Properties

Label 441.2.s.c.374.4
Level $441$
Weight $2$
Character 441.374
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(362,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.362"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.4
Root \(-0.474636 - 0.274031i\) of defining polynomial
Character \(\chi\) \(=\) 441.374
Dual form 441.2.s.c.362.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.555632 + 0.320794i) q^{2} +(0.175815 - 1.72310i) q^{3} +(-0.794182 - 1.37556i) q^{4} +2.21105 q^{5} +(0.650451 - 0.901012i) q^{6} -2.30225i q^{8} +(-2.93818 - 0.605896i) q^{9} +(1.22853 + 0.709292i) q^{10} -3.39272i q^{11} +(-2.50987 + 1.12661i) q^{12} +(1.56060 + 0.901012i) q^{13} +(0.388736 - 3.80987i) q^{15} +(-0.849814 + 1.47192i) q^{16} +(-2.98450 + 5.16931i) q^{17} +(-1.43818 - 1.27921i) q^{18} +(1.42391 - 0.822093i) q^{19} +(-1.75597 - 3.04144i) q^{20} +(1.08836 - 1.88510i) q^{22} -2.37364i q^{23} +(-3.96702 - 0.404771i) q^{24} -0.111264 q^{25} +(0.578079 + 1.00126i) q^{26} +(-1.56060 + 4.95626i) q^{27} +(2.44437 - 1.41126i) q^{29} +(1.43818 - 1.99218i) q^{30} +(9.28558 - 5.36103i) q^{31} +(-4.93199 + 2.84748i) q^{32} +(-5.84600 - 0.596491i) q^{33} +(-3.31657 + 1.91482i) q^{34} +(1.50000 + 4.52284i) q^{36} +(-0.849814 - 1.47192i) q^{37} +1.05489 q^{38} +(1.82691 - 2.53066i) q^{39} -5.09039i q^{40} +(0.455074 - 0.788211i) q^{41} +(-1.96108 - 3.39669i) q^{43} +(-4.66690 + 2.69443i) q^{44} +(-6.49645 - 1.33966i) q^{45} +(0.761450 - 1.31887i) q^{46} +(-0.123005 + 0.213051i) q^{47} +(2.38686 + 1.72310i) q^{48} +(-0.0618219 - 0.0356929i) q^{50} +(8.38255 + 6.05146i) q^{51} -2.86227i q^{52} +(6.82072 + 3.93795i) q^{53} +(-2.45706 + 2.25323i) q^{54} -7.50146i q^{55} +(-1.16621 - 2.59808i) q^{57} +1.81089 q^{58} +(5.39093 + 9.33736i) q^{59} +(-5.54944 + 2.49100i) q^{60} +(1.22853 + 0.709292i) q^{61} +6.87916 q^{62} -0.254572 q^{64} +(3.45056 + 1.99218i) q^{65} +(-3.05688 - 2.20679i) q^{66} +(3.99381 + 6.91748i) q^{67} +9.48096 q^{68} +(-4.09003 - 0.417322i) q^{69} +12.1743i q^{71} +(-1.39493 + 6.76443i) q^{72} +(0.369016 + 0.213051i) q^{73} -1.09046i q^{74} +(-0.0195619 + 0.191720i) q^{75} +(-2.26168 - 1.30578i) q^{76} +(1.82691 - 0.820053i) q^{78} +(2.49381 - 4.31941i) q^{79} +(-1.87898 + 3.25449i) q^{80} +(8.26578 + 3.56046i) q^{81} +(0.505707 - 0.291970i) q^{82} +(4.28541 + 7.42254i) q^{83} +(-6.59888 + 11.4296i) q^{85} -2.51641i q^{86} +(-2.00199 - 4.46002i) q^{87} -7.81089 q^{88} +(5.26792 + 9.12431i) q^{89} +(-3.17988 - 2.82839i) q^{90} +(-3.26509 + 1.88510i) q^{92} +(-7.60507 - 16.9426i) q^{93} +(-0.136691 + 0.0789188i) q^{94} +(3.14833 - 1.81769i) q^{95} +(4.03940 + 8.99896i) q^{96} +(6.30108 - 3.63793i) q^{97} +(-2.05563 + 9.96840i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 2 q^{4} + 6 q^{15} + 2 q^{16} + 18 q^{18} - 10 q^{22} + 30 q^{29} - 18 q^{30} + 12 q^{32} + 18 q^{36} + 2 q^{37} - 12 q^{39} - 10 q^{43} - 54 q^{44} + 20 q^{46} - 36 q^{50} + 66 q^{51}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.555632 + 0.320794i 0.392891 + 0.226836i 0.683412 0.730033i \(-0.260495\pi\)
−0.290521 + 0.956869i \(0.593829\pi\)
\(3\) 0.175815 1.72310i 0.101507 0.994835i
\(4\) −0.794182 1.37556i −0.397091 0.687782i
\(5\) 2.21105 0.988811 0.494405 0.869231i \(-0.335386\pi\)
0.494405 + 0.869231i \(0.335386\pi\)
\(6\) 0.650451 0.901012i 0.265545 0.367836i
\(7\) 0 0
\(8\) 2.30225i 0.813970i
\(9\) −2.93818 0.605896i −0.979393 0.201965i
\(10\) 1.22853 + 0.709292i 0.388495 + 0.224298i
\(11\) 3.39272i 1.02294i −0.859300 0.511471i \(-0.829101\pi\)
0.859300 0.511471i \(-0.170899\pi\)
\(12\) −2.50987 + 1.12661i −0.724537 + 0.325225i
\(13\) 1.56060 + 0.901012i 0.432832 + 0.249896i 0.700552 0.713601i \(-0.252937\pi\)
−0.267720 + 0.963497i \(0.586270\pi\)
\(14\) 0 0
\(15\) 0.388736 3.80987i 0.100371 0.983704i
\(16\) −0.849814 + 1.47192i −0.212454 + 0.367980i
\(17\) −2.98450 + 5.16931i −0.723849 + 1.25374i 0.235597 + 0.971851i \(0.424295\pi\)
−0.959446 + 0.281892i \(0.909038\pi\)
\(18\) −1.43818 1.27921i −0.338982 0.301512i
\(19\) 1.42391 0.822093i 0.326667 0.188601i −0.327694 0.944784i \(-0.606271\pi\)
0.654360 + 0.756183i \(0.272938\pi\)
\(20\) −1.75597 3.04144i −0.392648 0.680086i
\(21\) 0 0
\(22\) 1.08836 1.88510i 0.232040 0.401905i
\(23\) 2.37364i 0.494938i −0.968896 0.247469i \(-0.920401\pi\)
0.968896 0.247469i \(-0.0795988\pi\)
\(24\) −3.96702 0.404771i −0.809765 0.0826235i
\(25\) −0.111264 −0.0222528
\(26\) 0.578079 + 1.00126i 0.113371 + 0.196364i
\(27\) −1.56060 + 4.95626i −0.300337 + 0.953833i
\(28\) 0 0
\(29\) 2.44437 1.41126i 0.453908 0.262064i −0.255571 0.966790i \(-0.582264\pi\)
0.709479 + 0.704726i \(0.248930\pi\)
\(30\) 1.43818 1.99218i 0.262574 0.363721i
\(31\) 9.28558 5.36103i 1.66774 0.962870i 0.698887 0.715232i \(-0.253679\pi\)
0.968853 0.247638i \(-0.0796544\pi\)
\(32\) −4.93199 + 2.84748i −0.871861 + 0.503369i
\(33\) −5.84600 0.596491i −1.01766 0.103836i
\(34\) −3.31657 + 1.91482i −0.568788 + 0.328390i
\(35\) 0 0
\(36\) 1.50000 + 4.52284i 0.250000 + 0.753807i
\(37\) −0.849814 1.47192i −0.139709 0.241982i 0.787678 0.616088i \(-0.211283\pi\)
−0.927386 + 0.374105i \(0.877950\pi\)
\(38\) 1.05489 0.171126
\(39\) 1.82691 2.53066i 0.292540 0.405230i
\(40\) 5.09039i 0.804862i
\(41\) 0.455074 0.788211i 0.0710706 0.123098i −0.828300 0.560285i \(-0.810692\pi\)
0.899371 + 0.437187i \(0.144025\pi\)
\(42\) 0 0
\(43\) −1.96108 3.39669i −0.299062 0.517990i 0.676860 0.736112i \(-0.263340\pi\)
−0.975922 + 0.218122i \(0.930007\pi\)
\(44\) −4.66690 + 2.69443i −0.703561 + 0.406201i
\(45\) −6.49645 1.33966i −0.968434 0.199705i
\(46\) 0.761450 1.31887i 0.112270 0.194457i
\(47\) −0.123005 + 0.213051i −0.0179422 + 0.0310767i −0.874857 0.484381i \(-0.839045\pi\)
0.856915 + 0.515458i \(0.172378\pi\)
\(48\) 2.38686 + 1.72310i 0.344514 + 0.248709i
\(49\) 0 0
\(50\) −0.0618219 0.0356929i −0.00874294 0.00504774i
\(51\) 8.38255 + 6.05146i 1.17379 + 0.847373i
\(52\) 2.86227i 0.396925i
\(53\) 6.82072 + 3.93795i 0.936899 + 0.540919i 0.888987 0.457933i \(-0.151410\pi\)
0.0479118 + 0.998852i \(0.484743\pi\)
\(54\) −2.45706 + 2.25323i −0.334363 + 0.306625i
\(55\) 7.50146i 1.01150i
\(56\) 0 0
\(57\) −1.16621 2.59808i −0.154468 0.344124i
\(58\) 1.81089 0.237782
\(59\) 5.39093 + 9.33736i 0.701839 + 1.21562i 0.967820 + 0.251643i \(0.0809709\pi\)
−0.265981 + 0.963978i \(0.585696\pi\)
\(60\) −5.54944 + 2.49100i −0.716430 + 0.321586i
\(61\) 1.22853 + 0.709292i 0.157297 + 0.0908155i 0.576582 0.817039i \(-0.304386\pi\)
−0.419285 + 0.907855i \(0.637719\pi\)
\(62\) 6.87916 0.873654
\(63\) 0 0
\(64\) −0.254572 −0.0318214
\(65\) 3.45056 + 1.99218i 0.427989 + 0.247100i
\(66\) −3.05688 2.20679i −0.376275 0.271638i
\(67\) 3.99381 + 6.91748i 0.487922 + 0.845105i 0.999904 0.0138913i \(-0.00442187\pi\)
−0.511982 + 0.858996i \(0.671089\pi\)
\(68\) 9.48096 1.14974
\(69\) −4.09003 0.417322i −0.492382 0.0502396i
\(70\) 0 0
\(71\) 12.1743i 1.44482i 0.691463 + 0.722412i \(0.256966\pi\)
−0.691463 + 0.722412i \(0.743034\pi\)
\(72\) −1.39493 + 6.76443i −0.164394 + 0.797196i
\(73\) 0.369016 + 0.213051i 0.0431900 + 0.0249358i 0.521440 0.853288i \(-0.325395\pi\)
