Properties

Label 2-9152-1.1-c1-0-53
Degree $2$
Conductor $9152$
Sign $1$
Analytic cond. $73.0790$
Root an. cond. $8.54863$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 5·7-s + 9-s − 11-s − 13-s + 2·15-s + 6·17-s − 4·19-s − 10·21-s − 3·23-s − 4·25-s + 4·27-s − 29-s − 6·31-s + 2·33-s − 5·35-s − 2·37-s + 2·39-s + 3·41-s + 43-s − 45-s + 8·47-s + 18·49-s − 12·51-s − 2·53-s + 55-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 1.88·7-s + 1/3·9-s − 0.301·11-s − 0.277·13-s + 0.516·15-s + 1.45·17-s − 0.917·19-s − 2.18·21-s − 0.625·23-s − 4/5·25-s + 0.769·27-s − 0.185·29-s − 1.07·31-s + 0.348·33-s − 0.845·35-s − 0.328·37-s + 0.320·39-s + 0.468·41-s + 0.152·43-s − 0.149·45-s + 1.16·47-s + 18/7·49-s − 1.68·51-s − 0.274·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9152\)    =    \(2^{6} \cdot 11 \cdot 13\)
Sign: $1$
Analytic conductor: \(73.0790\)
Root analytic conductor: \(8.54863\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9152,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.242768581\)
\(L(\frac12)\) \(\approx\) \(1.242768581\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 5 T + p T^{2} \) 1.7.af
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64352639790481947594057724651, −7.24156362857415409315542499382, −6.12030848458202332465561799855, −5.52119719417681011443147104598, −5.14980421685056277826976405959, −4.35556416974134246937863103232, −3.74665656181255240413935221249, −2.41153986547938051973550694739, −1.59212135468018264296057310488, −0.59060058210832542103735297581, 0.59060058210832542103735297581, 1.59212135468018264296057310488, 2.41153986547938051973550694739, 3.74665656181255240413935221249, 4.35556416974134246937863103232, 5.14980421685056277826976405959, 5.52119719417681011443147104598, 6.12030848458202332465561799855, 7.24156362857415409315542499382, 7.64352639790481947594057724651

Graph of the $Z$-function along the critical line