Properties

Label 1008.2.cc.a.209.6
Level $1008$
Weight $2$
Character 1008.209
Analytic conductor $8.049$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(209,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 209.6
Root \(-0.474636 + 0.274031i\) of defining polynomial
Character \(\chi\) \(=\) 1008.209
Dual form 1008.2.cc.a.545.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58016 + 0.709292i) q^{3} +(-1.10552 - 1.91482i) q^{5} +(-2.60579 + 0.458109i) q^{7} +(1.99381 + 2.24159i) q^{9} +(2.93818 + 1.69636i) q^{11} +(1.56060 - 0.901012i) q^{13} +(-0.388736 - 3.80987i) q^{15} +5.96901 q^{17} +1.64419i q^{19} +(-4.44250 - 1.12438i) q^{21} +(-2.05563 + 1.18682i) q^{23} +(0.0556321 - 0.0963576i) q^{25} +(1.56060 + 4.95626i) q^{27} +(2.44437 + 1.41126i) q^{29} +(9.28558 - 5.36103i) q^{31} +(3.43958 + 4.76454i) q^{33} +(3.75796 + 4.48318i) q^{35} +1.69963 q^{37} +(3.10507 - 0.316823i) q^{39} +(0.455074 + 0.788211i) q^{41} +(1.96108 - 3.39669i) q^{43} +(2.08804 - 6.29593i) q^{45} +(0.123005 - 0.213051i) q^{47} +(6.58027 - 2.38747i) q^{49} +(9.43199 + 4.23377i) q^{51} +7.87589i q^{53} -7.50146i q^{55} +(-1.16621 + 2.59808i) q^{57} +(-5.39093 - 9.33736i) q^{59} +(-1.22853 - 0.709292i) q^{61} +(-6.22234 - 4.92773i) q^{63} +(-3.45056 - 1.99218i) q^{65} +(-3.99381 - 6.91748i) q^{67} +(-4.09003 + 0.417322i) q^{69} +12.1743i q^{71} +0.426103i q^{73} +(0.156253 - 0.112801i) q^{75} +(-8.43339 - 3.07435i) q^{77} +(-2.49381 + 4.31941i) q^{79} +(-1.04944 + 8.93861i) q^{81} +(-4.28541 + 7.42254i) q^{83} +(-6.59888 - 11.4296i) q^{85} +(2.86150 + 3.96378i) q^{87} -10.5358 q^{89} +(-3.65383 + 3.06277i) q^{91} +(18.4752 - 1.88510i) q^{93} +(3.14833 - 1.81769i) q^{95} +(6.30108 + 3.63793i) q^{97} +(2.05563 + 9.96840i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{7} - 12 q^{9} - 6 q^{15} - 24 q^{21} - 24 q^{23} + 30 q^{29} - 4 q^{37} + 10 q^{43} + 6 q^{49} + 42 q^{51} - 18 q^{57} - 24 q^{63} - 78 q^{65} - 12 q^{67} - 24 q^{77} + 6 q^{79} + 24 q^{81}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.58016 + 0.709292i 0.912306 + 0.409510i
\(4\) 0 0
\(5\) −1.10552 1.91482i −0.494405 0.856335i 0.505574 0.862783i \(-0.331281\pi\)
−0.999979 + 0.00644798i \(0.997948\pi\)
\(6\) 0 0
\(7\) −2.60579 + 0.458109i −0.984896 + 0.173149i
\(8\) 0 0
\(9\) 1.99381 + 2.24159i 0.664603 + 0.747196i
\(10\) 0 0
\(11\) 2.93818 + 1.69636i 0.885894 + 0.511471i 0.872597 0.488440i \(-0.162434\pi\)
0.0132968 + 0.999912i \(0.495767\pi\)
\(12\) 0 0
\(13\) 1.56060 0.901012i 0.432832 0.249896i −0.267720 0.963497i \(-0.586270\pi\)
0.700552 + 0.713601i \(0.252937\pi\)
\(14\) 0 0
\(15\) −0.388736 3.80987i −0.100371 0.983704i
\(16\) 0 0
\(17\) 5.96901 1.44770 0.723849 0.689959i \(-0.242371\pi\)
0.723849 + 0.689959i \(0.242371\pi\)
\(18\) 0 0
\(19\) 1.64419i 0.377202i 0.982054 + 0.188601i \(0.0603953\pi\)
−0.982054 + 0.188601i \(0.939605\pi\)
\(20\) 0 0
\(21\) −4.44250 1.12438i −0.969432 0.245360i
\(22\) 0 0
\(23\) −2.05563 + 1.18682i −0.428629 + 0.247469i −0.698762 0.715354i \(-0.746266\pi\)
0.270133 + 0.962823i \(0.412932\pi\)
\(24\) 0 0
\(25\) 0.0556321 0.0963576i 0.0111264 0.0192715i
\(26\) 0 0
\(27\) 1.56060 + 4.95626i 0.300337 + 0.953833i
\(28\) 0 0
\(29\) 2.44437 + 1.41126i 0.453908 + 0.262064i 0.709479 0.704726i \(-0.248930\pi\)
−0.255571 + 0.966790i \(0.582264\pi\)
\(30\) 0 0
\(31\) 9.28558 5.36103i 1.66774 0.962870i 0.698887 0.715232i \(-0.253679\pi\)
0.968853 0.247638i \(-0.0796544\pi\)
\(32\) 0 0
\(33\) 3.43958 + 4.76454i 0.598754 + 0.829400i
\(34\) 0 0
\(35\) 3.75796 + 4.48318i 0.635211 + 0.757795i
\(36\) 0 0
\(37\) 1.69963 0.279417 0.139709 0.990193i \(-0.455383\pi\)
0.139709 + 0.990193i \(0.455383\pi\)
\(38\) 0 0
\(39\) 3.10507 0.316823i 0.497210 0.0507323i
\(40\) 0 0
\(41\) 0.455074 + 0.788211i 0.0710706 + 0.123098i 0.899371 0.437187i \(-0.144025\pi\)
−0.828300 + 0.560285i \(0.810692\pi\)
\(42\) 0 0
\(43\) 1.96108 3.39669i 0.299062 0.517990i −0.676860 0.736112i \(-0.736660\pi\)
0.975922 + 0.218122i \(0.0699931\pi\)
\(44\) 0 0
\(45\) 2.08804 6.29593i 0.311267 0.938541i
\(46\) 0 0
\(47\) 0.123005 0.213051i 0.0179422 0.0310767i −0.856915 0.515458i \(-0.827622\pi\)
0.874857 + 0.484381i \(0.160955\pi\)
\(48\) 0 0
\(49\) 6.58027 2.38747i 0.940039 0.341067i
\(50\) 0 0
\(51\) 9.43199 + 4.23377i 1.32074 + 0.592846i
\(52\) 0 0
\(53\) 7.87589i 1.08184i 0.841075 + 0.540919i \(0.181923\pi\)
−0.841075 + 0.540919i \(0.818077\pi\)
\(54\) 0 0
\(55\) 7.50146i 1.01150i
\(56\) 0 0
\(57\) −1.16621 + 2.59808i −0.154468 + 0.344124i
\(58\) 0 0
\(59\) −5.39093 9.33736i −0.701839 1.21562i −0.967820 0.251643i \(-0.919029\pi\)
0.265981 0.963978i \(-0.414304\pi\)
\(60\) 0 0
\(61\) −1.22853 0.709292i −0.157297 0.0908155i 0.419285 0.907855i \(-0.362281\pi\)
−0.576582 + 0.817039i \(0.695614\pi\)
\(62\) 0 0
\(63\) −6.22234 4.92773i −0.783941 0.620835i
\(64\) 0 0
\(65\) −3.45056 1.99218i −0.427989 0.247100i
\(66\) 0 0
\(67\) −3.99381 6.91748i −0.487922 0.845105i 0.511982 0.858996i \(-0.328911\pi\)
−0.999904 + 0.0138913i \(0.995578\pi\)
\(68\) 0 0
\(69\) −4.09003 + 0.417322i −0.492382 + 0.0502396i
\(70\) 0 0
\(71\) 12.1743i 1.44482i 0.691463 + 0.722412i \(0.256966\pi\)
−0.691463 + 0.722412i \(0.743034\pi\)
\(72\) 0 0
\(73\) 0.426103i 0.0498715i 0.999689 + 0.0249358i \(0.00793812\pi\)
−0.999689 + 0.0249358i \(0.992062\pi\)
\(74\) 0 0
\(75\) 0.156253 0.112801i 0.0180426 0.0130251i
\(76\) 0 0
\(77\) −8.43339 3.07435i −0.961074 0.350354i
\(78\) 0 0
\(79\) −2.49381 + 4.31941i −0.280576 + 0.485971i −0.971527 0.236930i \(-0.923859\pi\)
0.690951 + 0.722902i \(0.257192\pi\)
\(80\) 0 0
