| L(s) = 1 | + 2·9-s − 4·13-s − 2·17-s − 8·19-s + 6·25-s − 8·43-s − 24·47-s − 49-s + 28·53-s − 24·59-s + 8·67-s − 5·81-s + 24·83-s + 12·89-s + 12·101-s − 16·103-s − 8·117-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + ⋯ |
| L(s) = 1 | + 2/3·9-s − 1.10·13-s − 0.485·17-s − 1.83·19-s + 6/5·25-s − 1.21·43-s − 3.50·47-s − 1/7·49-s + 3.84·53-s − 3.12·59-s + 0.977·67-s − 5/9·81-s + 2.63·83-s + 1.27·89-s + 1.19·101-s − 1.57·103-s − 0.739·117-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 906304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 906304 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.396893549\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.396893549\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42909621063052584220467834502, −9.787631055038512852986802844205, −9.475263683827022844510275621459, −9.007576116643374999327295813758, −8.575609929013050676229577877796, −8.141415524425596874377348804553, −7.85652221302629693662324340989, −7.03136186665212710357962364809, −6.99373181577466169510285717532, −6.43524554507605748585838443025, −6.16348903674374003161698669100, −5.27461664387749374580879984781, −4.96523717164673058973588718804, −4.50550046238098896125693093128, −4.15599797286532655608671227494, −3.36840597926814609027920291707, −2.91369995797359774831254180866, −2.05016709245556178431596412635, −1.80898784762226579827577096394, −0.53751099765746333308399639573,
0.53751099765746333308399639573, 1.80898784762226579827577096394, 2.05016709245556178431596412635, 2.91369995797359774831254180866, 3.36840597926814609027920291707, 4.15599797286532655608671227494, 4.50550046238098896125693093128, 4.96523717164673058973588718804, 5.27461664387749374580879984781, 6.16348903674374003161698669100, 6.43524554507605748585838443025, 6.99373181577466169510285717532, 7.03136186665212710357962364809, 7.85652221302629693662324340989, 8.141415524425596874377348804553, 8.575609929013050676229577877796, 9.007576116643374999327295813758, 9.475263683827022844510275621459, 9.787631055038512852986802844205, 10.42909621063052584220467834502