Properties

Label 2-7935-1.1-c1-0-136
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s + 5-s − 2·6-s + 2·7-s + 9-s − 2·10-s + 5·11-s + 2·12-s − 4·14-s + 15-s − 4·16-s − 4·17-s − 2·18-s + 19-s + 2·20-s + 2·21-s − 10·22-s + 25-s + 27-s + 4·28-s + 2·29-s − 2·30-s + 7·31-s + 8·32-s + 5·33-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 0.755·7-s + 1/3·9-s − 0.632·10-s + 1.50·11-s + 0.577·12-s − 1.06·14-s + 0.258·15-s − 16-s − 0.970·17-s − 0.471·18-s + 0.229·19-s + 0.447·20-s + 0.436·21-s − 2.13·22-s + 1/5·25-s + 0.192·27-s + 0.755·28-s + 0.371·29-s − 0.365·30-s + 1.25·31-s + 1.41·32-s + 0.870·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.734878846\)
\(L(\frac12)\) \(\approx\) \(1.734878846\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 9 T + p T^{2} \) 1.61.j
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.116312540328029648976232066022, −7.37658537550803758610520679671, −6.60536436001324492611903123404, −6.21466269871023527137316144132, −4.77489248630681661582881480876, −4.43880894748406576069877086965, −3.31106265407404648860258482457, −2.24300979621442708542358828072, −1.61376707844173736977261500555, −0.853466801303023770515472677809, 0.853466801303023770515472677809, 1.61376707844173736977261500555, 2.24300979621442708542358828072, 3.31106265407404648860258482457, 4.43880894748406576069877086965, 4.77489248630681661582881480876, 6.21466269871023527137316144132, 6.60536436001324492611903123404, 7.37658537550803758610520679671, 8.116312540328029648976232066022

Graph of the $Z$-function along the critical line