Properties

Label 2-850-1.1-c1-0-7
Degree $2$
Conductor $850$
Sign $1$
Analytic cond. $6.78728$
Root an. cond. $2.60524$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 5·7-s + 8-s − 2·9-s + 4·11-s − 12-s − 3·13-s + 5·14-s + 16-s − 17-s − 2·18-s − 2·19-s − 5·21-s + 4·22-s + 8·23-s − 24-s − 3·26-s + 5·27-s + 5·28-s − 5·31-s + 32-s − 4·33-s − 34-s − 2·36-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 1.88·7-s + 0.353·8-s − 2/3·9-s + 1.20·11-s − 0.288·12-s − 0.832·13-s + 1.33·14-s + 1/4·16-s − 0.242·17-s − 0.471·18-s − 0.458·19-s − 1.09·21-s + 0.852·22-s + 1.66·23-s − 0.204·24-s − 0.588·26-s + 0.962·27-s + 0.944·28-s − 0.898·31-s + 0.176·32-s − 0.696·33-s − 0.171·34-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(850\)    =    \(2 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(6.78728\)
Root analytic conductor: \(2.60524\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.387569131\)
\(L(\frac12)\) \(\approx\) \(2.387569131\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64713753124356970889274641864, −9.237472952371987631199225800681, −8.453864351318274253193293581515, −7.47210562821160363943359837889, −6.62406300598745126805453340109, −5.54934722007244670213003825632, −4.89676996692636886203356262691, −4.14295887064175091644355723315, −2.60738907647638901911378266781, −1.33537369170169404828229047839, 1.33537369170169404828229047839, 2.60738907647638901911378266781, 4.14295887064175091644355723315, 4.89676996692636886203356262691, 5.54934722007244670213003825632, 6.62406300598745126805453340109, 7.47210562821160363943359837889, 8.453864351318274253193293581515, 9.237472952371987631199225800681, 10.64713753124356970889274641864

Graph of the $Z$-function along the critical line