Properties

Label 2-9702-1.1-c1-0-96
Degree $2$
Conductor $9702$
Sign $1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s + 8-s + 3·10-s + 11-s + 2·13-s + 16-s − 3·17-s + 2·19-s + 3·20-s + 22-s − 3·23-s + 4·25-s + 2·26-s + 6·29-s − 4·31-s + 32-s − 3·34-s + 2·37-s + 2·38-s + 3·40-s + 3·41-s + 2·43-s + 44-s − 3·46-s + 9·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s + 0.353·8-s + 0.948·10-s + 0.301·11-s + 0.554·13-s + 1/4·16-s − 0.727·17-s + 0.458·19-s + 0.670·20-s + 0.213·22-s − 0.625·23-s + 4/5·25-s + 0.392·26-s + 1.11·29-s − 0.718·31-s + 0.176·32-s − 0.514·34-s + 0.328·37-s + 0.324·38-s + 0.474·40-s + 0.468·41-s + 0.304·43-s + 0.150·44-s − 0.442·46-s + 1.31·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.938519819\)
\(L(\frac12)\) \(\approx\) \(4.938519819\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44973255317468936062155700209, −6.81806399132678493575787700870, −6.01420467562854226082468786461, −5.86249620493476597180759611682, −4.95582870087339401900900930143, −4.26497948226297125800421724024, −3.45631936997040089244018032938, −2.52355248767095160806016081851, −1.94273181044809667918535056660, −0.988879633700524435200031686697, 0.988879633700524435200031686697, 1.94273181044809667918535056660, 2.52355248767095160806016081851, 3.45631936997040089244018032938, 4.26497948226297125800421724024, 4.95582870087339401900900930143, 5.86249620493476597180759611682, 6.01420467562854226082468786461, 6.81806399132678493575787700870, 7.44973255317468936062155700209

Graph of the $Z$-function along the critical line