−0.478250 + 0.878224i \(0.658729\pi\)
\(74\) 1.09046i 0.126764i
\(75\) −0.0195619 + 0.191720i −0.00225882 + 0.0221379i
\(76\) −2.26168 1.30578i −0.259433 0.149784i
\(77\) 0 0
\(78\) 1.82691 0.820053i 0.206857 0.0928527i
\(79\) 2.49381 4.31941i 0.280576 0.485971i −0.690951 0.722902i \(-0.742808\pi\)
0.971527 + 0.236930i \(0.0761413\pi\)
\(80\) −1.87898 + 3.25449i −0.210076 + 0.363863i
\(81\) 8.26578 + 3.56046i 0.918420 + 0.395607i
\(82\) 0.505707 0.291970i 0.0558460 0.0322427i
\(83\) 4.28541 + 7.42254i 0.470384 + 0.814730i 0.999426 0.0338660i \(-0.0107819\pi\)
−0.529042 + 0.848596i \(0.677449\pi\)
\(84\) 0 0
\(85\) −6.59888 + 11.4296i −0.715750 + 1.23971i
\(86\) 2.51641i 0.271352i
\(87\) −2.00199 4.46002i −0.214635 0.478165i
\(88\) −7.81089 −0.832644
\(89\) 5.26792 + 9.12431i 0.558399 + 0.967175i 0.997630 + 0.0688014i \(0.0219175\pi\)
−0.439231 + 0.898374i \(0.644749\pi\)
\(90\) −3.17988 2.82839i −0.335189 0.298138i
\(91\) 0 0
\(92\) −3.26509 + 1.88510i −0.340409 + 0.196535i
\(93\) −7.60507 16.9426i −0.788609 1.75686i
\(94\) −0.136691 + 0.0789188i −0.0140986 + 0.00813985i
\(95\) 3.14833 1.81769i 0.323012 0.186491i
\(96\) 4.03940 + 8.99896i 0.412269 + 0.918453i
\(97\) 6.30108 3.63793i 0.639777 0.369376i −0.144751 0.989468i \(-0.546238\pi\)
0.784529 + 0.620092i \(0.212905\pi\)
\(98\) 0 0
\(99\) −2.05563 + 9.96840i −0.206599 + 1.00186i
\(100\) 0.0883640 + 0.153051i 0.00883640 + 0.0153051i
\(101\) −4.66811 −0.464494 −0.232247 0.972657i \(-0.574608\pi\)
−0.232247 + 0.972657i \(0.574608\pi\)
\(102\) 2.71634 + 6.05146i 0.268958 + 0.599183i
\(103\) 6.24071i 0.614916i −0.951562 0.307458i \(-0.900522\pi\)
0.951562 0.307458i \(-0.0994783\pi\)
\(104\) 2.07436 3.59289i 0.203407 0.352312i
\(105\) 0 0
\(106\) 2.52654 + 4.37610i 0.245399 + 0.425044i
\(107\) −1.28985 + 0.744696i −0.124695 + 0.0719925i −0.561050 0.827782i \(-0.689602\pi\)
0.436355 + 0.899774i \(0.356269\pi\)
\(108\) 8.05705 1.78947i 0.775290 0.172192i
\(109\) 2.19344 3.79915i 0.210093 0.363892i −0.741650 0.670787i \(-0.765957\pi\)
0.951744 + 0.306895i \(0.0992899\pi\)
\(110\) 2.40643 4.16805i 0.229444 0.397408i
\(111\) −2.68568 + 1.20553i −0.254914 + 0.114424i
\(112\) 0 0
\(113\) −14.8764 8.58887i −1.39945 0.807973i −0.405115 0.914266i \(-0.632769\pi\)
−0.994335 + 0.106293i \(0.966102\pi\)
\(114\) 0.185466 1.81769i 0.0173705 0.170242i
\(115\) 5.24823i 0.489400i
\(116\) −3.88255 2.24159i −0.360485 0.208126i
\(117\) −4.03940 3.59289i −0.373442 0.332163i
\(118\) 6.91752i 0.636809i
\(119\) 0 0
\(120\) −8.77128 0.894969i −0.800705 0.0816991i
\(121\) −0.510520 −0.0464110
\(122\) 0.455074 + 0.788211i 0.0412004 + 0.0713612i
\(123\) −1.27816 0.922719i −0.115248 0.0831987i
\(124\) −14.7489 8.51527i −1.32449 0.764694i
\(125\) −11.3013 −1.01081
\(126\) 0 0
\(127\) 6.32141 0.560935 0.280467 0.959864i \(-0.409511\pi\)
0.280467 + 0.959864i \(0.409511\pi\)
\(128\) 9.72253 + 5.61330i 0.859358 + 0.496151i
\(129\) −6.19763 + 2.78195i −0.545671 + 0.244937i
\(130\) 1.27816 + 2.21384i 0.112102 + 0.194167i
\(131\) −17.0243 −1.48742 −0.743708 0.668505i \(-0.766935\pi\)
−0.743708 + 0.668505i \(0.766935\pi\)
\(132\) 3.82228 + 8.51527i 0.332687 + 0.741159i
\(133\) 0 0
\(134\) 5.12477i 0.442712i
\(135\) −3.45056 + 10.9585i −0.296977 + 0.943161i
\(136\) 11.9011 + 6.87109i 1.02051 + 0.589191i
\(137\) 6.26517i 0.535270i 0.963520 + 0.267635i \(0.0862421\pi\)
−0.963520 + 0.267635i \(0.913758\pi\)
\(138\) −2.13868 1.54394i −0.182056 0.131429i
\(139\) −6.65488 3.84220i −0.564460 0.325891i 0.190474 0.981692i \(-0.438998\pi\)
−0.754934 + 0.655801i \(0.772331\pi\)
\(140\) 0 0
\(141\) 0.345483 + 0.249409i 0.0290950 + 0.0210040i
\(142\) −3.90545 + 6.76443i −0.327738 + 0.567658i
\(143\) 3.05688 5.29467i 0.255629 0.442762i
\(144\) 3.38874 3.80987i 0.282395 0.317489i
\(145\) 5.40462 3.12036i 0.448829 0.259132i
\(146\) 0.136691 + 0.236756i 0.0113127 + 0.0195941i
\(147\) 0 0
\(148\) −1.34981 + 2.33795i −0.110954 + 0.192178i
\(149\) 15.4377i 1.26471i −0.774679 0.632355i \(-0.782089\pi\)
0.774679 0.632355i \(-0.217911\pi\)
\(150\) −0.0723718 + 0.100250i −0.00590914 + 0.00818540i
\(151\) 11.6872 0.951095 0.475547 0.879690i \(-0.342250\pi\)
0.475547 + 0.879690i \(0.342250\pi\)
\(152\) −1.89267 3.27819i −0.153516 0.265897i
\(153\) 11.9011 13.3801i 0.962145 1.08171i
\(154\) 0 0
\(155\) 20.5309 11.8535i 1.64908 0.952096i
\(156\) −4.93199 0.503230i −0.394875 0.0402907i
\(157\) −4.93586 + 2.84972i −0.393924 + 0.227432i −0.683859 0.729614i \(-0.739700\pi\)
0.289935 + 0.957046i \(0.406366\pi\)
\(158\) 2.77128 1.60000i 0.220471 0.127289i
\(159\) 7.98468 11.0605i 0.633226 0.877152i
\(160\) −10.9049 + 6.29593i −0.862105 + 0.497737i
\(161\) 0 0
\(162\) 3.45056 + 4.62992i 0.271101 + 0.363761i
\(163\) 5.10507 + 8.84225i 0.399860 + 0.692578i 0.993708 0.111999i \(-0.0357253\pi\)
−0.593848 + 0.804577i \(0.702392\pi\)
\(164\) −1.44565 −0.112886
\(165\) −12.9258 1.31887i −1.00627 0.102674i
\(166\) 5.49894i 0.426800i
\(167\) −1.80661 + 3.12914i −0.139800 + 0.242140i −0.927421 0.374020i \(-0.877979\pi\)
0.787621 + 0.616160i \(0.211312\pi\)
\(168\) 0 0
\(169\) −4.87636 8.44610i −0.375104 0.649700i
\(170\) −7.33310 + 4.23377i −0.562423 + 0.324715i
\(171\) −4.68179 + 1.55272i −0.358026 + 0.118739i
\(172\) −3.11491 + 5.39518i −0.237509 + 0.411378i
\(173\) −9.03957 + 15.6570i −0.687266 + 1.19038i 0.285453 + 0.958393i \(0.407856\pi\)
−0.972719 + 0.231987i \(0.925477\pi\)
\(174\) 0.318382 3.12036i 0.0241365 0.236554i
\(175\) 0 0
\(176\) 4.99381 + 2.88318i 0.376423 + 0.217328i
\(177\) 17.0371 7.64749i 1.28058 0.574820i
\(178\) 6.75968i 0.506660i
\(179\) −4.35779 2.51597i −0.325716 0.188052i 0.328221 0.944601i \(-0.393551\pi\)
−0.653938 + 0.756548i \(0.726884\pi\)
\(180\) 3.31657 + 10.0002i 0.247203 + 0.745373i
\(181\) 13.5592i 1.00785i 0.863747 + 0.503925i \(0.168111\pi\)
−0.863747 + 0.503925i \(0.831889\pi\)
\(182\) 0 0
\(183\) 1.43818 1.99218i 0.106313 0.147266i
\(184\) −5.46472 −0.402865
\(185\) −1.87898 3.25449i −0.138145 0.239275i
\(186\) 1.20946 11.8535i 0.0886819 0.869141i
\(187\) 17.5380 + 10.1256i 1.28251 + 0.740455i
\(188\) 0.390754 0.0284987
\(189\) 0 0
\(190\) 2.33242 0.169211
\(191\) 8.86948 + 5.12080i 0.641773 + 0.370528i 0.785297 0.619119i \(-0.212510\pi\)
−0.143524 + 0.989647i \(0.545844\pi\)
\(192\) −0.0447575 + 0.438653i −0.00323010 + 0.0316571i
\(193\) −8.06615 13.9710i −0.580614 1.00565i −0.995407 0.0957374i \(-0.969479\pi\)
0.414792 0.909916i \(-0.363854\pi\)
\(194\) 4.66811 0.335151
\(195\) 4.03940 5.59542i 0.289267 0.400696i
\(196\) 0 0
\(197\) 3.86303i 0.275230i 0.990486 + 0.137615i \(0.0439436\pi\)
−0.990486 + 0.137615i \(0.956056\pi\)
\(198\) −4.33998 + 4.87933i −0.308429 + 0.346759i
\(199\) −13.1665 7.60171i −0.933352 0.538871i −0.0454817 0.998965i \(-0.514482\pi\)
−0.887870 + 0.460094i \(0.847816\pi\)
\(200\) 0.256158i 0.0181131i
\(201\) 12.6217 5.66555i 0.890267 0.399617i
\(202\) −2.59375 1.49750i −0.182496 0.105364i
\(203\) 0 0
\(204\) 1.66690 16.3367i 0.116706 1.14380i
\(205\) 1.00619 1.74277i 0.0702753 0.121720i
\(206\) 2.00199 3.46754i 0.139485 0.241595i
