Properties

Label 2-891-1.1-c1-0-27
Degree $2$
Conductor $891$
Sign $1$
Analytic cond. $7.11467$
Root an. cond. $2.66733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 2·5-s + 4·7-s + 4·10-s − 11-s + 4·13-s + 8·14-s − 4·16-s − 4·17-s − 6·19-s + 4·20-s − 2·22-s + 23-s − 25-s + 8·26-s + 8·28-s + 31-s − 8·32-s − 8·34-s + 8·35-s + 3·37-s − 12·38-s + 2·41-s + 12·43-s − 2·44-s + 2·46-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.894·5-s + 1.51·7-s + 1.26·10-s − 0.301·11-s + 1.10·13-s + 2.13·14-s − 16-s − 0.970·17-s − 1.37·19-s + 0.894·20-s − 0.426·22-s + 0.208·23-s − 1/5·25-s + 1.56·26-s + 1.51·28-s + 0.179·31-s − 1.41·32-s − 1.37·34-s + 1.35·35-s + 0.493·37-s − 1.94·38-s + 0.312·41-s + 1.82·43-s − 0.301·44-s + 0.294·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(891\)    =    \(3^{4} \cdot 11\)
Sign: $1$
Analytic conductor: \(7.11467\)
Root analytic conductor: \(2.66733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 891,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.050589606\)
\(L(\frac12)\) \(\approx\) \(4.050589606\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
11 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55876910956790099171485753792, −9.096848531111147493719892816232, −8.533923851454935414682571080777, −7.37917159457227626407768320357, −6.12050912538103870271253543729, −5.80507845315737021800282776571, −4.62095231306105673350076517104, −4.19769068999157719891173713106, −2.64929629551606458458073848122, −1.73232800938446168341761808628, 1.73232800938446168341761808628, 2.64929629551606458458073848122, 4.19769068999157719891173713106, 4.62095231306105673350076517104, 5.80507845315737021800282776571, 6.12050912538103870271253543729, 7.37917159457227626407768320357, 8.533923851454935414682571080777, 9.096848531111147493719892816232, 10.55876910956790099171485753792

Graph of the $Z$-function along the critical line