\(81\) −1.04944 + 8.93861i −0.116605 + 0.993178i
\(82\) 0 0
\(83\) −4.28541 + 7.42254i −0.470384 + 0.814730i −0.999426 0.0338660i \(-0.989218\pi\)
0.529042 + 0.848596i \(0.322551\pi\)
\(84\) 0 0
\(85\) −6.59888 11.4296i −0.715750 1.23971i
\(86\) 0 0
\(87\) 2.86150 + 3.96378i 0.306785 + 0.424962i
\(88\) 0 0
\(89\) −10.5358 −1.11680 −0.558399 0.829573i \(-0.688584\pi\)
−0.558399 + 0.829573i \(0.688584\pi\)
\(90\) 0 0
\(91\) −3.65383 + 3.06277i −0.383025 + 0.321065i
\(92\) 0 0
\(93\) 18.4752 1.88510i 1.91579 0.195476i
\(94\) 0 0
\(95\) 3.14833 1.81769i 0.323012 0.186491i
\(96\) 0 0
\(97\) 6.30108 + 3.63793i 0.639777 + 0.369376i 0.784529 0.620092i \(-0.212905\pi\)
−0.144751 + 0.989468i \(0.546238\pi\)
\(98\) 0 0
\(99\) 2.05563 + 9.96840i 0.206599 + 1.00186i
\(100\) 0 0
\(101\) 2.33405 4.04270i 0.232247 0.402264i −0.726222 0.687460i \(-0.758726\pi\)
0.958469 + 0.285197i \(0.0920589\pi\)
\(102\) 0 0
\(103\) −5.40462 + 3.12036i −0.532533 + 0.307458i −0.742047 0.670348i \(-0.766145\pi\)
0.209515 + 0.977806i \(0.432812\pi\)
\(104\) 0 0
\(105\) 2.75830 + 9.74963i 0.269182 + 0.951466i
\(106\) 0 0
\(107\) 1.48939i 0.143985i −0.997405 0.0719925i \(-0.977064\pi\)
0.997405 0.0719925i \(-0.0229358\pi\)
\(108\) 0 0
\(109\) −4.38688 −0.420187 −0.210093 0.977681i \(-0.567377\pi\)
−0.210093 + 0.977681i \(0.567377\pi\)
\(110\) 0 0
\(111\) 2.68568 + 1.20553i 0.254914 + 0.114424i
\(112\) 0 0
\(113\) −14.8764 + 8.58887i −1.39945 + 0.807973i −0.994335 0.106293i \(-0.966102\pi\)
−0.405115 + 0.914266i \(0.632769\pi\)
\(114\) 0 0
\(115\) 4.54510 + 2.62412i 0.423833 + 0.244700i
\(116\) 0 0
\(117\) 5.13123 + 1.70177i 0.474383 + 0.157329i
\(118\) 0 0
\(119\) −15.5540 + 2.73445i −1.42583 + 0.250667i
\(120\) 0 0
\(121\) 0.255260 + 0.442124i 0.0232055 + 0.0401931i
\(122\) 0 0
\(123\) 0.160018 + 1.56828i 0.0144283 + 0.141407i
\(124\) 0 0
\(125\) −11.3013 −1.01081
\(126\) 0 0
\(127\) −6.32141 −0.560935 −0.280467 0.959864i \(-0.590489\pi\)
−0.280467 + 0.959864i \(0.590489\pi\)
\(128\) 0 0
\(129\) 5.50806 3.97633i 0.484958 0.350096i
\(130\) 0 0
\(131\) −8.51213 14.7434i −0.743708 1.28814i −0.950796 0.309818i \(-0.899732\pi\)
0.207088 0.978322i \(-0.433601\pi\)
\(132\) 0 0
\(133\) −0.753215 4.28440i −0.0653121 0.371505i
\(134\) 0 0
\(135\) 7.76509 8.46754i 0.668313 0.728770i
\(136\) 0 0
\(137\) 5.42580 + 3.13259i 0.463557 + 0.267635i 0.713539 0.700616i \(-0.247091\pi\)
−0.249982 + 0.968251i \(0.580425\pi\)
\(138\) 0 0
\(139\) 6.65488 3.84220i 0.564460 0.325891i −0.190474 0.981692i \(-0.561002\pi\)
0.754934 + 0.655801i \(0.227669\pi\)
\(140\) 0 0
\(141\) 0.345483 0.249409i 0.0290950 0.0210040i
\(142\) 0 0
\(143\) 6.11375 0.511258
\(144\) 0 0
\(145\) 6.24071i 0.518263i
\(146\) 0 0
\(147\) 12.0913 + 0.894753i 0.997273 + 0.0737979i
\(148\) 0 0
\(149\) 13.3695 7.71887i 1.09527 0.632355i 0.160296 0.987069i \(-0.448755\pi\)
0.934975 + 0.354714i \(0.115422\pi\)
\(150\) 0 0
\(151\) 5.84362 10.1215i 0.475547 0.823672i −0.524060 0.851681i \(-0.675583\pi\)
0.999608 + 0.0280089i \(0.00891668\pi\)
\(152\) 0 0
\(153\) 11.9011 + 13.3801i 0.962145 + 1.08171i
\(154\) 0 0
\(155\) −20.5309 11.8535i −1.64908 0.952096i
\(156\) 0 0
\(157\) 4.93586 2.84972i 0.393924 0.227432i −0.289935 0.957046i \(-0.593634\pi\)
0.683859 + 0.729614i \(0.260300\pi\)
\(158\) 0 0
\(159\) −5.58631 + 12.4452i −0.443023 + 0.986966i
\(160\) 0 0
\(161\) 4.81285 4.03430i 0.379306 0.317948i
\(162\) 0 0
\(163\) 10.2101 0.799721 0.399860 0.916576i \(-0.369059\pi\)
0.399860 + 0.916576i \(0.369059\pi\)
\(164\) 0 0
\(165\) 5.32072 11.8535i 0.414218 0.922794i
\(166\) 0 0
\(167\) 1.80661 + 3.12914i 0.139800 + 0.242140i 0.927421 0.374020i \(-0.122021\pi\)
−0.787621 + 0.616160i \(0.788688\pi\)
\(168\) 0 0
\(169\) −4.87636 + 8.44610i −0.375104 + 0.649700i
\(170\) 0 0
\(171\) −3.68559 + 3.27819i −0.281844 + 0.250690i
\(172\) 0 0
\(173\) −9.03957 + 15.6570i −0.687266 + 1.19038i 0.285453 + 0.958393i \(0.407856\pi\)
−0.972719 + 0.231987i \(0.925477\pi\)
\(174\) 0 0
\(175\) −0.100823 + 0.276573i −0.00762152 + 0.0209070i
\(176\) 0 0
\(177\) −1.89561 18.5783i −0.142483 1.39643i
\(178\) 0 0
\(179\) 5.03194i 0.376105i 0.982159 + 0.188052i \(0.0602175\pi\)
−0.982159 + 0.188052i \(0.939783\pi\)
\(180\) 0 0
\(181\) 13.5592i 1.00785i −0.863747 0.503925i \(-0.831889\pi\)
0.863747 0.503925i \(-0.168111\pi\)
\(182\) 0 0
\(183\) −1.43818 1.99218i −0.106313 0.147266i
\(184\) 0 0
\(185\) −1.87898 3.25449i −0.138145 0.239275i
\(186\) 0 0
\(187\) 17.5380 + 10.1256i 1.28251 + 0.740455i
\(188\) 0 0
\(189\) −6.33709 12.2001i −0.460956 0.887423i
\(190\) 0 0
\(191\) 8.86948 + 5.12080i 0.641773 + 0.370528i 0.785297 0.619119i \(-0.212510\pi\)
−0.143524 + 0.989647i \(0.545844\pi\)
\(192\) 0 0
\(193\) −8.06615 13.9710i −0.580614 1.00565i −0.995407 0.0957374i \(-0.969479\pi\)
0.414792 0.909916i \(-0.363854\pi\)
\(194\) 0 0
\(195\) −4.03940 5.59542i −0.289267 0.400696i
\(196\) 0 0
\(197\) 3.86303i 0.275230i −0.990486 0.137615i \(-0.956056\pi\)
0.990486 0.137615i \(-0.0439436\pi\)
\(198\) 0 0
\(199\) 15.2034i 1.07774i 0.842388 + 0.538871i \(0.181149\pi\)
−0.842388 + 0.538871i \(0.818851\pi\)
\(200\) 0 0
\(201\) −1.40434 13.7635i −0.0990548 0.970803i
\(202\) 0 0
\(203\) −7.01602 2.55765i −0.492428 0.179512i
\(204\) 0 0
\(205\) 1.00619 1.74277i 0.0702753 0.121720i
\(206\) 0 0
\(207\) −6.75890 2.24159i −0.469776 0.155801i
\(208\) 0 0
\(209\) −2.78913 + 4.83091i −0.192928 + 0.334161i
\(210\) 0 0
\(211\) −11.9523 20.7021i −0.822833 1.42519i −0.903564 0.428453i \(-0.859059\pi\)
0.0807311 0.996736i \(-0.474274\pi\)
\(212\) 0 0
\(213\) −8.63513 + 19.2373i −0.591669 + 1.31812i
\(214\) 0 0
