Properties

Label 2-7865-1.1-c1-0-286
Degree $2$
Conductor $7865$
Sign $-1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s − 4-s − 5-s − 2·6-s + 4·7-s − 3·8-s + 9-s − 10-s + 2·12-s + 13-s + 4·14-s + 2·15-s − 16-s − 2·17-s + 18-s + 6·19-s + 20-s − 8·21-s − 6·23-s + 6·24-s + 25-s + 26-s + 4·27-s − 4·28-s − 2·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s − 1/2·4-s − 0.447·5-s − 0.816·6-s + 1.51·7-s − 1.06·8-s + 1/3·9-s − 0.316·10-s + 0.577·12-s + 0.277·13-s + 1.06·14-s + 0.516·15-s − 1/4·16-s − 0.485·17-s + 0.235·18-s + 1.37·19-s + 0.223·20-s − 1.74·21-s − 1.25·23-s + 1.22·24-s + 1/5·25-s + 0.196·26-s + 0.769·27-s − 0.755·28-s − 0.371·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 + T \)
11 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53910588371317865144147686599, −6.58571666443678942577577849907, −5.81818597598767129069878776659, −5.18563670224598709052489428190, −4.98122220833204581590039892928, −4.04925548353637447042354153452, −3.52545848522143013958310489719, −2.20184318885196204588692531253, −1.08672735030409724871085244058, 0, 1.08672735030409724871085244058, 2.20184318885196204588692531253, 3.52545848522143013958310489719, 4.04925548353637447042354153452, 4.98122220833204581590039892928, 5.18563670224598709052489428190, 5.81818597598767129069878776659, 6.58571666443678942577577849907, 7.53910588371317865144147686599

Graph of the $Z$-function along the critical line