\(207\) −1.43818 + 6.97418i −0.0999603 + 0.484739i
\(208\) −2.65244 + 1.53138i −0.183913 + 0.106182i
\(209\) −2.78913 4.83091i −0.192928 0.334161i
\(210\) 0 0
\(211\) 11.9523 20.7021i 0.822833 1.42519i −0.0807311 0.996736i \(-0.525726\pi\)
0.903564 0.428453i \(-0.140941\pi\)
\(212\) 12.5098i 0.859176i
\(213\) 20.9776 + 2.14043i 1.43736 + 0.146660i
\(214\) −0.955577 −0.0653219
\(215\) −4.33604 7.51024i −0.295715 0.512194i
\(216\) 11.4106 + 3.59289i 0.776391 + 0.244465i
\(217\) 0 0
\(218\) 2.43749 1.40729i 0.165088 0.0953134i
\(219\) 0.431988 0.598395i 0.0291911 0.0404358i
\(220\) −10.3187 + 5.95752i −0.695689 + 0.401656i
\(221\) −9.31522 + 5.37815i −0.626610 + 0.361773i
\(222\) −1.87898 0.191720i −0.126109 0.0128674i
\(223\) 16.6198 9.59545i 1.11294 0.642559i 0.173354 0.984860i \(-0.444539\pi\)
0.939591 + 0.342300i \(0.111206\pi\)
\(224\) 0 0
\(225\) 0.326914 + 0.0674145i 0.0217943 + 0.00449430i
\(226\) −5.51052 9.54450i −0.366554 0.634891i
\(227\) 8.67208 0.575586 0.287793 0.957693i \(-0.407078\pi\)
0.287793 + 0.957693i \(0.407078\pi\)
\(228\) −2.64764 + 3.66754i −0.175344 + 0.242889i
\(229\) 14.3688i 0.949515i 0.880117 + 0.474758i \(0.157464\pi\)
−0.880117 + 0.474758i \(0.842536\pi\)
\(230\) 1.68360 2.91609i 0.111014 0.192281i
\(231\) 0 0
\(232\) −3.24907 5.62755i −0.213312 0.369467i
\(233\) −25.7348 + 14.8580i −1.68594 + 0.973381i −0.728375 + 0.685178i \(0.759724\pi\)
−0.957570 + 0.288202i \(0.906942\pi\)
\(234\) −1.09184 3.29214i −0.0713757 0.215214i
\(235\) −0.271971 + 0.471067i −0.0177414 + 0.0307290i
\(236\) 8.56276 14.8311i 0.557388 0.965425i
\(237\) −7.00434 5.05651i −0.454981 0.328456i
\(238\) 0 0
\(239\) −13.7101 7.91556i −0.886836 0.512015i −0.0139296 0.999903i \(-0.504434\pi\)
−0.872906 + 0.487888i \(0.837767\pi\)
\(240\) 5.27747 + 3.80987i 0.340659 + 0.245926i
\(241\) 5.02263i 0.323536i 0.986829 + 0.161768i \(0.0517196\pi\)
−0.986829 + 0.161768i \(0.948280\pi\)
\(242\) −0.283662 0.163772i −0.0182345 0.0105277i
\(243\) 7.58829 13.6168i 0.486789 0.873519i
\(244\) 2.25323i 0.144248i
\(245\) 0 0
\(246\) −0.414184 0.922719i −0.0264074 0.0588304i
\(247\) 2.96286 0.188522
\(248\) −12.3425 21.3778i −0.783747 1.35749i
\(249\) 13.5433 6.07921i 0.858269 0.385254i
\(250\) −6.27934 3.62538i −0.397140 0.229289i
\(251\) 7.29728 0.460600 0.230300 0.973120i \(-0.426029\pi\)
0.230300 + 0.973120i \(0.426029\pi\)
\(252\) 0 0
\(253\) −8.05308 −0.506293
\(254\) 3.51238 + 2.02787i 0.220386 + 0.127240i
\(255\) 18.5342 + 13.3801i 1.16066 + 0.837892i
\(256\) 3.85600 + 6.67879i 0.241000 + 0.417425i
\(257\) −8.00794 −0.499522 −0.249761 0.968308i \(-0.580352\pi\)
−0.249761 + 0.968308i \(0.580352\pi\)
\(258\) −4.33604 0.442423i −0.269950 0.0275441i
\(259\) 0 0
\(260\) 6.32862i 0.392484i
\(261\) −8.03706 + 2.66549i −0.497482 + 0.164990i
\(262\) −9.45922 5.46128i −0.584393 0.337399i
\(263\) 15.7098i 0.968707i −0.874872 0.484353i \(-0.839055\pi\)
0.874872 0.484353i \(-0.160945\pi\)
\(264\) −1.37327 + 13.4590i −0.0845191 + 0.828343i
\(265\) 15.0810 + 8.70699i 0.926416 + 0.534866i
\(266\) 0 0
\(267\) 16.6483 7.47299i 1.01886 0.457340i
\(268\) 6.34362 10.9875i 0.387499 0.671167i
\(269\) 5.24619 9.08666i 0.319866 0.554024i −0.660594 0.750743i \(-0.729696\pi\)
0.980460 + 0.196720i \(0.0630289\pi\)
\(270\) −5.43268 + 4.98199i −0.330622 + 0.303195i
\(271\) −19.2722 + 11.1268i −1.17071 + 0.675907i −0.953846 0.300296i \(-0.902915\pi\)
−0.216859 + 0.976203i \(0.569581\pi\)
\(272\) −5.07255 8.78591i −0.307568 0.532724i
\(273\) 0 0
\(274\) −2.00983 + 3.48113i −0.121418 + 0.210303i
\(275\) 0.377488i 0.0227634i
\(276\) 2.67417 + 5.95752i 0.160966 + 0.358601i
\(277\) −22.8502 −1.37294 −0.686468 0.727160i \(-0.740840\pi\)
−0.686468 + 0.727160i \(0.740840\pi\)
\(278\) −2.46511 4.26970i −0.147848 0.256079i
\(279\) −30.5309 + 10.1256i −1.82784 + 0.606202i
\(280\) 0 0
\(281\) 0.796041 0.459595i 0.0474878 0.0274171i −0.476068 0.879408i \(-0.657938\pi\)
0.523556 + 0.851991i \(0.324605\pi\)
\(282\) 0.111953 + 0.249409i 0.00666670 + 0.0148521i
\(283\) −19.1573 + 11.0605i −1.13878 + 0.657477i −0.946129 0.323790i \(-0.895043\pi\)
−0.192654 + 0.981267i \(0.561710\pi\)
\(284\) 16.7465 9.66861i 0.993723 0.573726i
\(285\) −2.57854 5.74447i −0.152740 0.340273i
\(286\) 3.39700 1.96126i 0.200869 0.115972i
\(287\) 0 0
\(288\) 16.2163 5.37815i 0.955557 0.316910i
\(289\) −9.31453 16.1332i −0.547914 0.949014i
\(290\) 4.00397 0.235121
\(291\) −5.16071 11.4970i −0.302526 0.673967i
\(292\) 0.676806i 0.0396071i
\(293\) −14.6259 + 25.3328i −0.854453 + 1.47996i 0.0226986 + 0.999742i \(0.492774\pi\)
−0.877152 + 0.480214i \(0.840559\pi\)
\(294\) 0 0
\(295\) 11.9196 + 20.6454i 0.693986 + 1.20202i
\(296\) −3.38874 + 1.95649i −0.196966 + 0.113719i
\(297\) 16.8152 + 5.29467i 0.975716 + 0.307228i
\(298\) 4.95234 8.57771i 0.286881 0.496893i
\(299\) 2.13868 3.70430i 0.123683 0.214225i
\(300\) 0.279258 0.125352i 0.0161230 0.00723718i
\(301\) 0 0
\(302\) 6.49381 + 3.74920i 0.373677 + 0.215742i
\(303\) −0.820724 + 8.04364i −0.0471494 + 0.462095i
\(304\) 2.79450i 0.160276i
\(305\) 2.71634 + 1.56828i 0.155537 + 0.0897994i
\(306\) 10.9049 3.61660i 0.623390 0.206747i
\(307\) 14.8451i 0.847254i −0.905837 0.423627i \(-0.860757\pi\)
0.905837 0.423627i \(-0.139243\pi\)
\(308\) 0 0
\(309\) −10.7534 1.09721i −0.611740 0.0624182i
\(310\) 15.2101 0.863878
\(311\) −9.69002 16.7836i −0.549471 0.951711i −0.998311 0.0580991i \(-0.981496\pi\)
0.448840 0.893612i \(-0.351837\pi\)
\(312\) −5.82623 4.20602i −0.329845 0.238119i
\(313\) 12.6608 + 7.30974i 0.715633 + 0.413171i 0.813143 0.582064i \(-0.197755\pi\)
−0.0975102 + 0.995235i \(0.531088\pi\)
\(314\) −3.65669 −0.206359
\(315\) 0 0
\(316\) −7.92216 −0.445656
\(317\) 14.7046 + 8.48973i 0.825895 + 0.476831i 0.852445 0.522817i \(-0.175119\pi\)
−0.0265499 + 0.999647i \(0.508452\pi\)
\(318\) 7.98468 3.58411i 0.447759 0.200987i
\(319\) −4.78799 8.29305i −0.268076 0.464321i
\(320\) −0.562870 −0.0314654
\(321\) 1.05641 + 2.35348i 0.0589633 + 0.131358i
\(322\) 0 0
\(323\) 9.81416i 0.546074i
\(324\) −1.66690 14.1978i −0.0926053 0.788764i
\(325\) −0.173639 0.100250i −0.00963174 0.00556089i
\(326\) 6.55072i 0.362811i
\(327\) −6.16069 4.44747i −0.340687 0.245946i
\(328\) −1.81466 1.04769i −0.100198 0.0578493i
\(329\) 0 0
\(330\) −6.75890 4.87933i −0.372065 0.268598i
\(331\) −9.94801 + 17.2305i −0.546792 + 0.947072i 0.451700 + 0.892170i \(0.350818\pi\)
−0.998492 + 0.0549016i \(0.982515\pi\)
\(332\) 6.80678 11.7897i 0.373571 0.647044i
\(333\) 1.60507 + 4.83967i 0.0879575 + 0.265212i
\(334\) −2.00762 + 1.15910i −0.109852 + 0.0634231i
\(335\) 8.83051 + 15.2949i 0.482462 + 0.835649i
\(336\) 0 0
\(337\) 0.490168 0.848996i 0.0267012 0.0462478i −0.852366 0.522946i \(-0.824833\pi\)
0.879067 + 0.476698i \(0.158166\pi\)
\(338\) 6.25723i 0.340348i
\(339\) −17.4150 + 24.1235i −0.945853 + 1.31021i
\(340\) 20.9629 1.13687
\(341\) −18.1885 31.5033i −0.984960 1.70600i
\(342\) −3.09946 0.639154i −0.167599 0.0345615i
\(343\) 0 0
\(344\) −7.82004 + 4.51490i −0.421628 + 0.243427i
\(345\) −9.04325 0.922719i −0.486872 0.0496775i
\(346\) −10.0454 + 5.79969i −0.540041 + 0.311793i