\(215\) −8.67208 −0.591431
\(216\) 0 0
\(217\) −21.7403 + 18.2235i −1.47583 + 1.23709i
\(218\) 0 0
\(219\) −0.302231 + 0.673310i −0.0204229 + 0.0454981i
\(220\) 0 0
\(221\) 9.31522 5.37815i 0.626610 0.361773i
\(222\) 0 0
\(223\) −16.6198 9.59545i −1.11294 0.642559i −0.173354 0.984860i \(-0.555461\pi\)
−0.939591 + 0.342300i \(0.888794\pi\)
\(224\) 0 0
\(225\) 0.326914 0.0674145i 0.0217943 0.00449430i
\(226\) 0 0
\(227\) 4.33604 7.51024i 0.287793 0.498472i −0.685490 0.728082i \(-0.740412\pi\)
0.973283 + 0.229610i \(0.0737451\pi\)
\(228\) 0 0
\(229\) −12.4437 + 7.18439i −0.822304 + 0.474758i −0.851211 0.524824i \(-0.824131\pi\)
0.0289060 + 0.999582i \(0.490798\pi\)
\(230\) 0 0
\(231\) −11.1455 10.8397i −0.733320 0.713199i
\(232\) 0 0
\(233\) 29.7160i 1.94676i 0.229194 + 0.973381i \(0.426391\pi\)
−0.229194 + 0.973381i \(0.573609\pi\)
\(234\) 0 0
\(235\) −0.543941 −0.0354828
\(236\) 0 0
\(237\) −7.00434 + 5.05651i −0.454981 + 0.328456i
\(238\) 0 0
\(239\) 13.7101 7.91556i 0.886836 0.512015i 0.0139296 0.999903i \(-0.495566\pi\)
0.872906 + 0.487888i \(0.162233\pi\)
\(240\) 0 0
\(241\) 4.34973 + 2.51132i 0.280190 + 0.161768i 0.633510 0.773735i \(-0.281614\pi\)
−0.353319 + 0.935503i \(0.614947\pi\)
\(242\) 0 0
\(243\) −7.99837 + 13.3801i −0.513095 + 0.858332i
\(244\) 0 0
\(245\) −11.8462 9.96066i −0.756828 0.636363i
\(246\) 0 0
\(247\) 1.48143 + 2.56591i 0.0942612 + 0.163265i
\(248\) 0 0
\(249\) −12.0364 + 8.68920i −0.762774 + 0.550655i
\(250\) 0 0
\(251\) −7.29728 −0.460600 −0.230300 0.973120i \(-0.573971\pi\)
−0.230300 + 0.973120i \(0.573971\pi\)
\(252\) 0 0
\(253\) −8.05308 −0.506293
\(254\) 0 0
\(255\) −2.32037 22.7411i −0.145307 1.42411i
\(256\) 0 0
\(257\) 4.00397 + 6.93508i 0.249761 + 0.432598i 0.963459 0.267855i \(-0.0863147\pi\)
−0.713699 + 0.700453i \(0.752981\pi\)
\(258\) 0 0
\(259\) −4.42887 + 0.778614i −0.275197 + 0.0483807i
\(260\) 0 0
\(261\) 1.71015 + 8.29305i 0.105856 + 0.513327i
\(262\) 0 0
\(263\) 13.6051 + 7.85489i 0.838925 + 0.484353i 0.856899 0.515485i \(-0.172388\pi\)
−0.0179738 + 0.999838i \(0.505722\pi\)
\(264\) 0 0
\(265\) 15.0810 8.70699i 0.926416 0.534866i
\(266\) 0 0
\(267\) −16.6483 7.47299i −1.01886 0.457340i
\(268\) 0 0
\(269\) −10.4924 −0.639731 −0.319866 0.947463i \(-0.603638\pi\)
−0.319866 + 0.947463i \(0.603638\pi\)
\(270\) 0 0
\(271\) 22.2537i 1.35181i −0.736987 0.675907i \(-0.763752\pi\)
0.736987 0.675907i \(-0.236248\pi\)
\(272\) 0 0
\(273\) −7.94603 + 2.24803i −0.480916 + 0.136057i
\(274\) 0 0
\(275\) 0.326914 0.188744i 0.0197137 0.0113817i
\(276\) 0 0
\(277\) 11.4251 19.7889i 0.686468 1.18900i −0.286505 0.958079i \(-0.592493\pi\)
0.972973 0.230919i \(-0.0741733\pi\)
\(278\) 0 0
\(279\) 30.5309 + 10.1256i 1.82784 + 0.606202i
\(280\) 0 0
\(281\) 0.796041 + 0.459595i 0.0474878 + 0.0274171i 0.523556 0.851991i \(-0.324605\pi\)
−0.476068 + 0.879408i \(0.657938\pi\)
\(282\) 0 0
\(283\) −19.1573 + 11.0605i −1.13878 + 0.657477i −0.946129 0.323790i \(-0.895043\pi\)
−0.192654 + 0.981267i \(0.561710\pi\)
\(284\) 0 0
\(285\) 6.26413 0.639154i 0.371055 0.0378602i
\(286\) 0 0
\(287\) −1.54691 1.84544i −0.0913113 0.108933i
\(288\) 0 0
\(289\) 18.6291 1.09583
\(290\) 0 0
\(291\) 7.37636 + 10.2178i 0.432410 + 0.598979i
\(292\) 0 0
\(293\) −14.6259 25.3328i −0.854453 1.47996i −0.877152 0.480214i \(-0.840559\pi\)
0.0226986 0.999742i \(-0.492774\pi\)
\(294\) 0 0
\(295\) −11.9196 + 20.6454i −0.693986 + 1.20202i
\(296\) 0 0
\(297\) −3.82228 + 17.2097i −0.221791 + 0.998609i
\(298\) 0 0
\(299\) −2.13868 + 3.70430i −0.123683 + 0.214225i
\(300\) 0 0
\(301\) −3.55410 + 9.74944i −0.204855 + 0.561948i
\(302\) 0 0
\(303\) 6.55563 4.73259i 0.376611 0.271880i
\(304\) 0 0
\(305\) 3.13656i 0.179599i
\(306\) 0 0
\(307\) 14.8451i 0.847254i −0.905837 0.423627i \(-0.860757\pi\)
0.905837 0.423627i \(-0.139243\pi\)
\(308\) 0 0
\(309\) −10.7534 + 1.09721i −0.611740 + 0.0624182i
\(310\) 0 0
\(311\) 9.69002 + 16.7836i 0.549471 + 0.951711i 0.998311 + 0.0580991i \(0.0185040\pi\)
−0.448840 + 0.893612i \(0.648163\pi\)
\(312\) 0 0
\(313\) −12.6608 7.30974i −0.715633 0.413171i 0.0975102 0.995235i \(-0.468912\pi\)
−0.813143 + 0.582064i \(0.802245\pi\)
\(314\) 0 0
\(315\) −2.55678 + 17.3624i −0.144058 + 0.978261i
\(316\) 0 0
\(317\) −14.7046 8.48973i −0.825895 0.476831i 0.0265499 0.999647i \(-0.491548\pi\)
−0.852445 + 0.522817i \(0.824881\pi\)
\(318\) 0 0
\(319\) 4.78799 + 8.29305i 0.268076 + 0.464321i
\(320\) 0 0
\(321\) 1.05641 2.35348i 0.0589633 0.131358i
\(322\) 0 0
\(323\) 9.81416i 0.546074i
\(324\) 0 0
\(325\) 0.200501i 0.0111218i
\(326\) 0 0
\(327\) −6.93197 3.11158i −0.383339 0.172071i
\(328\) 0 0
\(329\) −0.222925 + 0.611517i −0.0122903 + 0.0337140i
\(330\) 0 0
\(331\) 9.94801 17.2305i 0.546792 0.947072i −0.451700 0.892170i \(-0.649182\pi\)
0.998492 0.0549016i \(-0.0174845\pi\)
\(332\) 0 0
\(333\) 3.38874 + 3.80987i 0.185702 + 0.208779i
\(334\) 0 0
\(335\) −8.83051 + 15.2949i −0.482462 + 0.835649i
\(336\) 0 0
\(337\) 0.490168 + 0.848996i 0.0267012 + 0.0462478i 0.879067 0.476698i \(-0.158166\pi\)
−0.852366 + 0.522946i \(0.824833\pi\)
\(338\) 0 0
\(339\) −29.5990 + 3.02011i −1.60760 + 0.164030i
\(340\) 0 0
\(341\) 36.3769 1.96992
\(342\) 0 0
\(343\) −16.0531 + 9.23572i −0.866785 + 0.498682i
\(344\) 0 0
\(345\) 5.32072 + 7.37033i 0.286458 + 0.396805i
\(346\) 0 0
\(347\) −18.3702 + 10.6060i −0.986162 + 0.569361i −0.904125 0.427268i \(-0.859476\pi\)
−0.0820373 + 0.996629i \(0.526143\pi\)
\(348\) 0 0
\(349\) −8.69945 5.02263i −0.465671 0.268855i 0.248755 0.968566i \(-0.419979\pi\)
−0.714426 + 0.699711i \(0.753312\pi\)
\(350\) 0 0
