Properties

Label 2-8800-1.1-c1-0-35
Degree $2$
Conductor $8800$
Sign $1$
Analytic cond. $70.2683$
Root an. cond. $8.38262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·7-s − 2·9-s − 11-s + 2·13-s + 8·17-s − 6·19-s − 4·21-s + 5·23-s − 5·27-s + 4·29-s − 31-s − 33-s − 3·37-s + 2·39-s − 6·41-s − 6·43-s − 12·47-s + 9·49-s + 8·51-s + 6·53-s − 6·57-s − 3·59-s + 8·63-s + 11·67-s + 5·69-s + 5·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.51·7-s − 2/3·9-s − 0.301·11-s + 0.554·13-s + 1.94·17-s − 1.37·19-s − 0.872·21-s + 1.04·23-s − 0.962·27-s + 0.742·29-s − 0.179·31-s − 0.174·33-s − 0.493·37-s + 0.320·39-s − 0.937·41-s − 0.914·43-s − 1.75·47-s + 9/7·49-s + 1.12·51-s + 0.824·53-s − 0.794·57-s − 0.390·59-s + 1.00·63-s + 1.34·67-s + 0.601·69-s + 0.593·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8800\)    =    \(2^{5} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(70.2683\)
Root analytic conductor: \(8.38262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.561119316\)
\(L(\frac12)\) \(\approx\) \(1.561119316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.039862805326959556490234891581, −6.84682793509602570166454062064, −6.57126349955136101926005728490, −5.68916044406441316193079999795, −5.14953557846758268861061313749, −3.94706008164539649794136872356, −3.18545754625741917783875808503, −3.03433754657910677593949474661, −1.86094429887141455429378765426, −0.56835423137931059611468774622, 0.56835423137931059611468774622, 1.86094429887141455429378765426, 3.03433754657910677593949474661, 3.18545754625741917783875808503, 3.94706008164539649794136872356, 5.14953557846758268861061313749, 5.68916044406441316193079999795, 6.57126349955136101926005728490, 6.84682793509602570166454062064, 8.039862805326959556490234891581

Graph of the $Z$-function along the critical line