\(347\) −18.3702 + 10.6060i −0.986162 + 0.569361i −0.904125 0.427268i \(-0.859476\pi\)
−0.0820373 + 0.996629i \(0.526143\pi\)
\(348\) −4.54510 + 6.29593i −0.243643 + 0.337497i
\(349\) −8.69945 + 5.02263i −0.465671 + 0.268855i −0.714426 0.699711i \(-0.753312\pi\)
0.248755 + 0.968566i \(0.419979\pi\)
\(350\) 0 0
\(351\) −6.90112 + 6.32862i −0.368354 + 0.337797i
\(352\) 9.66071 + 16.7328i 0.514917 + 0.891863i
\(353\) 2.74655 0.146184 0.0730920 0.997325i \(-0.476713\pi\)
0.0730920 + 0.997325i \(0.476713\pi\)
\(354\) 11.9196 + 1.21620i 0.633520 + 0.0646406i
\(355\) 26.9180i 1.42866i
\(356\) 8.36738 14.4927i 0.443470 0.768113i
\(357\) 0 0
\(358\) −1.61422 2.79591i −0.0853140 0.147768i
\(359\) 8.66140 5.00066i 0.457131 0.263925i −0.253706 0.967281i \(-0.581650\pi\)
0.710837 + 0.703357i \(0.248316\pi\)
\(360\) −3.08425 + 14.9565i −0.162554 + 0.788276i
\(361\) −8.14833 + 14.1133i −0.428859 + 0.742806i
\(362\) −4.34973 + 7.53395i −0.228616 + 0.395975i
\(363\) −0.0897572 + 0.879680i −0.00471103 + 0.0461712i
\(364\) 0 0
\(365\) 0.815912 + 0.471067i 0.0427068 + 0.0246568i
\(366\) 1.43818 0.645560i 0.0751748 0.0337440i
\(367\) 5.81461i 0.303520i 0.988417 + 0.151760i \(0.0484941\pi\)
−0.988417 + 0.151760i \(0.951506\pi\)
\(368\) 3.49381 + 2.01715i 0.182127 + 0.105151i
\(369\) −1.81466 + 2.04018i −0.0944675 + 0.106207i
\(370\) 2.41106i 0.125345i
\(371\) 0 0
\(372\) −17.2658 + 23.9168i −0.895189 + 1.24003i
\(373\) −15.5192 −0.803553 −0.401776 0.915738i \(-0.631607\pi\)
−0.401776 + 0.915738i \(0.631607\pi\)
\(374\) 6.49645 + 11.2522i 0.335924 + 0.581837i
\(375\) −1.98693 + 19.4732i −0.102605 + 1.00559i
\(376\) 0.490498 + 0.283189i 0.0252955 + 0.0146044i
\(377\) 5.08623 0.261954
\(378\) 0 0
\(379\) 2.79714 0.143679 0.0718396 0.997416i \(-0.477113\pi\)
0.0718396 + 0.997416i \(0.477113\pi\)
\(380\) −5.00069 2.88715i −0.256530 0.148108i
\(381\) 1.11140 10.8925i 0.0569388 0.558037i
\(382\) 3.28544 + 5.69056i 0.168098 + 0.291154i
\(383\) −3.48458 −0.178054 −0.0890268 0.996029i \(-0.528376\pi\)
−0.0890268 + 0.996029i \(0.528376\pi\)
\(384\) 11.3817 15.7660i 0.580819 0.804557i
\(385\) 0 0
\(386\) 10.3503i 0.526817i
\(387\) 3.70396 + 11.1683i 0.188283 + 0.567716i
\(388\) −10.0084 5.77835i −0.508100 0.293352i
\(389\) 7.35563i 0.372945i −0.982460 0.186473i \(-0.940294\pi\)
0.982460 0.186473i \(-0.0597056\pi\)
\(390\) 4.03940 1.81318i 0.204543 0.0918138i
\(391\) 12.2701 + 7.08414i 0.620525 + 0.358260i
\(392\) 0 0
\(393\) −2.99312 + 29.3346i −0.150983 + 1.47973i
\(394\) −1.23924 + 2.14642i −0.0624319 + 0.108135i
\(395\) 5.51394 9.55042i 0.277436 0.480534i
\(396\) 15.3447 5.08907i 0.771101 0.255736i
\(397\) 16.7002 9.64189i 0.838161 0.483912i −0.0184778 0.999829i \(-0.505882\pi\)
0.856639 + 0.515917i \(0.172549\pi\)
\(398\) −4.87717 8.44751i −0.244470 0.423435i
\(399\) 0 0
\(400\) 0.0945538 0.163772i 0.00472769 0.00818860i
\(401\) 11.0918i 0.553897i −0.960885 0.276949i \(-0.910677\pi\)
0.960885 0.276949i \(-0.0893232\pi\)
\(402\) 8.83051 + 0.901012i 0.440426 + 0.0449384i
\(403\) 19.3214 0.962468
\(404\) 3.70733 + 6.42128i 0.184446 + 0.319471i
\(405\) 18.2760 + 7.87235i 0.908144 + 0.391180i
\(406\) 0 0
\(407\) −4.99381 + 2.88318i −0.247534 + 0.142914i
\(408\) 13.9320 19.2987i 0.689736 0.955430i
\(409\) 17.5597 10.1381i 0.868274 0.501298i 0.00149954 0.999999i \(-0.499523\pi\)
0.866774 + 0.498701i \(0.166189\pi\)
\(410\) 1.11814 0.645560i 0.0552211 0.0318819i
\(411\) 10.7955 + 1.10151i 0.532505 + 0.0543336i
\(412\) −8.58450 + 4.95626i −0.422928 + 0.244178i
\(413\) 0 0
\(414\) −3.03637 + 3.41372i −0.149230 + 0.167775i
\(415\) 9.47524 + 16.4116i 0.465121 + 0.805614i
\(416\) −10.2625 −0.503159
\(417\) −7.79054 + 10.7915i −0.381504 + 0.528464i
\(418\) 3.57895i 0.175052i
\(419\) 5.54936 9.61177i 0.271104 0.469566i −0.698041 0.716058i \(-0.745945\pi\)
0.969145 + 0.246492i \(0.0792779\pi\)
\(420\) 0 0
\(421\) 4.59269 + 7.95478i 0.223834 + 0.387692i 0.955969 0.293467i \(-0.0948092\pi\)
−0.732135 + 0.681160i \(0.761476\pi\)
\(422\) 13.2822 7.66849i 0.646568 0.373296i
\(423\) 0.490498 0.551454i 0.0238488 0.0268126i
\(424\) 9.06615 15.7030i 0.440291 0.762607i
\(425\) 0.332068 0.575159i 0.0161077 0.0278993i
\(426\) 10.9692 + 7.91878i 0.531459 + 0.383666i
\(427\) 0 0
\(428\) 2.04875 + 1.18285i 0.0990302 + 0.0571751i
\(429\) −8.58582 6.19820i −0.414527 0.299252i
\(430\) 5.56391i 0.268315i
\(431\) 13.0858 + 7.55510i 0.630322 + 0.363916i 0.780877 0.624685i \(-0.214773\pi\)
−0.150555 + 0.988602i \(0.548106\pi\)
\(432\) −5.96901 6.50898i −0.287184 0.313163i
\(433\) 3.33578i 0.160307i −0.996783 0.0801537i \(-0.974459\pi\)
0.996783 0.0801537i \(-0.0255411\pi\)
\(434\) 0 0
\(435\) −4.42649 9.86132i −0.212234 0.472814i
\(436\) −6.96796 −0.333705
\(437\) −1.95135 3.37984i −0.0933458 0.161680i
\(438\) 0.431988 0.193908i 0.0206412 0.00926529i
\(439\) 5.91032 + 3.41233i 0.282084 + 0.162861i 0.634367 0.773032i \(-0.281261\pi\)
−0.352282 + 0.935894i \(0.614594\pi\)
\(440\) −17.2703 −0.823327
\(441\) 0 0
\(442\) −6.90112 −0.328253
\(443\) −9.77747 5.64503i −0.464542 0.268203i 0.249410 0.968398i \(-0.419763\pi\)
−0.713952 + 0.700195i \(0.753097\pi\)
\(444\) 3.79121 + 2.73692i 0.179923 + 0.129888i
\(445\) 11.6476 + 20.1743i 0.552151 + 0.956354i
\(446\) 12.3127 0.583022
\(447\) −26.6008 2.71419i −1.25818 0.128377i
\(448\) 0 0
\(449\) 24.8554i 1.17300i 0.809950 + 0.586498i \(0.199494\pi\)
−0.809950 + 0.586498i \(0.800506\pi\)
\(450\) 0.160018 + 0.142330i 0.00754331 + 0.00670949i
\(451\) −2.67417 1.54394i −0.125922 0.0727011i
\(452\) 27.2845i 1.28335i
\(453\) 2.05480 20.1384i 0.0965427 0.946182i
\(454\) 4.81849 + 2.78195i 0.226143 + 0.130564i
\(455\) 0 0
\(456\) −5.98143 + 2.68491i −0.280106 + 0.125732i
\(457\) 6.30470 10.9201i 0.294922 0.510819i −0.680045 0.733170i \(-0.738040\pi\)
0.974967 + 0.222351i \(0.0713732\pi\)
\(458\) −4.60942 + 7.98375i −0.215384 + 0.373056i
\(459\) −20.9629 22.8592i −0.978463 1.06698i
\(460\) −7.21928 + 4.16805i −0.336601 + 0.194336i
\(461\) −14.4031 24.9470i −0.670821 1.16190i −0.977672 0.210138i \(-0.932609\pi\)
0.306851 0.951758i \(-0.400725\pi\)
\(462\) 0 0
\(463\) −12.5858 + 21.7993i −0.584912 + 1.01310i 0.409974 + 0.912097i \(0.365538\pi\)
−0.994886 + 0.101001i \(0.967796\pi\)
\(464\) 4.79722i 0.222705i
\(465\) −16.8152 37.4609i −0.779786 1.73721i
\(466\) −19.0655 −0.883191
\(467\) 12.7975 + 22.1660i 0.592199 + 1.02572i 0.993936 + 0.109964i \(0.0350735\pi\)
−0.401736 + 0.915755i \(0.631593\pi\)
\(468\) −1.73424 + 8.40986i −0.0801651 + 0.388746i
\(469\) 0 0
\(470\) −0.302231 + 0.174493i −0.0139409 + 0.00804877i
\(471\) 4.04256 + 9.00602i 0.186272 + 0.414976i
\(472\) 21.4970 12.4113i 0.989479 0.571276i
\(473\) −11.5240 + 6.65338i −0.529874 + 0.305923i
\(474\) −2.26973 5.05651i −0.104252 0.232253i
\(475\) −0.158430 + 0.0914695i −0.00726926 + 0.00419691i
\(476\) 0 0
\(477\) −17.6545 15.7030i −0.808345 0.718993i
\(478\) −5.07853 8.79628i −0.232287 0.402332i
\(479\) −0.535498 −0.0244675 −0.0122338 0.999925i \(-0.503894\pi\)
−0.0122338 + 0.999925i \(0.503894\pi\)
\(480\) 8.93130 + 19.8971i 0.407656 + 0.908176i