\(351\) 6.90112 + 6.32862i 0.368354 + 0.337797i
\(352\) 0 0
\(353\) −1.37327 + 2.37858i −0.0730920 + 0.126599i −0.900255 0.435363i \(-0.856620\pi\)
0.827163 + 0.561962i \(0.189953\pi\)
\(354\) 0 0
\(355\) 23.3116 13.4590i 1.23725 0.714329i
\(356\) 0 0
\(357\) −26.5173 6.71144i −1.40344 0.355207i
\(358\) 0 0
\(359\) 10.0013i 0.527849i 0.964543 + 0.263925i \(0.0850170\pi\)
−0.964543 + 0.263925i \(0.914983\pi\)
\(360\) 0 0
\(361\) 16.2967 0.857719
\(362\) 0 0
\(363\) 0.0897572 + 0.879680i 0.00471103 + 0.0461712i
\(364\) 0 0
\(365\) 0.815912 0.471067i 0.0427068 0.0246568i
\(366\) 0 0
\(367\) −5.03560 2.90731i −0.262856 0.151760i 0.362781 0.931875i \(-0.381827\pi\)
−0.625637 + 0.780114i \(0.715161\pi\)
\(368\) 0 0
\(369\) −0.859514 + 2.59163i −0.0447445 + 0.134915i
\(370\) 0 0
\(371\) −3.60801 20.5229i −0.187319 1.06550i
\(372\) 0 0
\(373\) 7.75959 + 13.4400i 0.401776 + 0.695897i 0.993940 0.109920i \(-0.0350596\pi\)
−0.592164 + 0.805817i \(0.701726\pi\)
\(374\) 0 0
\(375\) −17.8578 8.01589i −0.922172 0.413939i
\(376\) 0 0
\(377\) 5.08623 0.261954
\(378\) 0 0
\(379\) −2.79714 −0.143679 −0.0718396 0.997416i \(-0.522887\pi\)
−0.0718396 + 0.997416i \(0.522887\pi\)
\(380\) 0 0
\(381\) −9.98884 4.48373i −0.511744 0.229708i
\(382\) 0 0
\(383\) −1.74229 3.01773i −0.0890268 0.154199i 0.818073 0.575114i \(-0.195042\pi\)
−0.907100 + 0.420915i \(0.861709\pi\)
\(384\) 0 0
\(385\) 3.43648 + 19.5472i 0.175139 + 0.996219i
\(386\) 0 0
\(387\) 11.5240 2.37642i 0.585798 0.120800i
\(388\) 0 0
\(389\) −6.37017 3.67782i −0.322980 0.186473i 0.329740 0.944072i \(-0.393039\pi\)
−0.652720 + 0.757599i \(0.726372\pi\)
\(390\) 0 0
\(391\) −12.2701 + 7.08414i −0.620525 + 0.358260i
\(392\) 0 0
\(393\) −2.99312 29.3346i −0.150983 1.47973i
\(394\) 0 0
\(395\) 11.0279 0.554872
\(396\) 0 0
\(397\) 19.2838i 0.967825i −0.875116 0.483912i \(-0.839215\pi\)
0.875116 0.483912i \(-0.160785\pi\)
\(398\) 0 0
\(399\) 1.84869 7.30429i 0.0925503 0.365672i
\(400\) 0 0
\(401\) 9.60576 5.54589i 0.479689 0.276949i −0.240598 0.970625i \(-0.577344\pi\)
0.720287 + 0.693676i \(0.244010\pi\)
\(402\) 0 0
\(403\) 9.66071 16.7328i 0.481234 0.833522i
\(404\) 0 0
\(405\) 18.2760 7.87235i 0.908144 0.391180i
\(406\) 0 0
\(407\) 4.99381 + 2.88318i 0.247534 + 0.142914i
\(408\) 0 0
\(409\) −17.5597 + 10.1381i −0.868274 + 0.501298i −0.866774 0.498701i \(-0.833811\pi\)
−0.00149954 + 0.999999i \(0.500477\pi\)
\(410\) 0 0
\(411\) 6.35171 + 8.79846i 0.313307 + 0.433996i
\(412\) 0 0
\(413\) 18.3252 + 21.8616i 0.901722 + 1.07574i
\(414\) 0 0
\(415\) 18.9505 0.930243
\(416\) 0 0
\(417\) 13.2410 1.35103i 0.648416 0.0661604i
\(418\) 0 0
\(419\) −5.54936 9.61177i −0.271104 0.469566i 0.698041 0.716058i \(-0.254055\pi\)
−0.969145 + 0.246492i \(0.920722\pi\)
\(420\) 0 0
\(421\) 4.59269 7.95478i 0.223834 0.387692i −0.732135 0.681160i \(-0.761476\pi\)
0.955969 + 0.293467i \(0.0948092\pi\)
\(422\) 0 0
\(423\) 0.722823 0.149057i 0.0351448 0.00724738i
\(424\) 0 0
\(425\) 0.332068 0.575159i 0.0161077 0.0278993i
\(426\) 0 0
\(427\) 3.52622 + 1.28547i 0.170646 + 0.0622080i
\(428\) 0 0
\(429\) 9.66071 + 4.33643i 0.466423 + 0.209365i
\(430\) 0 0
\(431\) 15.1102i 0.727833i −0.931432 0.363916i \(-0.881439\pi\)
0.931432 0.363916i \(-0.118561\pi\)
\(432\) 0 0
\(433\) 3.33578i 0.160307i 0.996783 + 0.0801537i \(0.0255411\pi\)
−0.996783 + 0.0801537i \(0.974459\pi\)
\(434\) 0 0
\(435\) 4.42649 9.86132i 0.212234 0.472814i
\(436\) 0 0
\(437\) −1.95135 3.37984i −0.0933458 0.161680i
\(438\) 0 0
\(439\) 5.91032 + 3.41233i 0.282084 + 0.162861i 0.634367 0.773032i \(-0.281261\pi\)
−0.352282 + 0.935894i \(0.614594\pi\)
\(440\) 0 0
\(441\) 18.4715 + 9.99011i 0.879597 + 0.475719i
\(442\) 0 0
\(443\) −9.77747 5.64503i −0.464542 0.268203i 0.249410 0.968398i \(-0.419763\pi\)
−0.713952 + 0.700195i \(0.753097\pi\)
\(444\) 0 0
\(445\) 11.6476 + 20.1743i 0.552151 + 0.956354i
\(446\) 0 0
\(447\) 26.6008 2.71419i 1.25818 0.128377i
\(448\) 0 0
\(449\) 24.8554i 1.17300i −0.809950 0.586498i \(-0.800506\pi\)
0.809950 0.586498i \(-0.199494\pi\)
\(450\) 0 0
\(451\) 3.08787i 0.145402i
\(452\) 0 0
\(453\) 16.4129 11.8487i 0.771146 0.556700i
\(454\) 0 0
\(455\) 9.90406 + 3.61047i 0.464310 + 0.169262i
\(456\) 0 0
\(457\) 6.30470 10.9201i 0.294922 0.510819i −0.680045 0.733170i \(-0.738040\pi\)
0.974967 + 0.222351i \(0.0713732\pi\)
\(458\) 0 0
\(459\) 9.31522 + 29.5840i 0.434797 + 1.38086i
\(460\) 0 0
\(461\) −14.4031 + 24.9470i −0.670821 + 1.16190i 0.306851 + 0.951758i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(462\) 0 0
\(463\) 12.5858 + 21.7993i 0.584912 + 1.01310i 0.994886 + 0.101001i \(0.0322045\pi\)
−0.409974 + 0.912097i \(0.634462\pi\)
\(464\) 0 0
\(465\) −24.0345 33.2928i −1.11457 1.54392i
\(466\) 0 0
\(467\) 25.5951 1.18440 0.592199 0.805792i \(-0.298260\pi\)
0.592199 + 0.805792i \(0.298260\pi\)
\(468\) 0 0
\(469\) 13.5760 + 16.1959i 0.626881 + 0.747857i
\(470\) 0 0
\(471\) 9.82072 1.00205i 0.452515 0.0461719i
\(472\) 0 0
\(473\) 11.5240 6.65338i 0.529874 0.305923i
\(474\) 0 0
\(475\) 0.158430 + 0.0914695i 0.00726926 + 0.00419691i
\(476\) 0 0
\(477\) −17.6545 + 15.7030i −0.808345 + 0.718993i
\(478\) 0 0
\(479\) −0.267749 + 0.463755i −0.0122338 + 0.0211895i −0.872077 0.489368i \(-0.837228\pi\)
0.859844 + 0.510557i \(0.170561\pi\)
\(480\) 0 0
\(481\) 2.65244 1.53138i 0.120941 0.0698251i
\(482\) 0 0
\(483\) 10.4666 2.96113i 0.476246 0.134736i
\(484\) 0 0
\(485\) 16.0873i 0.730485i
\(486\) 0 0
\(487\) −34.1323 −1.54668 −0.773341 0.633990i \(-0.781416\pi\)
−0.773341 + 0.633990i \(0.781416\pi\)
\(488\) 0 0
\(489\) 16.1337 + 7.24198i 0.729590 + 0.327493i
\(490\) 0 0
