L(s) = 1 | + (−1.58 + 0.709i)3-s + (1.10 − 1.91i)5-s + (0.906 − 2.48i)7-s + (1.99 − 2.24i)9-s + (2.93 − 1.69i)11-s + (−1.56 − 0.901i)13-s + (−0.388 + 3.80i)15-s − 5.96·17-s + 1.64i·19-s + (0.331 + 4.57i)21-s + (−2.05 − 1.18i)23-s + (0.0556 + 0.0963i)25-s + (−1.56 + 4.95i)27-s + (2.44 − 1.41i)29-s + (−9.28 − 5.36i)31-s + ⋯ |
L(s) = 1 | + (−0.912 + 0.409i)3-s + (0.494 − 0.856i)5-s + (0.342 − 0.939i)7-s + (0.664 − 0.747i)9-s + (0.885 − 0.511i)11-s + (−0.432 − 0.249i)13-s + (−0.100 + 0.983i)15-s − 1.44·17-s + 0.377i·19-s + (0.0722 + 0.997i)21-s + (−0.428 − 0.247i)23-s + (0.0111 + 0.0192i)25-s + (−0.300 + 0.953i)27-s + (0.453 − 0.262i)29-s + (−1.66 − 0.962i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.369 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.369 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.015462632\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.015462632\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.58 - 0.709i)T \) |
| 7 | \( 1 + (-0.906 + 2.48i)T \) |
good | 5 | \( 1 + (-1.10 + 1.91i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.93 + 1.69i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.56 + 0.901i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.96T + 17T^{2} \) |
| 19 | \( 1 - 1.64iT - 19T^{2} \) |
| 23 | \( 1 + (2.05 + 1.18i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.44 + 1.41i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (9.28 + 5.36i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 1.69T + 37T^{2} \) |
| 41 | \( 1 + (0.455 - 0.788i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.96 - 3.39i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.123 + 0.213i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.87iT - 53T^{2} \) |
| 59 | \( 1 + (-5.39 + 9.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.22 + 0.709i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.99 - 6.91i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.1iT - 71T^{2} \) |
| 73 | \( 1 - 0.426iT - 73T^{2} \) |
| 79 | \( 1 + (2.49 + 4.31i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.28 - 7.42i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 10.5T + 89T^{2} \) |
| 97 | \( 1 + (6.30 - 3.63i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.661099222107637079897100735013, −9.136102586777498150980089879342, −8.095871750758638129782222948561, −6.97472202293492096659173148945, −6.22497576835007778101706636853, −5.29587808851818735013069005327, −4.47526780011177226300409805189, −3.76851725592972716017202898352, −1.76407065303652448611676691216, −0.51963963339018578131636442208,
1.73925815765465200060985571590, 2.54342501270864060931271799046, 4.22670313461820381444147606043, 5.16916525598109764575312352115, 6.08410204147485688826385697861, 6.77210032448194315494112420855, 7.34735366841283237803209290209, 8.713962462630469565236100493124, 9.393525974592204003284050074328, 10.42729214396634086597804637281