L(s) = 1 | + 2·2-s + 2·4-s + 2·5-s + 4·7-s + 4·10-s − 11-s + 4·13-s + 8·14-s − 4·16-s − 4·17-s − 6·19-s + 4·20-s − 2·22-s + 23-s − 25-s + 8·26-s + 8·28-s + 31-s − 8·32-s − 8·34-s + 8·35-s + 3·37-s − 12·38-s + 2·41-s + 12·43-s − 2·44-s + 2·46-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 0.894·5-s + 1.51·7-s + 1.26·10-s − 0.301·11-s + 1.10·13-s + 2.13·14-s − 16-s − 0.970·17-s − 1.37·19-s + 0.894·20-s − 0.426·22-s + 0.208·23-s − 1/5·25-s + 1.56·26-s + 1.51·28-s + 0.179·31-s − 1.41·32-s − 1.37·34-s + 1.35·35-s + 0.493·37-s − 1.94·38-s + 0.312·41-s + 1.82·43-s − 0.301·44-s + 0.294·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.050589606\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.050589606\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 3 | \( 1 \) | |
| 11 | \( 1 + T \) | |
good | 2 | \( 1 - p T + p T^{2} \) | 1.2.ac |
| 5 | \( 1 - 2 T + p T^{2} \) | 1.5.ac |
| 7 | \( 1 - 4 T + p T^{2} \) | 1.7.ae |
| 13 | \( 1 - 4 T + p T^{2} \) | 1.13.ae |
| 17 | \( 1 + 4 T + p T^{2} \) | 1.17.e |
| 19 | \( 1 + 6 T + p T^{2} \) | 1.19.g |
| 23 | \( 1 - T + p T^{2} \) | 1.23.ab |
| 29 | \( 1 + p T^{2} \) | 1.29.a |
| 31 | \( 1 - T + p T^{2} \) | 1.31.ab |
| 37 | \( 1 - 3 T + p T^{2} \) | 1.37.ad |
| 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac |
| 43 | \( 1 - 12 T + p T^{2} \) | 1.43.am |
| 47 | \( 1 - 7 T + p T^{2} \) | 1.47.ah |
| 53 | \( 1 + 3 T + p T^{2} \) | 1.53.d |
| 59 | \( 1 + 11 T + p T^{2} \) | 1.59.l |
| 61 | \( 1 + p T^{2} \) | 1.61.a |
| 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e |
| 71 | \( 1 + 15 T + p T^{2} \) | 1.71.p |
| 73 | \( 1 + 8 T + p T^{2} \) | 1.73.i |
| 79 | \( 1 + 10 T + p T^{2} \) | 1.79.k |
| 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m |
| 89 | \( 1 + 3 T + p T^{2} \) | 1.89.d |
| 97 | \( 1 - 17 T + p T^{2} \) | 1.97.ar |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55876910956790099171485753792, −9.096848531111147493719892816232, −8.533923851454935414682571080777, −7.37917159457227626407768320357, −6.12050912538103870271253543729, −5.80507845315737021800282776571, −4.62095231306105673350076517104, −4.19769068999157719891173713106, −2.64929629551606458458073848122, −1.73232800938446168341761808628,
1.73232800938446168341761808628, 2.64929629551606458458073848122, 4.19769068999157719891173713106, 4.62095231306105673350076517104, 5.80507845315737021800282776571, 6.12050912538103870271253543729, 7.37917159457227626407768320357, 8.533923851454935414682571080777, 9.096848531111147493719892816232, 10.55876910956790099171485753792