\(491\) −5.86948 + 3.38874i −0.264886 + 0.152932i −0.626561 0.779372i \(-0.715538\pi\)
0.361675 + 0.932304i \(0.382205\pi\)
\(492\) 0 0
\(493\) 14.5905 + 8.42380i 0.657121 + 0.379389i
\(494\) 0 0
\(495\) 16.8152 14.9565i 0.755787 0.672244i
\(496\) 0 0
\(497\) −5.57715 31.7237i −0.250169 1.42300i
\(498\) 0 0
\(499\) 4.30037 + 7.44846i 0.192511 + 0.333439i 0.946082 0.323928i \(-0.105004\pi\)
−0.753571 + 0.657367i \(0.771670\pi\)
\(500\) 0 0
\(501\) 0.635258 + 6.22595i 0.0283812 + 0.278155i
\(502\) 0 0
\(503\) −2.96518 −0.132211 −0.0661055 0.997813i \(-0.521057\pi\)
−0.0661055 + 0.997813i \(0.521057\pi\)
\(504\) 0 0
\(505\) −10.3214 −0.459297
\(506\) 0 0
\(507\) −13.6962 + 9.88742i −0.608268 + 0.439116i
\(508\) 0 0
\(509\) 3.04882 + 5.28072i 0.135137 + 0.234064i 0.925650 0.378382i \(-0.123519\pi\)
−0.790513 + 0.612445i \(0.790186\pi\)
\(510\) 0 0
\(511\) −0.195201 1.11033i −0.00863519 0.0491183i
\(512\) 0 0
\(513\) −8.14902 + 2.56591i −0.359788 + 0.113288i
\(514\) 0 0
\(515\) 11.9499 + 6.89926i 0.526574 + 0.304018i
\(516\) 0 0
\(517\) 0.722823 0.417322i 0.0317897 0.0183538i
\(518\) 0 0
\(519\) −25.3893 + 18.3289i −1.11447 + 0.804548i
\(520\) 0 0
\(521\) 32.6929 1.43230 0.716150 0.697946i \(-0.245903\pi\)
0.716150 + 0.697946i \(0.245903\pi\)
\(522\) 0 0
\(523\) 2.00252i 0.0875643i 0.999041 + 0.0437821i \(0.0139407\pi\)
−0.999041 + 0.0437821i \(0.986059\pi\)
\(524\) 0 0
\(525\) −0.355488 + 0.365517i −0.0155148 + 0.0159525i
\(526\) 0 0
\(527\) 55.4257 32.0001i 2.41438 1.39394i
\(528\) 0 0
\(529\) −8.68292 + 15.0393i −0.377518 + 0.653881i
\(530\) 0 0
\(531\) 10.1820 30.7012i 0.441863 1.33232i
\(532\) 0 0
\(533\) 1.42037 + 0.820053i 0.0615232 + 0.0355204i
\(534\) 0 0
\(535\) −2.85192 + 1.64656i −0.123299 + 0.0711870i
\(536\) 0 0
\(537\) −3.56911 + 7.95127i −0.154019 + 0.343122i
\(538\) 0 0
\(539\) 23.3840 + 4.14769i 1.00722 + 0.178654i
\(540\) 0 0
\(541\) −11.4451 −0.492061 −0.246031 0.969262i \(-0.579126\pi\)
−0.246031 + 0.969262i \(0.579126\pi\)
\(542\) 0 0
\(543\) 9.61745 21.4258i 0.412724 0.919467i
\(544\) 0 0
\(545\) 4.84980 + 8.40010i 0.207743 + 0.359821i
\(546\) 0 0
\(547\) 3.91961 6.78896i 0.167590 0.290275i −0.769982 0.638066i \(-0.779735\pi\)
0.937572 + 0.347791i \(0.113068\pi\)
\(548\) 0 0
\(549\) −0.859514 4.16805i −0.0366832 0.177888i
\(550\) 0 0
\(551\) −2.32037 + 4.01899i −0.0988510 + 0.171215i
\(552\) 0 0
\(553\) 4.51959 12.3979i 0.192192 0.527212i
\(554\) 0 0
\(555\) −0.660706 6.47536i −0.0280454 0.274864i
\(556\) 0 0
\(557\) 0.0134996i 0.000571997i −1.00000 0.000285998i \(-0.999909\pi\)
1.00000 0.000285998i \(-9.10361e-5\pi\)
\(558\) 0 0
\(559\) 7.06782i 0.298937i
\(560\) 0 0
\(561\) 20.5309 + 28.4396i 0.866814 + 1.20072i
\(562\) 0 0
\(563\) −9.54528 16.5329i −0.402286 0.696779i 0.591716 0.806147i \(-0.298451\pi\)
−0.994001 + 0.109368i \(0.965117\pi\)
\(564\) 0 0
\(565\) 32.8923 + 18.9904i 1.38379 + 0.798932i
\(566\) 0 0
\(567\) −1.36023 23.7729i −0.0571241 0.998367i
\(568\) 0 0
\(569\) 32.3406 + 18.6719i 1.35579 + 0.782765i 0.989053 0.147561i \(-0.0471422\pi\)
0.366735 + 0.930325i \(0.380475\pi\)
\(570\) 0 0
\(571\) 22.6421 + 39.2173i 0.947544 + 1.64119i 0.750576 + 0.660784i \(0.229776\pi\)
0.196968 + 0.980410i \(0.436890\pi\)
\(572\) 0 0
\(573\) 10.3831 + 14.3827i 0.433758 + 0.600847i
\(574\) 0 0
\(575\) 0.264101i 0.0110138i
\(576\) 0 0
\(577\) 37.0988i 1.54444i 0.635354 + 0.772221i \(0.280854\pi\)
−0.635354 + 0.772221i \(0.719146\pi\)
\(578\) 0 0
\(579\) −2.83630 27.7976i −0.117873 1.15523i
\(580\) 0 0
\(581\) 7.76653 21.3048i 0.322210 0.883870i
\(582\) 0 0
\(583\) −13.3603 + 23.1408i −0.553329 + 0.958393i
\(584\) 0 0
\(585\) −2.41411 11.7068i −0.0998111 0.484015i
\(586\) 0 0
\(587\) −17.0612 + 29.5509i −0.704191 + 1.21969i 0.262792 + 0.964853i \(0.415357\pi\)
−0.966983 + 0.254842i \(0.917977\pi\)
\(588\) 0 0
\(589\) 8.81453 + 15.2672i 0.363197 + 0.629075i
\(590\) 0 0
\(591\) 2.74002 6.10421i 0.112709 0.251094i
\(592\) 0 0
\(593\) −19.6999 −0.808980 −0.404490 0.914542i \(-0.632551\pi\)
−0.404490 + 0.914542i \(0.632551\pi\)
\(594\) 0 0
\(595\) 22.4313 + 26.7601i 0.919594 + 1.09706i
\(596\) 0 0
\(597\) −10.7837 + 24.0238i −0.441346 + 0.983230i
\(598\) 0 0
\(599\) 9.74033 5.62358i 0.397979 0.229773i −0.287632 0.957741i \(-0.592868\pi\)
0.685612 + 0.727967i \(0.259535\pi\)
\(600\) 0 0
\(601\) −29.7646 17.1846i −1.21412 0.700975i −0.250469 0.968125i \(-0.580585\pi\)
−0.963655 + 0.267150i \(0.913918\pi\)
\(602\) 0 0
\(603\) 7.54325 22.7446i 0.307185 0.926233i
\(604\) 0 0
\(605\) 0.564393 0.977557i 0.0229458 0.0397433i
\(606\) 0 0
\(607\) −33.7888 + 19.5080i −1.37145 + 0.791804i −0.991110 0.133044i \(-0.957525\pi\)
−0.380335 + 0.924849i \(0.624191\pi\)
\(608\) 0 0
\(609\) −9.27231 9.01790i −0.375733 0.365424i
\(610\) 0 0
\(611\) 0.443317i 0.0179347i
\(612\) 0 0
\(613\) −16.1099 −0.650672 −0.325336 0.945598i \(-0.605477\pi\)
−0.325336 + 0.945598i \(0.605477\pi\)
\(614\) 0 0
\(615\) 2.82607 2.04018i 0.113958 0.0822678i
\(616\) 0 0
\(617\) 7.03569 4.06205i 0.283246 0.163532i −0.351646 0.936133i \(-0.614378\pi\)
0.634892 + 0.772601i \(0.281045\pi\)
\(618\) 0 0
\(619\) 32.4018 + 18.7072i 1.30234 + 0.751906i 0.980805 0.194991i \(-0.0624678\pi\)
0.321535 + 0.946898i \(0.395801\pi\)
\(620\) 0 0
\(621\) −9.09020 8.33610i −0.364777 0.334516i
\(622\) 0 0
\(623\) 27.4542 4.82656i 1.09993 0.193372i
\(624\) 0 0
\(625\) 12.2156 + 21.1581i 0.488626 + 0.846325i
\(626\) 0 0
\(627\) −7.83379 + 5.65531i −0.312852 + 0.225851i
\(628\) 0 0
\(629\) 10.1451 0.404511
\(630\) 0 0
\(631\) 19.8268 0.789294 0.394647 0.918833i \(-0.370867\pi\)
