Properties

Label 8800.p
Number of curves $1$
Conductor $8800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 8800.p1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8800.p do not have complex multiplication.

Modular form 8800.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{7} - 2 q^{9} - q^{11} + 2 q^{13} + 8 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 8800.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8800.p1 8800q1 \([0, 1, 0, 67, -1237]\) \(512/11\) \(-704000000\) \([]\) \(3456\) \(0.37799\) \(\Gamma_0(N)\)-optimal