\(481\) 3.06277i 0.139650i
\(482\) −1.61123 + 2.79073i −0.0733896 + 0.127114i
\(483\) 0 0
\(484\) 0.405446 + 0.702253i 0.0184294 + 0.0319206i
\(485\) 13.9320 8.04364i 0.632619 0.365243i
\(486\) 8.58450 5.13166i 0.389401 0.232777i
\(487\) −17.0662 + 29.5594i −0.773341 + 1.33947i 0.162381 + 0.986728i \(0.448083\pi\)
−0.935722 + 0.352738i \(0.885251\pi\)
\(488\) 1.63297 2.82839i 0.0739211 0.128035i
\(489\) 16.1337 7.24198i 0.729590 0.327493i
\(490\) 0 0
\(491\) 5.86948 + 3.38874i 0.264886 + 0.152932i 0.626561 0.779372i \(-0.284462\pi\)
−0.361675 + 0.932304i \(0.617795\pi\)
\(492\) −0.254166 + 2.49100i −0.0114587 + 0.112303i
\(493\) 16.8476i 0.758778i
\(494\) 1.64626 + 0.950469i 0.0740688 + 0.0427636i
\(495\) −4.54510 + 22.0406i −0.204287 + 0.990652i
\(496\) 18.2235i 0.818260i
\(497\) 0 0
\(498\) 9.47524 + 0.966796i 0.424596 + 0.0433232i
\(499\) 8.60074 0.385022 0.192511 0.981295i \(-0.438337\pi\)
0.192511 + 0.981295i \(0.438337\pi\)
\(500\) 8.97525 + 15.5456i 0.401385 + 0.695220i
\(501\) 5.07420 + 3.66312i 0.226699 + 0.163656i
\(502\) 4.05460 + 2.34093i 0.180966 + 0.104481i
\(503\) 2.96518 0.132211 0.0661055 0.997813i \(-0.478943\pi\)
0.0661055 + 0.997813i \(0.478943\pi\)
\(504\) 0 0
\(505\) −10.3214 −0.459297
\(506\) −4.47455 2.58338i −0.198918 0.114845i
\(507\) −15.4108 + 6.91752i −0.684420 + 0.307218i
\(508\) −5.02035 8.69551i −0.222742 0.385801i
\(509\) −6.09765 −0.270273 −0.135137 0.990827i \(-0.543147\pi\)
−0.135137 + 0.990827i \(0.543147\pi\)
\(510\) 6.00596 + 13.3801i 0.265948 + 0.592479i
\(511\) 0 0
\(512\) 17.5053i 0.773631i
\(513\) 1.85236 + 8.34021i 0.0817838 + 0.368229i
\(514\) −4.44947 2.56890i −0.196258 0.113309i
\(515\) 13.7985i 0.608035i
\(516\) 8.74880 + 6.31586i 0.385145 + 0.278040i
\(517\) 0.722823 + 0.417322i 0.0317897 + 0.0183538i
\(518\) 0 0
\(519\) 25.3893 + 18.3289i 1.11447 + 0.804548i
\(520\) 4.58650 7.94406i 0.201132 0.348370i
\(521\) −16.3464 + 28.3128i −0.716150 + 1.24041i 0.246364 + 0.969177i \(0.420764\pi\)
−0.962514 + 0.271231i \(0.912569\pi\)
\(522\) −5.32072 1.09721i −0.232882 0.0480237i
\(523\) 1.73424 1.00126i 0.0758329 0.0437821i −0.461604 0.887086i \(-0.652726\pi\)
0.537437 + 0.843304i \(0.319393\pi\)
\(524\) 13.5204 + 23.4179i 0.590639 + 1.02302i
\(525\) 0 0
\(526\) 5.03961 8.72886i 0.219737 0.380596i
\(527\) 64.0001i 2.78789i
\(528\) 5.84600 8.09795i 0.254415 0.352418i
\(529\) 17.3658 0.755036
\(530\) 5.58631 + 9.67577i 0.242654 + 0.420289i
\(531\) −10.1820 30.7012i −0.441863 1.33232i
\(532\) 0 0
\(533\) 1.42037 0.820053i 0.0615232 0.0355204i
\(534\) 11.6476 + 1.18845i 0.504043 + 0.0514295i
\(535\) −2.85192 + 1.64656i −0.123299 + 0.0711870i
\(536\) 15.9258 9.19476i 0.687890 0.397153i
\(537\) −5.10144 + 7.06658i −0.220144 + 0.304945i
\(538\) 5.82990 3.36589i 0.251345 0.145114i
\(539\) 0 0
\(540\) 17.8145 3.95661i 0.766615 0.170265i
\(541\) 5.72253 + 9.91171i 0.246031 + 0.426138i 0.962421 0.271562i \(-0.0875403\pi\)
−0.716390 + 0.697700i \(0.754207\pi\)
\(542\) −14.2777 −0.613280
\(543\) 23.3640 + 2.38392i 1.00264 + 0.102304i
\(544\) 33.9933i 1.45745i
\(545\) 4.84980 8.40010i 0.207743 0.359821i
\(546\) 0 0
\(547\) −3.91961 6.78896i −0.167590 0.290275i 0.769982 0.638066i \(-0.220265\pi\)
−0.937572 + 0.347791i \(0.886932\pi\)
\(548\) 8.61814 4.97569i 0.368149 0.212551i
\(549\) −3.17988 2.82839i −0.135714 0.120713i
\(550\) −0.121096 + 0.209744i −0.00516355 + 0.00894353i
\(551\) 2.32037 4.01899i 0.0988510 0.171215i
\(552\) −0.960781 + 9.41628i −0.0408935 + 0.400784i
\(553\) 0 0
\(554\) −12.6963 7.33022i −0.539415 0.311431i
\(555\) −5.93818 + 2.66549i −0.252062 + 0.113144i
\(556\) 12.2056i 0.517634i
\(557\) −0.0116910 0.00674980i −0.000495364 0.000285998i 0.499752 0.866168i \(-0.333424\pi\)
−0.500248 + 0.865882i \(0.666758\pi\)
\(558\) −20.2122 4.16805i −0.855650 0.176448i
\(559\) 7.06782i 0.298937i
\(560\) 0 0
\(561\) 20.5309 28.4396i 0.866814 1.20072i
\(562\) 0.589741 0.0248767
\(563\) 9.54528 + 16.5329i 0.402286 + 0.696779i 0.994001 0.109368i \(-0.0348826\pi\)
−0.591716 + 0.806147i \(0.701549\pi\)
\(564\) 0.0687005 0.673310i 0.00289281 0.0283515i
\(565\) −32.8923 18.9904i −1.38379 0.798932i
\(566\) −14.1925 −0.596557
\(567\) 0 0
\(568\) 28.0283 1.17604
\(569\) −32.3406 18.6719i −1.35579 0.782765i −0.366735 0.930325i \(-0.619525\pi\)
−0.989053 + 0.147561i \(0.952858\pi\)
\(570\) 0.410074 4.01899i 0.0171761 0.168337i
\(571\) −22.6421 39.2173i −0.947544 1.64119i −0.750576 0.660784i \(-0.770224\pi\)
−0.196968 0.980410i \(-0.563110\pi\)
\(572\) −9.71086 −0.406032
\(573\) 10.3831 14.3827i 0.433758 0.600847i
\(574\) 0 0
\(575\) 0.264101i 0.0110138i
\(576\) 0.747976 + 0.154244i 0.0311657 + 0.00642683i
\(577\) 32.1285 + 18.5494i 1.33753 + 0.772221i 0.986440 0.164123i \(-0.0524793\pi\)
0.351086 + 0.936343i \(0.385813\pi\)
\(578\) 11.9522i 0.497146i
\(579\) −25.4916 + 11.4425i −1.05940 + 0.475535i
\(580\) −8.58450 4.95626i −0.356452 0.205798i
\(581\) 0 0
\(582\) 0.820724 8.04364i 0.0340201 0.333419i
\(583\) 13.3603 23.1408i 0.553329 0.958393i
\(584\) 0.490498 0.849568i 0.0202970 0.0351554i
\(585\) −8.93130 7.94406i −0.369264 0.328446i
\(586\) −16.2532 + 9.38380i −0.671414 + 0.387641i
\(587\) 17.0612 + 29.5509i 0.704191 + 1.21969i 0.966983 + 0.254842i \(0.0820235\pi\)
−0.262792 + 0.964853i \(0.584643\pi\)
\(588\) 0 0
\(589\) 8.81453 15.2672i 0.363197 0.629075i
\(590\) 15.2950i 0.629684i
\(591\) 6.65641 + 0.679179i 0.273808 + 0.0279377i
\(592\) 2.88874 0.118726
\(593\) 9.84997 + 17.0607i 0.404490 + 0.700597i 0.994262 0.106973i \(-0.0341157\pi\)
−0.589772 + 0.807570i \(0.700782\pi\)
\(594\) 7.64456 + 8.33610i 0.313660 + 0.342034i
\(595\) 0 0
\(596\) −21.2356 + 12.2604i −0.869844 + 0.502205i
\(597\) −15.4134 + 21.3508i −0.630829 + 0.873832i
\(598\) 2.37663 1.37215i 0.0971878 0.0561114i
\(599\) 9.74033 5.62358i 0.397979 0.229773i −0.287632 0.957741i \(-0.592868\pi\)
0.685612 + 0.727967i \(0.259535\pi\)
\(600\) 0.441388 + 0.0450365i 0.0180196 + 0.00183861i
\(601\) −29.7646 + 17.1846i −1.21412 + 0.700975i −0.963655 0.267150i \(-0.913918\pi\)
−0.250469 + 0.968125i \(0.580585\pi\)
\(602\) 0 0
\(603\) −7.54325 22.7446i −0.307185 0.926233i
\(604\) −9.28180 16.0766i −0.377671 0.654146i
\(605\) −1.12879 −0.0458917
\(606\) −3.03637 + 4.20602i −0.123344 + 0.170858i
\(607\) 39.0160i 1.58361i −0.610775 0.791804i \(-0.709142\pi\)
0.610775 0.791804i \(-0.290858\pi\)
\(608\) −4.68179 + 8.10910i −0.189872 + 0.328868i
\(609\) 0 0
\(610\) 1.00619 + 1.74277i 0.0407394 + 0.0705628i
\(611\) −0.383923 + 0.221658i −0.0155319 + 0.00896733i
\(612\) −27.8567 5.74447i −1.12604 0.232207i
\(613\) 8.05494 13.9516i 0.325336 0.563499i −0.656244 0.754549i \(-0.727856\pi\)
0.981580 + 0.191050i \(0.0611892\pi\)
\(614\) 4.76222 8.24840i 0.192187 0.332878i
\(615\) −2.82607 2.04018i −0.113958 0.0822678i
\(616\) 0 0
\(617\) 7.03569 + 4.06205i 0.283246 + 0.163532i 0.634892 0.772601i \(-0.281045\pi\)
−0.351646 + 0.936133i \(0.614378\pi\)
\(618\) −5.62296 4.05928i −0.226188 0.163288i
\(619\) 37.4144i 1.50381i −0.659270 0.751906i \(-0.729134\pi\)
0.659270 0.751906i \(-0.270866\pi\)
\(620\) −32.6105 18.8277i −1.30967 0.756138i