0.394647 + 0.918833i \(0.370867\pi\)
\(632\) 0 0
\(633\) −4.20281 41.1903i −0.167047 1.63717i
\(634\) 0 0
\(635\) 6.98848 + 12.1044i 0.277329 + 0.480348i
\(636\) 0 0
\(637\) 8.11802 9.65478i 0.321648 0.382536i
\(638\) 0 0
\(639\) −27.2898 + 24.2732i −1.07957 + 0.960235i
\(640\) 0 0
\(641\) −8.01849 4.62948i −0.316711 0.182853i 0.333214 0.942851i \(-0.391867\pi\)
−0.649926 + 0.759998i \(0.725200\pi\)
\(642\) 0 0
\(643\) 36.3456 20.9841i 1.43333 0.827534i 0.435958 0.899967i \(-0.356410\pi\)
0.997373 + 0.0724332i \(0.0230764\pi\)
\(644\) 0 0
\(645\) −13.7033 6.15103i −0.539566 0.242197i
\(646\) 0 0
\(647\) 6.28587 0.247123 0.123561 0.992337i \(-0.460568\pi\)
0.123561 + 0.992337i \(0.460568\pi\)
\(648\) 0 0
\(649\) 36.5798i 1.43588i
\(650\) 0 0
\(651\) −47.2790 + 13.3758i −1.85301 + 0.524241i
\(652\) 0 0
\(653\) 20.1668 11.6433i 0.789189 0.455638i −0.0504882 0.998725i \(-0.516078\pi\)
0.839677 + 0.543086i \(0.182744\pi\)
\(654\) 0 0
\(655\) −18.8207 + 32.5985i −0.735387 + 1.27373i
\(656\) 0 0
\(657\) −0.955147 + 0.849568i −0.0372638 + 0.0331448i
\(658\) 0 0
\(659\) −25.8880 14.9464i −1.00845 0.582230i −0.0977141 0.995215i \(-0.531153\pi\)
−0.910738 + 0.412984i \(0.864486\pi\)
\(660\) 0 0
\(661\) −17.6184 + 10.1720i −0.685278 + 0.395645i −0.801841 0.597538i \(-0.796146\pi\)
0.116563 + 0.993183i \(0.462812\pi\)
\(662\) 0 0
\(663\) 18.5342 1.89112i 0.719809 0.0734450i
\(664\) 0 0
\(665\) −7.37118 + 6.17878i −0.285842 + 0.239603i
\(666\) 0 0
\(667\) −6.69963 −0.259411
\(668\) 0 0
\(669\) −19.4560 26.9506i −0.752212 1.04197i
\(670\) 0 0
\(671\) −2.40643 4.16805i −0.0928990 0.160906i
\(672\) 0 0
\(673\) −8.55996 + 14.8263i −0.329962 + 0.571511i −0.982504 0.186241i \(-0.940369\pi\)
0.652542 + 0.757753i \(0.273703\pi\)
\(674\) 0 0
\(675\) 0.564393 + 0.125352i 0.0217235 + 0.00482479i
\(676\) 0 0
\(677\) −14.2078 + 24.6085i −0.546048 + 0.945783i 0.452492 + 0.891769i \(0.350535\pi\)
−0.998540 + 0.0540148i \(0.982798\pi\)
\(678\) 0 0
\(679\) −18.0858 6.59310i −0.694071 0.253020i
\(680\) 0 0
\(681\) 12.1786 8.79186i 0.466684 0.336905i
\(682\) 0 0
\(683\) 20.9274i 0.800764i −0.916348 0.400382i \(-0.868877\pi\)
0.916348 0.400382i \(-0.131123\pi\)
\(684\) 0 0
\(685\) 13.8526i 0.529281i
\(686\) 0 0
\(687\) −24.7589 + 2.52625i −0.944611 + 0.0963824i
\(688\) 0 0
\(689\) 7.09627 + 12.2911i 0.270346 + 0.468254i
\(690\) 0 0
\(691\) −20.7918 12.0041i −0.790957 0.456659i 0.0493424 0.998782i \(-0.484287\pi\)
−0.840299 + 0.542123i \(0.817621\pi\)
\(692\) 0 0
\(693\) −9.92315 25.0339i −0.376949 0.950957i
\(694\) 0 0
\(695\) −14.7143 8.49529i −0.558144 0.322245i
\(696\) 0 0
\(697\) 2.71634 + 4.70484i 0.102889 + 0.178208i
\(698\) 0 0
\(699\) −21.0773 + 46.9561i −0.797218 + 1.77604i
\(700\) 0 0
\(701\) 42.0117i 1.58676i 0.608728 + 0.793379i \(0.291680\pi\)
−0.608728 + 0.793379i \(0.708320\pi\)
\(702\) 0 0
\(703\) 2.79450i 0.105397i
\(704\) 0 0
\(705\) −0.859514 0.385813i −0.0323712 0.0145306i
\(706\) 0 0
\(707\) −4.23006 + 11.6037i −0.159088 + 0.436401i
\(708\) 0 0
\(709\) −18.6094 + 32.2324i −0.698891 + 1.21051i 0.269960 + 0.962871i \(0.412989\pi\)
−0.968851 + 0.247643i \(0.920344\pi\)
\(710\) 0 0
\(711\) −14.6545 + 3.02198i −0.549587 + 0.113333i
\(712\) 0 0
\(713\) −12.7252 + 22.0406i −0.476561 + 0.825428i
\(714\) 0 0
\(715\) −6.75890 11.7068i −0.252769 0.437808i
\(716\) 0 0
\(717\) 27.2787 2.78335i 1.01874 0.103946i
\(718\) 0 0
\(719\) 18.2978 0.682392 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(720\) 0 0
\(721\) 12.6538 10.6069i 0.471253 0.395021i
\(722\) 0 0
\(723\) 5.09201 + 7.05350i 0.189374 + 0.262323i
\(724\) 0 0
\(725\) 0.271971 0.157022i 0.0101007 0.00583166i
\(726\) 0 0
\(727\) −28.3214 16.3514i −1.05038 0.606439i −0.127626 0.991822i \(-0.540736\pi\)
−0.922756 + 0.385384i \(0.874069\pi\)
\(728\) 0 0
\(729\) −22.1291 + 15.4695i −0.819595 + 0.572943i
\(730\) 0 0
\(731\) 11.7057 20.2749i 0.432951 0.749893i
\(732\) 0 0
\(733\) −0.431812 + 0.249307i −0.0159494 + 0.00920836i −0.507953 0.861385i \(-0.669598\pi\)
0.492004 + 0.870593i \(0.336264\pi\)
\(734\) 0 0
\(735\) −11.6539 24.1419i −0.429862 0.890486i
\(736\) 0 0
\(737\) 27.0997i 0.998231i
\(738\) 0 0
\(739\) 47.7046 1.75484 0.877421 0.479722i \(-0.159263\pi\)
0.877421 + 0.479722i \(0.159263\pi\)
\(740\) 0 0
\(741\) 0.520916 + 5.10532i 0.0191363 + 0.187549i
\(742\) 0 0
\(743\) −9.20534 + 5.31470i −0.337711 + 0.194978i −0.659259 0.751916i \(-0.729130\pi\)
0.321548 + 0.946893i \(0.395797\pi\)
\(744\) 0 0
\(745\) −29.5606 17.0668i −1.08302 0.625279i
\(746\) 0 0
\(747\) −25.1826 + 5.19302i −0.921382 + 0.190003i
\(748\) 0 0
\(749\) 0.682303 + 3.88104i 0.0249308 + 0.141810i
\(750\) 0 0
\(751\) 9.55927 + 16.5571i 0.348823 + 0.604179i 0.986041 0.166505i \(-0.0532482\pi\)
−0.637218 + 0.770684i \(0.719915\pi\)
\(752\) 0 0
\(753\) −11.5309 5.17590i −0.420208 0.188620i
\(754\) 0 0
\(755\) −25.8411 −0.940453
\(756\) 0 0
\(757\) 28.5388 1.03726 0.518631 0.854998i \(-0.326442\pi\)
0.518631 + 0.854998i \(0.326442\pi\)
\(758\) 0 0
\(759\) −12.7252 5.71199i −0.461894 0.207332i
\(760\) 0 0
\(761\) −21.6650 37.5249i −0.785355 1.36028i −0.928787 0.370615i \(-0.879147\pi\)
0.143431 0.989660i \(-0.454186\pi\)
\(762\) 0 0
\(763\) 11.4313 2.00967i 0.413840 0.0727548i
\(764\) 0 0
\(765\) 12.4635 37.5804i 0.450621 1.35872i
\(766\) 0 0
\(767\) −16.8261 9.71458i −0.607557 0.350773i
\(768\) 0 0
\(769\) −5.75189 + 3.32086i −0.207419 + 0.119753i −0.600111 0.799917i \(-0.704877\pi\)
0.392693 + 0.919670i \(0.371544\pi\)
\(770\) 0 0
\(771\) 1.40792 + 13.7985i 0.0507049 + 0.496942i
\(772\) 0 0
\(773\) 44.4831 1.59995 0.799973 0.600036i \(-0.204847\pi\)
