
252.83 odd 6 63.2.o.a.20.4 yes 12
252.115 even 6 1323.2.s.c.656.4 12
252.139 even 6 567.2.c.c.566.6 12
252.151 odd 6 1323.2.s.c.656.3 12
252.167 odd 6 567.2.c.c.566.7 12
252.187 even 6 1323.2.i.c.521.3 12
252.191 even 6 441.2.i.c.227.4 12
252.223 even 6 189.2.o.a.62.3 12
252.227 odd 6 441.2.s.c.362.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.3 12 36.11 even 6
63.2.o.a.20.4 yes 12 252.83 odd 6
63.2.o.a.41.3 yes 12 28.27 even 2
63.2.o.a.41.4 yes 12 4.3 odd 2
189.2.o.a.62.3 12 252.223 even 6
189.2.o.a.62.4 12 36.7 odd 6
189.2.o.a.125.3 12 12.11 even 2
189.2.o.a.125.4 12 84.83 odd 2
441.2.i.c.68.3 12 28.11 odd 6
441.2.i.c.68.4 12 28.3 even 6
441.2.i.c.227.3 12 252.47 odd 6
441.2.i.c.227.4 12 252.191 even 6
441.2.s.c.362.3 12 252.227 odd 6
441.2.s.c.362.4 12 252.11 even 6
441.2.s.c.374.3 12 28.23 odd 6
441.2.s.c.374.4 12 28.19 even 6
567.2.c.c.566.5 12 36.31 odd 6
567.2.c.c.566.6 12 252.139 even 6
567.2.c.c.566.7 12 252.167 odd 6
567.2.c.c.566.8 12 36.23 even 6
1008.2.cc.a.209.1 12 63.20 even 6 inner
1008.2.cc.a.209.6 12 9.2 odd 6 inner
1008.2.cc.a.545.1 12 1.1 even 1 trivial
1008.2.cc.a.545.6 12 7.6 odd 2 inner
1323.2.i.c.521.3 12 252.187 even 6
1323.2.i.c.521.4 12 252.79 odd 6
1323.2.i.c.1097.3 12 84.11 even 6
1323.2.i.c.1097.4 12 84.59 odd 6
1323.2.s.c.656.3 12 252.151 odd 6
1323.2.s.c.656.4 12 252.115 even 6
1323.2.s.c.962.3 12 84.47 odd 6
1323.2.s.c.962.4 12 84.23 even 6
3024.2.cc.a.881.2 12 3.2 odd 2
3024.2.cc.a.881.5 12 21.20 even 2
3024.2.cc.a.2897.2 12 63.34 odd 6
3024.2.cc.a.2897.5 12 9.7 even 3