\(621\) 11.7644 + 3.70430i 0.472088 + 0.148648i
\(622\) 12.4340i 0.498559i
\(623\) 0 0
\(624\) 2.17240 + 4.83967i 0.0869655 + 0.193742i
\(625\) −24.4313 −0.977252
\(626\) 4.68985 + 8.12305i 0.187444 + 0.324662i
\(627\) −8.81453 + 3.95661i −0.352019 + 0.158012i
\(628\) 7.83994 + 4.52639i 0.312848 + 0.180623i
\(629\) 10.1451 0.404511
\(630\) 0 0
\(631\) −19.8268 −0.789294 −0.394647 0.918833i \(-0.629133\pi\)
−0.394647 + 0.918833i \(0.629133\pi\)
\(632\) −9.94437 5.74138i −0.395566 0.228380i
\(633\) −33.5704 24.2349i −1.33430 0.963249i
\(634\) 5.44692 + 9.43434i 0.216325 + 0.374685i
\(635\) 13.9770 0.554658
\(636\) −21.5557 2.19941i −0.854738 0.0872123i
\(637\) 0 0
\(638\) 6.14384i 0.243237i
\(639\) 7.37636 35.7703i 0.291804 1.41505i
\(640\) 21.4970 + 12.4113i 0.849743 + 0.490599i
\(641\) 9.25896i 0.365707i −0.983140 0.182853i \(-0.941467\pi\)
0.983140 0.182853i \(-0.0585334\pi\)
\(642\) −0.168005 + 1.64656i −0.00663063 + 0.0649845i
\(643\) −36.3456 20.9841i −1.43333 0.827534i −0.435958 0.899967i \(-0.643590\pi\)
−0.997373 + 0.0724332i \(0.976924\pi\)
\(644\) 0 0
\(645\) −13.7033 + 6.15103i −0.539566 + 0.242197i
\(646\) −3.14833 + 5.45306i −0.123869 + 0.214548i
\(647\) 3.14293 5.44372i 0.123561 0.214015i −0.797608 0.603176i \(-0.793902\pi\)
0.921170 + 0.389161i \(0.127235\pi\)
\(648\) 8.19708 19.0299i 0.322012 0.747566i
\(649\) 31.6790 18.2899i 1.24351 0.717941i
\(650\) −0.0643195 0.111405i −0.00252282 0.00436965i
\(651\) 0 0
\(652\) 8.10872 14.0447i 0.317562 0.550033i
\(653\) 23.2866i 0.911277i −0.890165 0.455638i \(-0.849411\pi\)
0.890165 0.455638i \(-0.150589\pi\)
\(654\) −1.99635 4.44747i −0.0780635 0.173910i
\(655\) −37.6414 −1.47077
\(656\) 0.773456 + 1.33966i 0.0301984 + 0.0523051i
\(657\) −0.955147 0.849568i −0.0372638 0.0331448i
\(658\) 0 0
\(659\) 25.8880 14.9464i 1.00845 0.582230i 0.0977141 0.995215i \(-0.468847\pi\)
0.910738 + 0.412984i \(0.135514\pi\)
\(660\) 8.45125 + 18.8277i 0.328964 + 0.732866i
\(661\) 17.6184 10.1720i 0.685278 0.395645i −0.116563 0.993183i \(-0.537188\pi\)
0.801841 + 0.597538i \(0.203854\pi\)
\(662\) −11.0549 + 6.38253i −0.429660 + 0.248064i
\(663\) 7.62935 + 16.9967i 0.296299 + 0.660096i
\(664\) 17.0886 9.86609i 0.663165 0.382879i
\(665\) 0 0
\(666\) −0.660706 + 3.20397i −0.0256019 + 0.124151i
\(667\) −3.34981 5.80205i −0.129705 0.224656i
\(668\) 5.73910 0.222053
\(669\) −13.6120 30.3247i −0.526269 1.17242i
\(670\) 11.3311i 0.437759i
\(671\) 2.40643 4.16805i 0.0928990 0.160906i
\(672\) 0 0
\(673\) −8.55996 14.8263i −0.329962 0.571511i 0.652542 0.757753i \(-0.273703\pi\)
−0.982504 + 0.186241i \(0.940369\pi\)
\(674\) 0.544706 0.314486i 0.0209813 0.0121136i
\(675\) 0.173639 0.551454i 0.00668335 0.0212255i
\(676\) −7.74543 + 13.4155i −0.297901 + 0.515980i
\(677\) −14.2078 + 24.6085i −0.546048 + 0.945783i 0.452492 + 0.891769i \(0.350535\pi\)
−0.998540 + 0.0540148i \(0.982798\pi\)
\(678\) −17.4150 + 7.81713i −0.668819 + 0.300215i
\(679\) 0 0
\(680\) 26.3138 + 15.1923i 1.00909 + 0.582598i
\(681\) 1.52468 14.9429i 0.0584260 0.572613i
\(682\) 23.3390i 0.893697i
\(683\) 18.1236 + 10.4637i 0.693482 + 0.400382i 0.804915 0.593390i \(-0.202211\pi\)
−0.111433 + 0.993772i \(0.535544\pi\)
\(684\) 5.85406 + 5.20697i 0.223835 + 0.199093i
\(685\) 13.8526i 0.529281i
\(686\) 0 0
\(687\) 24.7589 + 2.52625i 0.944611 + 0.0963824i
\(688\) 6.66621 0.254147
\(689\) 7.09627 + 12.2911i 0.270346 + 0.468254i
\(690\) −4.72872 3.41372i −0.180019 0.129958i
\(691\) −20.7918 12.0041i −0.790957 0.456659i 0.0493424 0.998782i \(-0.484287\pi\)
−0.840299 + 0.542123i \(0.817621\pi\)
\(692\) 28.7163 1.09163
\(693\) 0 0
\(694\) −13.6094 −0.516606
\(695\) −14.7143 8.49529i −0.558144 0.322245i
\(696\) −10.2681 + 4.60908i −0.389211 + 0.174707i
\(697\) 2.71634 + 4.70484i 0.102889 + 0.178208i
\(698\) −6.44493 −0.243944
\(699\) 21.0773 + 46.9561i 0.797218 + 1.77604i
\(700\) 0 0
\(701\) 42.0117i 1.58676i −0.608728 0.793379i \(-0.708320\pi\)
0.608728 0.793379i \(-0.291680\pi\)
\(702\) −5.86467 + 1.30254i −0.221348 + 0.0491613i
\(703\) −2.42011 1.39725i −0.0912762 0.0526984i
\(704\) 0.863689i 0.0325515i
\(705\) 0.763881 + 0.551454i 0.0287694 + 0.0207690i
\(706\) 1.52607 + 0.881077i 0.0574344 + 0.0331598i
\(707\) 0 0
\(708\) −24.0501 17.3621i −0.903859 0.652506i
\(709\) −18.6094 + 32.2324i −0.698891 + 1.21051i 0.269960 + 0.962871i \(0.412989\pi\)
−0.968851 + 0.247643i \(0.920344\pi\)
\(710\) −8.63513 + 14.9565i −0.324071 + 0.561307i
\(711\) −9.94437 + 11.1802i −0.372943 + 0.419290i
\(712\) 21.0065 12.1281i 0.787251 0.454520i
\(713\) −12.7252 22.0406i −0.476561 0.825428i
\(714\) 0 0
\(715\) 6.75890 11.7068i 0.252769 0.437808i
\(716\) 7.99255i 0.298696i
\(717\) −16.0498 + 22.2323i −0.599390 + 0.830282i
\(718\) 6.41673 0.239470
\(719\) 9.14889 + 15.8463i 0.341196 + 0.590969i 0.984655 0.174512i \(-0.0558347\pi\)
−0.643459 + 0.765481i \(0.722501\pi\)
\(720\) 7.49266 8.42380i 0.279235 0.313937i
\(721\) 0 0
\(722\) −9.05494 + 5.22787i −0.336990 + 0.194561i
\(723\) 8.65452 + 0.883054i 0.321865 + 0.0328411i
\(724\) 18.6516 10.7685i 0.693181 0.400208i
\(725\) −0.271971 + 0.157022i −0.0101007 + 0.00583166i
\(726\) −0.332068 + 0.459985i −0.0123242 + 0.0170716i
\(727\) 28.3214 16.3514i 1.05038 0.606439i 0.127626 0.991822i \(-0.459264\pi\)
0.922756 + 0.385384i \(0.125931\pi\)
\(728\) 0 0
\(729\) −22.1291 15.4695i −0.819595 0.572943i
\(730\) 0.302231 + 0.523480i 0.0111861 + 0.0193749i
\(731\) 23.4114 0.865901
\(732\) −3.88255 0.396151i −0.143503 0.0146422i
\(733\) 0.498614i 0.0184167i 0.999958 + 0.00920836i \(0.00293115\pi\)
−0.999958 + 0.00920836i \(0.997069\pi\)
\(734\) −1.86529 + 3.23078i −0.0688493 + 0.119250i
\(735\) 0 0
\(736\) 6.75890 + 11.7068i 0.249136 + 0.431517i
\(737\) 23.4691 13.5499i 0.864494 0.499116i
\(738\) −1.66276 + 0.551454i −0.0612071 + 0.0202993i
\(739\) 23.8523 41.3134i 0.877421 1.51974i 0.0232588 0.999729i \(-0.492596\pi\)
0.854162 0.520007i \(-0.174071\pi\)
\(740\) −2.98450 + 5.16931i −0.109713 + 0.190028i
\(741\) 0.520916 5.10532i 0.0191363 0.187549i
\(742\) 0 0
\(743\) 9.20534 + 5.31470i 0.337711 + 0.194978i 0.659259 0.751916i \(-0.270870\pi\)
−0.321548 + 0.946893i \(0.604203\pi\)
\(744\) −39.0061 + 17.5088i −1.43003 + 0.641904i
\(745\) 34.1336i 1.25056i
\(746\) −8.62296 4.97847i −0.315709 0.182275i
\(747\) −8.09400 24.4053i −0.296144 0.892942i
\(748\) 32.1662i 1.17611i
\(749\) 0 0
\(750\) −7.35091 + 10.1826i −0.268417 + 0.371815i
\(751\) 19.1185 0.697646 0.348823 0.937189i \(-0.386581\pi\)
0.348823 + 0.937189i \(0.386581\pi\)
\(752\) −0.209063 0.362108i −0.00762375 0.0132047i
\(753\) 1.28297 12.5740i 0.0467541 0.458221i
\(754\) 2.82607 + 1.63164i 0.102920 + 0.0594206i
\(755\) 25.8411 0.940453
\(756\) 0 0
\(757\) 28.5388 1.03726 0.518631 0.854998i \(-0.326442\pi\)
0.518631 + 0.854998i \(0.326442\pi\)
\(758\) 1.55418 + 0.897305i 0.0564503 + 0.0325916i
\(759\) −1.41585 + 13.8763i −0.0513923 + 0.503678i
\(760\) −4.18478 7.24825i −0.151798 0.262922i
\(761\) 43.3300 1.57071 0.785355 0.619045i \(-0.212480\pi\)
0.785355 + 0.619045i \(0.212480\pi\)
\(762\) 4.11177 5.69567i 0.148954 0.206332i
\(763\) 0 0