0.799973 + 0.600036i \(0.204847\pi\)
\(774\) 0 0
\(775\) 1.19298i 0.0428532i
\(776\) 0 0
\(777\) −7.55059 1.91103i −0.270876 0.0685578i
\(778\) 0 0
\(779\) −1.29596 + 0.748226i −0.0464328 + 0.0268080i
\(780\) 0 0
\(781\) −20.6520 + 35.7703i −0.738986 + 1.27996i
\(782\) 0 0
\(783\) −3.17988 + 14.3173i −0.113640 + 0.511660i
\(784\) 0 0
\(785\) −10.9134 6.30087i −0.389517 0.224888i
\(786\) 0 0
\(787\) −19.0399 + 10.9927i −0.678700 + 0.391848i −0.799365 0.600846i \(-0.794831\pi\)
0.120665 + 0.992693i \(0.461497\pi\)
\(788\) 0 0
\(789\) 15.9268 + 22.0620i 0.567008 + 0.785426i
\(790\) 0 0
\(791\) 34.8300 29.1958i 1.23841 1.03808i
\(792\) 0 0
\(793\) −2.55632 −0.0907776
\(794\) 0 0
\(795\) 30.0061 3.06164i 1.06421 0.108585i
\(796\) 0 0
\(797\) 9.71892 + 16.8337i 0.344262 + 0.596279i 0.985219 0.171297i \(-0.0547959\pi\)
−0.640958 + 0.767576i \(0.721463\pi\)
\(798\) 0 0
\(799\) 0.734219 1.27171i 0.0259748 0.0449897i
\(800\) 0 0
\(801\) −21.0065 23.6170i −0.742228 0.834467i
\(802\) 0 0
\(803\) −0.722823 + 1.25197i −0.0255079 + 0.0441809i
\(804\) 0 0
\(805\) −13.0457 4.75574i −0.459801 0.167618i
\(806\) 0 0
\(807\) −16.5796 7.44215i −0.583630 0.261976i
\(808\) 0 0
\(809\) 21.0058i 0.738526i −0.929325 0.369263i \(-0.879610\pi\)
0.929325 0.369263i \(-0.120390\pi\)
\(810\) 0 0
\(811\) 37.3291i 1.31080i 0.755281 + 0.655401i \(0.227500\pi\)
−0.755281 + 0.655401i \(0.772500\pi\)
\(812\) 0 0
\(813\) 15.7844 35.1644i 0.553581 1.23327i
\(814\) 0 0
\(815\) −11.2876 19.5506i −0.395386 0.684829i
\(816\) 0 0
\(817\) 5.58478 + 3.22438i 0.195387 + 0.112807i
\(818\) 0 0
\(819\) −14.1505 2.08380i −0.494459 0.0728138i
\(820\) 0 0
\(821\) −10.9017 6.29412i −0.380473 0.219666i 0.297551 0.954706i \(-0.403830\pi\)
−0.678024 + 0.735040i \(0.737163\pi\)
\(822\) 0 0
\(823\) −22.4189 38.8307i −0.781474 1.35355i −0.931083 0.364808i \(-0.881135\pi\)
0.149608 0.988745i \(-0.452199\pi\)
\(824\) 0 0
\(825\) 0.650451 0.0663681i 0.0226458 0.00231064i
\(826\) 0 0
\(827\) 25.7293i 0.894695i −0.894360 0.447347i \(-0.852369\pi\)
0.894360 0.447347i \(-0.147631\pi\)
\(828\) 0 0
\(829\) 16.9628i 0.589142i 0.955630 + 0.294571i \(0.0951767\pi\)
−0.955630 + 0.294571i \(0.904823\pi\)
\(830\) 0 0
\(831\) 32.0896 23.1658i 1.11318 0.803614i
\(832\) 0 0
\(833\) 39.2777 14.2508i 1.36089 0.493762i
\(834\) 0 0
\(835\) 3.99450 6.91867i 0.138235 0.239431i
\(836\) 0 0
\(837\) 41.0617 + 37.6554i 1.41930 + 1.30156i
\(838\) 0 0
\(839\) −13.3539 + 23.1296i −0.461027 + 0.798522i −0.999012 0.0444321i \(-0.985852\pi\)
0.537986 + 0.842954i \(0.319185\pi\)
\(840\) 0 0
\(841\) −10.5167 18.2155i −0.362645 0.628120i
\(842\) 0 0
\(843\) 0.931886 + 1.29086i 0.0320958 + 0.0444595i
\(844\) 0 0
\(845\) 21.5637 0.741815
\(846\) 0 0
\(847\) −0.867695 1.03514i −0.0298144 0.0355680i
\(848\) 0 0
\(849\) −38.1167 + 3.88920i −1.30816 + 0.133477i
\(850\) 0 0
\(851\) −3.49381 + 2.01715i −0.119766 + 0.0691471i
\(852\) 0 0
\(853\) −37.6287 21.7249i −1.28838 0.743848i −0.310017 0.950731i \(-0.600335\pi\)
−0.978366 + 0.206883i \(0.933668\pi\)
\(854\) 0 0
\(855\) 10.3517 + 3.43313i 0.354020 + 0.117411i
\(856\) 0 0
\(857\) 7.83430 13.5694i 0.267615 0.463522i −0.700631 0.713524i \(-0.747098\pi\)
0.968245 + 0.250002i \(0.0804312\pi\)
\(858\) 0 0
\(859\) −17.3578 + 10.0216i −0.592242 + 0.341931i −0.765984 0.642860i \(-0.777748\pi\)
0.173742 + 0.984791i \(0.444414\pi\)
\(860\) 0 0
\(861\) −1.13541 4.01330i −0.0386948 0.136773i
\(862\) 0 0
\(863\) 40.0219i 1.36236i 0.732115 + 0.681181i \(0.238533\pi\)
−0.732115 + 0.681181i \(0.761467\pi\)
\(864\) 0 0
\(865\) 39.9739 1.35915
\(866\) 0 0
\(867\) 29.4369 + 13.2134i 0.999730 + 0.448752i
\(868\) 0 0
\(869\) −14.6545 + 8.46079i −0.497120 + 0.287013i
\(870\) 0 0
\(871\) −12.4655 7.19694i −0.422376 0.243859i
\(872\) 0 0
\(873\) 4.40841 + 21.3778i 0.149202 + 0.723528i
\(874\) 0 0
\(875\) 29.4487 5.17720i 0.995547 0.175021i
\(876\) 0 0
\(877\) −22.6353 39.2054i −0.764338 1.32387i −0.940596 0.339529i \(-0.889732\pi\)
0.176257 0.984344i \(-0.443601\pi\)
\(878\) 0 0
\(879\) −5.14290 50.4038i −0.173466 1.70008i
\(880\) 0 0
\(881\) −45.3385 −1.52749 −0.763746 0.645517i \(-0.776642\pi\)
−0.763746 + 0.645517i \(0.776642\pi\)
\(882\) 0 0
\(883\) −12.5650 −0.422845 −0.211423 0.977395i \(-0.567810\pi\)
−0.211423 + 0.977395i \(0.567810\pi\)
\(884\) 0 0
\(885\) −33.4785 + 24.1685i −1.12537 + 0.812415i
\(886\) 0 0
\(887\) 17.8620 + 30.9379i 0.599748 + 1.03879i 0.992858 + 0.119303i \(0.0380659\pi\)
−0.393110 + 0.919492i \(0.628601\pi\)
\(888\) 0 0
\(889\) 16.4723 2.89589i 0.552462 0.0971251i
\(890\) 0 0
\(891\) −18.2465 + 24.4830i −0.611282 + 0.820211i
\(892\) 0 0
\(893\) 0.350296 + 0.202243i 0.0117222 + 0.00676782i
\(894\) 0 0
\(895\) 9.63528 5.56293i 0.322072 0.185948i
\(896\) 0 0
\(897\) −6.00688 + 4.33643i −0.200564 + 0.144789i
\(898\) 0 0
\(899\) 30.2632 1.00933
\(900\) 0 0
\(901\) 47.0113i 1.56617i
\(902\) 0 0
\(903\) −12.5312 + 12.8848i −0.417014 + 0.428778i
\(904\) 0 0
\(905\) −25.9635 + 14.9901i −0.863058 + 0.498287i
\(906\) 0 0
\(907\) −4.52104 + 7.83067i −0.150119 + 0.260013i −0.931271 0.364327i \(-0.881299\pi\)
0.781152 + 0.624341i \(0.214632\pi\)
\(908\) 0 0
\(909\) 13.7157 2.82839i 0.454922 0.0938117i
\(910\) 0 0
\(911\) 35.5171 + 20.5058i 1.17673 + 0.679388i 0.955257 0.295777i \(-0.0955787\pi\)
0.221478 + 0.975165i \(0.428912\pi\)
\(912\) 0 0
\(913\) −25.1826 + 14.5392i −0.833421 + 0.481176i
\(914\) 0 0
\(915\) −2.22473 + 4.95626i −0.0735475 + 0.163849i
\(916\) 0 0
\(917\) 28.9349 + 34.5188i 0.955515 + 1.13991i
\(918\) 0 0
\(919\) −10.2326 −0.337541 −0.168771 0.985655i \(-0.553980\pi\)
