Properties

Label 7865.2.a.c
Level $7865$
Weight $2$
Character orbit 7865.a
Self dual yes
Analytic conductor $62.802$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7865,2,Mod(1,7865)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7865.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7865 = 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7865.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-2,-1,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8023411897\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 2 q^{3} - q^{4} - q^{5} - 2 q^{6} + 4 q^{7} - 3 q^{8} + q^{9} - q^{10} + 2 q^{12} + q^{13} + 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} + q^{18} + 6 q^{19} + q^{20} - 8 q^{21} - 6 q^{23}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −2.00000 −1.00000 −1.00000 −2.00000 4.00000 −3.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7865.2.a.c 1
11.b odd 2 1 65.2.a.a 1
33.d even 2 1 585.2.a.h 1
44.c even 2 1 1040.2.a.f 1
55.d odd 2 1 325.2.a.d 1
55.e even 4 2 325.2.b.b 2
77.b even 2 1 3185.2.a.e 1
88.b odd 2 1 4160.2.a.q 1
88.g even 2 1 4160.2.a.f 1
132.d odd 2 1 9360.2.a.ca 1
143.d odd 2 1 845.2.a.a 1
143.g even 4 2 845.2.c.a 2
143.i odd 6 2 845.2.e.a 2
143.k odd 6 2 845.2.e.b 2
143.o even 12 4 845.2.m.b 4
165.d even 2 1 2925.2.a.f 1
165.l odd 4 2 2925.2.c.h 2
220.g even 2 1 5200.2.a.d 1
429.e even 2 1 7605.2.a.f 1
715.c odd 2 1 4225.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.a 1 11.b odd 2 1
325.2.a.d 1 55.d odd 2 1
325.2.b.b 2 55.e even 4 2
585.2.a.h 1 33.d even 2 1
845.2.a.a 1 143.d odd 2 1
845.2.c.a 2 143.g even 4 2
845.2.e.a 2 143.i odd 6 2
845.2.e.b 2 143.k odd 6 2
845.2.m.b 4 143.o even 12 4
1040.2.a.f 1 44.c even 2 1
2925.2.a.f 1 165.d even 2 1
2925.2.c.h 2 165.l odd 4 2
3185.2.a.e 1 77.b even 2 1
4160.2.a.f 1 88.g even 2 1
4160.2.a.q 1 88.b odd 2 1
4225.2.a.g 1 715.c odd 2 1
5200.2.a.d 1 220.g even 2 1
7605.2.a.f 1 429.e even 2 1
7865.2.a.c 1 1.a even 1 1 trivial
9360.2.a.ca 1 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7865))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{3} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 2 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T + 10 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 10 \) Copy content Toggle raw display
$47$ \( T - 4 \) Copy content Toggle raw display
$53$ \( T - 2 \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T - 6 \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T - 12 \) Copy content Toggle raw display
$83$ \( T - 16 \) Copy content Toggle raw display
$89$ \( T - 2 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less