\(764\) 16.2674i 0.588533i
\(765\) 26.3138 29.5840i 0.951379 1.06961i
\(766\) −1.93614 1.11783i −0.0699557 0.0403889i
\(767\) 19.4292i 0.701546i
\(768\) 12.1862 5.47006i 0.439732 0.197384i
\(769\) −5.75189 3.32086i −0.207419 0.119753i 0.392693 0.919670i \(-0.371544\pi\)
−0.600111 + 0.799917i \(0.704877\pi\)
\(770\) 0 0
\(771\) −1.40792 + 13.7985i −0.0507049 + 0.496942i
\(772\) −12.8120 + 22.1910i −0.461113 + 0.798672i
\(773\) −22.2415 + 38.5235i −0.799973 + 1.38559i 0.119660 + 0.992815i \(0.461819\pi\)
−0.919633 + 0.392779i \(0.871514\pi\)
\(774\) −1.52468 + 7.39366i −0.0548036 + 0.265760i
\(775\) −1.03315 + 0.596491i −0.0371119 + 0.0214266i
\(776\) −8.37543 14.5067i −0.300661 0.520759i
\(777\) 0 0
\(778\) 2.35965 4.08703i 0.0845974 0.146527i
\(779\) 1.49645i 0.0536159i
\(780\) −10.9049 1.11267i −0.390457 0.0398399i
\(781\) 41.3039 1.47797
\(782\) 4.54510 + 7.87235i 0.162533 + 0.281515i
\(783\) 3.17988 + 14.3173i 0.113640 + 0.511660i
\(784\) 0 0
\(785\) −10.9134 + 6.30087i −0.389517 + 0.224888i
\(786\) −11.0734 + 15.3390i −0.394976 + 0.547126i
\(787\) −19.0399 + 10.9927i −0.678700 + 0.391848i −0.799365 0.600846i \(-0.794831\pi\)
0.120665 + 0.992693i \(0.461497\pi\)
\(788\) 5.31385 3.06795i 0.189298 0.109291i
\(789\) −27.0696 2.76202i −0.963703 0.0983305i
\(790\) 6.12744 3.53768i 0.218004 0.125865i
\(791\) 0 0
\(792\) 22.9498 + 4.73259i 0.815485 + 0.168165i
\(793\) 1.27816 + 2.21384i 0.0453888 + 0.0786157i
\(794\) 12.3722 0.439075
\(795\) 17.6545 24.4552i 0.626141 0.867338i
\(796\) 24.1486i 0.855923i
\(797\) 9.71892 16.8337i 0.344262 0.596279i −0.640958 0.767576i \(-0.721463\pi\)
0.985219 + 0.171297i \(0.0547959\pi\)
\(798\) 0 0
\(799\) −0.734219 1.27171i −0.0259748 0.0449897i
\(800\) 0.548754 0.316823i 0.0194014 0.0112014i
\(801\) −9.94972 30.0007i −0.351556 1.06002i
\(802\) 3.55818 6.16295i 0.125644 0.217621i
\(803\) 0.722823 1.25197i 0.0255079 0.0441809i
\(804\) −17.8173 12.8625i −0.628367 0.453625i
\(805\) 0 0
\(806\) 10.7356 + 6.19820i 0.378145 + 0.218322i
\(807\) −14.7349 10.6373i −0.518693 0.374451i
\(808\) 10.7472i 0.378084i
\(809\) −18.1916 10.5029i −0.639582 0.369263i 0.144872 0.989450i \(-0.453723\pi\)
−0.784453 + 0.620188i \(0.787056\pi\)
\(810\) 7.62935 + 10.2370i 0.268068 + 0.359691i
\(811\) 37.3291i 1.31080i 0.755281 + 0.655401i \(0.227500\pi\)
−0.755281 + 0.655401i \(0.772500\pi\)
\(812\) 0 0
\(813\) 15.7844 + 35.1644i 0.553581 + 1.23327i
\(814\) −3.69963 −0.129672
\(815\) 11.2876 + 19.5506i 0.395386 + 0.684829i
\(816\) −16.0309 + 7.19583i −0.561193 + 0.251905i
\(817\) −5.58478 3.22438i −0.195387 0.112807i
\(818\) 13.0090 0.454849
\(819\) 0 0
\(820\) −3.19639 −0.111623
\(821\) 10.9017 + 6.29412i 0.380473 + 0.219666i 0.678024 0.735040i \(-0.262837\pi\)
−0.297551 + 0.954706i \(0.596170\pi\)
\(822\) 5.64499 + 4.07519i 0.196892 + 0.142138i
\(823\) 22.4189 + 38.8307i 0.781474 + 1.35355i 0.931083 + 0.364808i \(0.118865\pi\)
−0.149608 + 0.988745i \(0.547801\pi\)
\(824\) −14.3677 −0.500523
\(825\) 0.650451 + 0.0663681i 0.0226458 + 0.00231064i
\(826\) 0 0
\(827\) 25.7293i 0.894695i −0.894360 0.447347i \(-0.852369\pi\)
0.894360 0.447347i \(-0.147631\pi\)
\(828\) 10.7356 3.56046i 0.373088 0.123735i
\(829\) 14.6902 + 8.48139i 0.510212 + 0.294571i 0.732921 0.680314i \(-0.238157\pi\)
−0.222709 + 0.974885i \(0.571490\pi\)
\(830\) 12.1584i 0.422025i
\(831\) −4.01741 + 39.3733i −0.139363 + 1.36585i
\(832\) −0.397284 0.229372i −0.0137733 0.00795204i
\(833\) 0 0
\(834\) −7.79054 + 3.49697i −0.269764 + 0.121090i
\(835\) −3.99450 + 6.91867i −0.138235 + 0.239431i
\(836\) −4.43015 + 7.67324i −0.153220 + 0.265385i
\(837\) 12.0796 + 54.3882i 0.417533 + 1.87993i
\(838\) 6.16680 3.56041i 0.213029 0.122992i
\(839\) 13.3539 + 23.1296i 0.461027 + 0.798522i 0.999012 0.0444321i \(-0.0141478\pi\)
−0.537986 + 0.842954i \(0.680815\pi\)
\(840\) 0 0
\(841\) −10.5167 + 18.2155i −0.362645 + 0.628120i
\(842\) 5.89324i 0.203095i
\(843\) −0.651973 1.45247i −0.0224552 0.0500256i
\(844\) −37.9693 −1.30696
\(845\) −10.7819 18.6747i −0.370907 0.642430i
\(846\) 0.449440 0.149057i 0.0154521 0.00512467i
\(847\) 0 0
\(848\) −11.5927 + 6.69305i −0.398095 + 0.229840i
\(849\) 15.6902 + 34.9546i 0.538486 + 1.19964i
\(850\) 0.369016 0.213051i 0.0126571 0.00730760i
\(851\) −3.49381 + 2.01715i −0.119766 + 0.0691471i
\(852\) −13.7157 30.5559i −0.469893 1.04683i
\(853\) −37.6287 + 21.7249i −1.28838 + 0.743848i −0.978366 0.206883i \(-0.933668\pi\)
−0.310017 + 0.950731i \(0.600335\pi\)
\(854\) 0 0
\(855\) −10.3517 + 3.43313i −0.354020 + 0.117411i
\(856\) 1.71448 + 2.96957i 0.0585997 + 0.101498i
\(857\) −15.6686 −0.535229 −0.267615 0.963526i \(-0.586235\pi\)
−0.267615 + 0.963526i \(0.586235\pi\)
\(858\) −2.78221 6.19820i −0.0949830 0.211603i
\(859\) 20.0431i 0.683862i −0.939725 0.341931i \(-0.888919\pi\)
0.939725 0.341931i \(-0.111081\pi\)
\(860\) −6.88721 + 11.9290i −0.234852 + 0.406775i
\(861\) 0 0
\(862\) 4.84727 + 8.39571i 0.165099 + 0.285959i
\(863\) 34.6600 20.0110i 1.17984 0.681181i 0.223863 0.974621i \(-0.428133\pi\)
0.955978 + 0.293439i \(0.0947998\pi\)
\(864\) −6.41603 28.8880i −0.218278 0.982790i
\(865\) −19.9869 + 34.6184i −0.679576 + 1.17706i
\(866\) 1.07010 1.85347i 0.0363635 0.0629834i
\(867\) −29.4369 + 13.2134i −0.999730 + 0.448752i
\(868\) 0 0
\(869\) −14.6545 8.46079i −0.497120 0.287013i
\(870\) 0.703959 6.89926i 0.0238664 0.233907i
\(871\) 14.3939i 0.487718i
\(872\) −8.74660 5.04985i −0.296197 0.171010i
\(873\) −20.7179 + 6.87109i −0.701194 + 0.232551i
\(874\) 2.50393i 0.0846967i
\(875\) 0 0
\(876\) −1.16621 0.118993i −0.0394025 0.00402039i
\(877\) 45.2705 1.52868 0.764338 0.644815i \(-0.223066\pi\)
0.764338 + 0.644815i \(0.223066\pi\)
\(878\) 2.18931 + 3.79200i 0.0738856 + 0.127974i
\(879\) 41.0795 + 29.6558i 1.38558 + 1.00027i
\(880\) 11.0416 + 6.37485i 0.372211 + 0.214896i
\(881\) −45.3385 −1.52749 −0.763746 0.645517i \(-0.776642\pi\)
−0.763746 + 0.645517i \(0.776642\pi\)
\(882\) 0 0
\(883\) 12.5650 0.422845 0.211423 0.977395i \(-0.432190\pi\)
0.211423 + 0.977395i \(0.432190\pi\)
\(884\) 14.7960 + 8.54245i 0.497642 + 0.287314i
\(885\) 37.6698 16.9090i 1.26626 0.568389i
\(886\) −3.62178 6.27311i −0.121676 0.210749i
\(887\) 35.7241 1.19950 0.599748 0.800189i \(-0.295267\pi\)
0.599748 + 0.800189i \(0.295267\pi\)
\(888\) 2.77544 + 6.18313i 0.0931377 + 0.207492i
\(889\) 0 0
\(890\) 14.9460i 0.500991i
\(891\) 12.0796 28.0434i 0.404683 0.939491i
\(892\) −26.3983 15.2411i −0.883881 0.510309i
\(893\) 0.404487i 0.0135356i
\(894\) −13.9096 10.0415i −0.465206 0.335838i
\(895\) −9.63528 5.56293i −0.322072 0.185948i
\(896\) 0 0
\(897\) −6.00688 4.33643i −0.200564 0.144789i
\(898\) −7.97346 + 13.8104i −0.266078 + 0.460860i
\(899\) 15.1316 26.2087i 0.504667 0.874108i
\(900\) −0.166896 0.503230i −0.00556321 0.0167743i
\(901\) −40.7130 + 23.5056i −1.35635 + 0.783086i
\(902\) −0.990571 1.71572i −0.0329824 0.0571272i
\(903\) 0 0
\(904\) −19.7738 + 34.2491i −0.657665 + 1.13911i
\(905\) 29.9801i 0.996573i
\(906\) 7.60198 10.5303i 0.252559 0.349847i
\(907\) −9.04208 −0.300237 −0.150119 0.988668i \(-0.547966\pi\)
−0.150119 + 0.988668i \(0.547966\pi\)