−0.168771 + 0.985655i \(0.553980\pi\)
\(920\) 0 0
\(921\) 10.5295 23.4576i 0.346959 0.772954i
\(922\) 0 0
\(923\) 10.9692 + 18.9992i 0.361055 + 0.625366i
\(924\) 0 0
\(925\) 0.0945538 0.163772i 0.00310891 0.00538479i
\(926\) 0 0
\(927\) −17.7703 5.89353i −0.583654 0.193569i
\(928\) 0 0
\(929\) 12.8330 22.2273i 0.421036 0.729255i −0.575005 0.818150i \(-0.695000\pi\)
0.996041 + 0.0888945i \(0.0283334\pi\)
\(930\) 0 0
\(931\) 3.92544 + 10.8192i 0.128651 + 0.354585i
\(932\) 0 0
\(933\) 3.40731 + 33.3938i 0.111550 + 1.09327i
\(934\) 0 0
\(935\) 44.7763i 1.46434i
\(936\) 0 0
\(937\) 15.9276i 0.520333i −0.965564 0.260167i \(-0.916223\pi\)
0.965564 0.260167i \(-0.0837775\pi\)
\(938\) 0 0
\(939\) −14.8214 20.5308i −0.483679 0.669997i
\(940\) 0 0
\(941\) −19.6767 34.0810i −0.641442 1.11101i −0.985111 0.171919i \(-0.945003\pi\)
0.343669 0.939091i \(-0.388330\pi\)
\(942\) 0 0
\(943\) −1.87093 1.08018i −0.0609258 0.0351755i
\(944\) 0 0
\(945\) −16.3551 + 25.6219i −0.532033 + 0.833480i
\(946\) 0 0
\(947\) −28.9086 16.6904i −0.939403 0.542365i −0.0496302 0.998768i \(-0.515804\pi\)
−0.889773 + 0.456403i \(0.849138\pi\)
\(948\) 0 0
\(949\) 0.383923 + 0.664975i 0.0124627 + 0.0215860i
\(950\) 0 0
\(951\) −17.2140 23.8450i −0.558202 0.773228i
\(952\) 0 0
\(953\) 44.4622i 1.44027i −0.693832 0.720137i \(-0.744079\pi\)
0.693832 0.720137i \(-0.255921\pi\)
\(954\) 0 0
\(955\) 22.6447i 0.732764i
\(956\) 0 0
\(957\) 1.68360 + 16.5004i 0.0544232 + 0.533383i
\(958\) 0 0
\(959\) −15.5736 5.67725i −0.502896 0.183328i
\(960\) 0 0
\(961\) 41.9814 72.7138i 1.35424 2.34561i
\(962\) 0 0
\(963\) 3.33860 2.96957i 0.107585 0.0956929i
\(964\) 0 0
\(965\) −17.8347 + 30.8905i −0.574118 + 0.994401i
\(966\) 0 0
\(967\) 20.0556 + 34.7372i 0.644943 + 1.11707i 0.984315 + 0.176422i \(0.0564523\pi\)
−0.339371 + 0.940652i \(0.610214\pi\)
\(968\) 0 0
\(969\) −6.96110 + 15.5079i −0.223623 + 0.498187i
\(970\) 0 0
\(971\) −46.0026 −1.47629 −0.738147 0.674640i \(-0.764299\pi\)
−0.738147 + 0.674640i \(0.764299\pi\)
\(972\) 0 0
\(973\) −15.5811 + 13.0606i −0.499506 + 0.418704i
\(974\) 0 0
\(975\) 0.142213 0.316823i 0.00455448 0.0101465i
\(976\) 0 0
\(977\) −46.8323 + 27.0386i −1.49830 + 0.865042i −0.999998 0.00196335i \(-0.999375\pi\)
−0.498299 + 0.867005i \(0.666042\pi\)
\(978\) 0 0
\(979\) −30.9562 17.8726i −0.989365 0.571210i
\(980\) 0 0
\(981\) −8.74660 9.83357i −0.279257 0.313962i
\(982\) 0 0
\(983\) −6.97890 + 12.0878i −0.222592 + 0.385541i −0.955594 0.294685i \(-0.904785\pi\)
0.733002 + 0.680226i \(0.238119\pi\)
\(984\) 0 0
\(985\) −7.39703 + 4.27068i −0.235689 + 0.136075i
\(986\) 0 0
\(987\) −0.786001 + 0.808175i −0.0250187 + 0.0257245i
\(988\) 0 0
\(989\) 9.30979i 0.296034i
\(990\) 0 0
\(991\) 37.0297 1.17629 0.588144 0.808756i \(-0.299859\pi\)
0.588144 + 0.808756i \(0.299859\pi\)
\(992\) 0 0
\(993\) 27.9409 20.1708i 0.886677 0.640102i
\(994\) 0 0
\(995\) 29.1119 16.8077i 0.922909 0.532841i
\(996\) 0 0
\(997\) 43.4282 + 25.0733i 1.37538 + 0.794079i 0.991600 0.129344i \(-0.0412871\pi\)
0.383785 + 0.923422i \(0.374620\pi\)
\(998\) 0 0
\(999\) 2.65244 + 8.42380i 0.0839194 + 0.266517i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cc.a.209.6 12
3.2 odd 2 3024.2.cc.a.2897.5 12
4.3 odd 2 63.2.o.a.20.3 12
7.6 odd 2 inner 1008.2.cc.a.209.1 12
9.4 even 3 3024.2.cc.a.881.2 12
9.5 odd 6 inner 1008.2.cc.a.545.1 12
12.11 even 2 189.2.o.a.62.4 12
21.20 even 2 3024.2.cc.a.2897.2 12
28.3 even 6 441.2.s.c.362.3 12
28.11 odd 6 441.2.s.c.362.4 12
28.19 even 6 441.2.i.c.227.3 12
28.23 odd 6 441.2.i.c.227.4 12
28.27 even 2 63.2.o.a.20.4 yes 12
36.7 odd 6 567.2.c.c.566.8 12
36.11 even 6 567.2.c.c.566.5 12
36.23 even 6 63.2.o.a.41.4 yes 12
36.31 odd 6 189.2.o.a.125.3 12
63.13 odd 6 3024.2.cc.a.881.5 12
63.41 even 6 inner 1008.2.cc.a.545.6 12
84.11 even 6 1323.2.s.c.656.3 12
84.23 even 6 1323.2.i.c.521.4 12
84.47 odd 6 1323.2.i.c.521.3 12
84.59 odd 6 1323.2.s.c.656.4 12
84.83 odd 2 189.2.o.a.62.3 12
252.23 even 6 441.2.s.c.374.3 12
252.31 even 6 1323.2.i.c.1097.4 12
252.59 odd 6 441.2.i.c.68.4 12
252.67 odd 6 1323.2.i.c.1097.3 12
252.83 odd 6 567.2.c.c.566.6 12
252.95 even 6 441.2.i.c.68.3 12
252.103 even 6 1323.2.s.c.962.3 12
252.131 odd 6 441.2.s.c.374.4 12
252.139 even 6 189.2.o.a.125.4 12
252.167 odd 6 63.2.o.a.41.3 yes 12
252.223 even 6 567.2.c.c.566.7 12
252.247 odd 6 1323.2.s.c.962.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.3 12 4.3 odd 2
63.2.o.a.20.4 yes 12 28.27 even 2
63.2.o.a.41.3 yes 12 252.167 odd 6
63.2.o.a.41.4 yes 12 36.23 even 6
189.2.o.a.62.3 12 84.83 odd 2
189.2.o.a.62.4 12 12.11 even 2
189.2.o.a.125.3 12 36.31 odd 6
189.2.o.a.125.4 12 252.139 even 6
441.2.i.c.68.3 12 252.95 even 6
441.2.i.c.68.4 12 252.59 odd 6
441.2.i.c.227.3 12 28.19 even 6
441.2.i.c.227.4 12 28.23 odd 6
441.2.s.c.362.3 12 28.3 even 6
441.2.s.c.362.4 12 28.11 odd 6
441.2.s.c.374.3 12 252.23 even 6
441.2.s.c.374.4 12 252.131 odd 6
567.2.c.c.566.5 12 36.11 even 6
567.2.c.c.566.6 12 252.83 odd 6
567.2.c.c.566.7 12 252.223 even 6
567.2.c.c.566.8 12 36.7 odd 6
1008.2.cc.a.209.1 12 7.6 odd 2 inner
1008.2.cc.a.209.6 12 1.1 even 1 trivial
1008.2.cc.a.545.1 12 9.5 odd 6 inner
1008.2.cc.a.545.6 12 63.41 even 6 inner
1323.2.i.c.521.3 12 84.47 odd 6
1323.2.i.c.521.4 12 84.23 even 6
1323.2.i.c.1097.3 12 252.67 odd 6
1323.2.i.c.1097.4 12 252.31 even 6
1323.2.s.c.656.3 12 84.11 even 6
1323.2.s.c.656.4 12 84.59 odd 6
1323.2.s.c.962.3 12 252.103 even 6
1323.2.s.c.962.4 12 252.247 odd 6
3024.2.cc.a.881.2 12 9.4 even 3
3024.2.cc.a.881.5 12 63.13 odd 6
3024.2.cc.a.2897.2 12 21.20 even 2
3024.2.cc.a.2897.5 12 3.2 odd 2