\(908\) −6.88721 11.9290i −0.228560 0.395878i
\(909\) 13.7157 + 2.82839i 0.454922 + 0.0938117i
\(910\) 0 0
\(911\) −35.5171 + 20.5058i −1.17673 + 0.679388i −0.955257 0.295777i \(-0.904421\pi\)
−0.221478 + 0.975165i \(0.571088\pi\)
\(912\) 4.81522 + 0.491316i 0.159448 + 0.0162691i
\(913\) 25.1826 14.5392i 0.833421 0.481176i
\(914\) 7.00619 4.04503i 0.231744 0.133798i
\(915\) 3.17988 4.40481i 0.105124 0.145618i
\(916\) 19.7652 11.4114i 0.653059 0.377044i
\(917\) 0 0
\(918\) −4.31453 19.4261i −0.142401 0.641156i
\(919\) −5.11628 8.86166i −0.168771 0.292319i 0.769217 0.638987i \(-0.220646\pi\)
−0.937988 + 0.346668i \(0.887313\pi\)
\(920\) −12.0828 −0.398357
\(921\) −25.5796 2.60999i −0.842877 0.0860021i
\(922\) 18.4818i 0.608665i
\(923\) −10.9692 + 18.9992i −0.361055 + 0.625366i
\(924\) 0 0
\(925\) 0.0945538 + 0.163772i 0.00310891 + 0.00538479i
\(926\) −13.9862 + 8.07492i −0.459614 + 0.265358i
\(927\) −3.78122 + 18.3363i −0.124192 + 0.602244i
\(928\) −8.03706 + 13.9206i −0.263830 + 0.456966i
\(929\) 12.8330 22.2273i 0.421036 0.729255i −0.575005 0.818150i \(-0.695000\pi\)
0.996041 + 0.0888945i \(0.0283334\pi\)
\(930\) 2.67417 26.2087i 0.0876896 0.859416i
\(931\) 0 0
\(932\) 40.8763 + 23.5999i 1.33895 + 0.773041i
\(933\) −30.6236 + 13.7461i −1.00257 + 0.450027i
\(934\) 16.4215i 0.537328i
\(935\) 38.7774 + 22.3881i 1.26816 + 0.732170i
\(936\) −8.27175 + 9.29971i −0.270371 + 0.303971i
\(937\) 15.9276i 0.520333i 0.965564 + 0.260167i \(0.0837775\pi\)
−0.965564 + 0.260167i \(0.916223\pi\)
\(938\) 0 0
\(939\) 14.8214 20.5308i 0.483679 0.669997i
\(940\) 0.863976 0.0281798
\(941\) −19.6767 34.0810i −0.641442 1.11101i −0.985111 0.171919i \(-0.945003\pi\)
0.343669 0.939091i \(-0.388330\pi\)
\(942\) −0.642902 + 6.30087i −0.0209469 + 0.205293i
\(943\) −1.87093 1.08018i −0.0609258 0.0351755i
\(944\) −18.3252 −0.596433
\(945\) 0 0
\(946\) −8.53747 −0.277577
\(947\) −28.9086 16.6904i −0.939403 0.542365i −0.0496302 0.998768i \(-0.515804\pi\)
−0.889773 + 0.456403i \(0.849138\pi\)
\(948\) −1.39284 + 13.6507i −0.0452372 + 0.443354i
\(949\) 0.383923 + 0.664975i 0.0124627 + 0.0215860i
\(950\) −0.117372 −0.00380804
\(951\) 17.2140 23.8450i 0.558202 0.773228i
\(952\) 0 0
\(953\) 44.4622i 1.44027i 0.693832 + 0.720137i \(0.255921\pi\)
−0.693832 + 0.720137i \(0.744079\pi\)
\(954\) −4.77197 14.3886i −0.154498 0.465847i
\(955\) 19.6108 + 11.3223i 0.634592 + 0.366382i
\(956\) 25.1456i 0.813266i
\(957\) −15.1316 + 6.79217i −0.489135 + 0.219560i
\(958\) −0.297540 0.171785i −0.00961307 0.00555011i
\(959\) 0 0
\(960\) −0.0989611 + 0.969884i −0.00319395 + 0.0313029i
\(961\) 41.9814 72.7138i 1.35424 2.34561i
\(962\) 0.982519 1.70177i 0.0316777 0.0548674i
\(963\) 4.24102 1.40653i 0.136665 0.0453249i
\(964\) 6.90895 3.98888i 0.222522 0.128473i
\(965\) −17.8347 30.8905i −0.574118 0.994401i
\(966\) 0 0
\(967\) −20.0556 + 34.7372i −0.644943 + 1.11707i 0.339371 + 0.940652i \(0.389786\pi\)
−0.984315 + 0.176422i \(0.943548\pi\)
\(968\) 1.17535i 0.0377771i
\(969\) 16.9108 + 1.72548i 0.543254 + 0.0554303i
\(970\) 10.3214 0.331401
\(971\) −23.0013 39.8394i −0.738147 1.27851i −0.953329 0.301934i \(-0.902368\pi\)
0.215181 0.976574i \(-0.430966\pi\)
\(972\) −24.7573 + 0.376055i −0.794090 + 0.0120620i
\(973\) 0 0
\(974\) −18.9650 + 10.9494i −0.607678 + 0.350843i
\(975\) −0.203270 + 0.281572i −0.00650985 + 0.00901752i
\(976\) −2.08804 + 1.20553i −0.0668366 + 0.0385882i
\(977\) 46.8323 27.0386i 1.49830 0.865042i 0.498299 0.867005i \(-0.333958\pi\)
0.999998 + 0.00196335i \(0.000624955\pi\)
\(978\) 11.2876 + 1.15172i 0.360937 + 0.0368278i
\(979\) 30.9562 17.8726i 0.989365 0.571210i
\(980\) 0 0
\(981\) −8.74660 + 9.83357i −0.279257 + 0.313962i
\(982\) 2.17418 + 3.76579i 0.0693809 + 0.120171i
\(983\) −13.9578 −0.445185 −0.222592 0.974912i \(-0.571452\pi\)
−0.222592 + 0.974912i \(0.571452\pi\)
\(984\) −2.12433 + 2.94265i −0.0677212 + 0.0938082i
\(985\) 8.54135i 0.272150i
\(986\) −5.40462 + 9.36107i −0.172118 + 0.298117i
\(987\) 0 0
\(988\) −2.35305 4.07560i −0.0748605 0.129662i
\(989\) −8.06251 + 4.65489i −0.256373 + 0.148017i
\(990\) −9.59591 + 10.7884i −0.304978 + 0.342879i
\(991\) 18.5149 32.0687i 0.588144 1.01869i −0.406332 0.913726i \(-0.633192\pi\)
0.994475 0.104969i \(-0.0334744\pi\)
\(992\) −30.5309 + 52.8811i −0.969358 + 1.67898i
\(993\) 27.9409 + 20.1708i 0.886677 + 0.640102i
\(994\) 0 0
\(995\) −29.1119 16.8077i −0.922909 0.532841i
\(996\) −19.1181 13.8016i −0.605782 0.437321i
\(997\) 50.1466i 1.58816i 0.607815 + 0.794079i \(0.292046\pi\)
−0.607815 + 0.794079i \(0.707954\pi\)
\(998\) 4.77885 + 2.75907i 0.151272 + 0.0873368i
\(999\) 8.62145 1.91482i 0.272770 0.0605824i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.s.c.374.4 12
3.2 odd 2 1323.2.s.c.962.3 12
7.2 even 3 441.2.i.c.68.4 12
7.3 odd 6 63.2.o.a.41.4 yes 12
7.4 even 3 63.2.o.a.41.3 yes 12
7.5 odd 6 441.2.i.c.68.3 12
7.6 odd 2 inner 441.2.s.c.374.3 12
9.2 odd 6 441.2.i.c.227.3 12
9.7 even 3 1323.2.i.c.521.3 12
21.2 odd 6 1323.2.i.c.1097.4 12
21.5 even 6 1323.2.i.c.1097.3 12
21.11 odd 6 189.2.o.a.125.4 12
21.17 even 6 189.2.o.a.125.3 12
21.20 even 2 1323.2.s.c.962.4 12
28.3 even 6 1008.2.cc.a.545.1 12
28.11 odd 6 1008.2.cc.a.545.6 12
63.2 odd 6 inner 441.2.s.c.362.3 12
63.4 even 3 567.2.c.c.566.6 12
63.11 odd 6 63.2.o.a.20.4 yes 12
63.16 even 3 1323.2.s.c.656.4 12
63.20 even 6 441.2.i.c.227.4 12
63.25 even 3 189.2.o.a.62.3 12
63.31 odd 6 567.2.c.c.566.5 12
63.32 odd 6 567.2.c.c.566.7 12
63.34 odd 6 1323.2.i.c.521.4 12
63.38 even 6 63.2.o.a.20.3 12
63.47 even 6 inner 441.2.s.c.362.4 12
63.52 odd 6 189.2.o.a.62.4 12
63.59 even 6 567.2.c.c.566.8 12
63.61 odd 6 1323.2.s.c.656.3 12
84.11 even 6 3024.2.cc.a.881.5 12
84.59 odd 6 3024.2.cc.a.881.2 12
252.11 even 6 1008.2.cc.a.209.1 12
252.115 even 6 3024.2.cc.a.2897.5 12
252.151 odd 6 3024.2.cc.a.2897.2 12
252.227 odd 6 1008.2.cc.a.209.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.3 12 63.38 even 6
63.2.o.a.20.4 yes 12 63.11 odd 6
63.2.o.a.41.3 yes 12 7.4 even 3
63.2.o.a.41.4 yes 12 7.3 odd 6
189.2.o.a.62.3 12 63.25 even 3
189.2.o.a.62.4 12 63.52 odd 6
189.2.o.a.125.3 12 21.17 even 6
189.2.o.a.125.4 12 21.11 odd 6
441.2.i.c.68.3 12 7.5 odd 6
441.2.i.c.68.4 12 7.2 even 3
441.2.i.c.227.3 12 9.2 odd 6
441.2.i.c.227.4 12 63.20 even 6
441.2.s.c.362.3 12 63.2 odd 6 inner
441.2.s.c.362.4 12 63.47 even 6 inner
441.2.s.c.374.3 12 7.6 odd 2 inner
441.2.s.c.374.4 12 1.1 even 1 trivial
567.2.c.c.566.5 12 63.31 odd 6
567.2.c.c.566.6 12 63.4 even 3
567.2.c.c.566.7 12 63.32 odd 6
567.2.c.c.566.8 12 63.59 even 6
1008.2.cc.a.209.1 12 252.11 even 6
1008.2.cc.a.209.6 12 252.227 odd 6
1008.2.cc.a.545.1 12 28.3 even 6
1008.2.cc.a.545.6 12 28.11 odd 6
1323.2.i.c.521.3 12 9.7 even 3
1323.2.i.c.521.4 12 63.34 odd 6
1323.2.i.c.1097.3 12 21.5 even 6
1323.2.i.c.1097.4 12 21.2 odd 6
1323.2.s.c.656.3 12 63.61 odd 6
1323.2.s.c.656.4 12 63.16 even 3
1323.2.s.c.962.3 12 3.2 odd 2
1323.2.s.c.962.4 12 21.20 even 2
3024.2.cc.a.881.2 12 84.59 odd 6
3024.2.cc.a.881.5 12 84.11 even 6
3024.2.cc.a.2897.2 12 252.151 odd 6
3024.2.cc.a.2897.5 12 252.115 even 6